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Quick Recap: Last Time — Trust-Region / Cauchy Point

– Introduction to Trust-region (TR) methods.

– Use a quadratic model mk(p̄) around the current point x̄k ; we trust
the model in some neighborhood (⇒ name of this class of methods).

– Optimize the model mk(p̄) to find the appropriate step p̄k .

– We developed a macro algorithm for expanding and contracting the
size of the TR, depending on how well the model approximates the
objective locally.

– We spend quite some effort in finding the Cauchy point, which
if selected in each iteration guarantees global convergence to a
stationary point.

– We experienced a “rotten tomato moment” when we realized
that the Cauchy point was just a rediscovery of the steepest descent
algorithm, with a particular (possibly sub-optimal) step size.

– We ducked the rotten tomatoes by introducing the first improve-
ment over the Cauchy point, the Dogleg Method.
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Improvement #1: The Dogleg Method (Review) 1 of 3

Method: Dogleg for Trust-region

Use When: The model Hessian Bk is positive definite.

Steepest Descent Direction

Full Step
Trust Region

The Optimal Path

The Dogleg Path

Figure: The dogleg path tries to approximate the optimal path, which describes
the optimal solution to the trust-region sub-problem as a function of the trust-
region radius. The dogleg step is simply the exit point of the dogleg path, or — in
the case when it is feasible — the full step.
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Improvement #1: The Dogleg Method (Review) 2 of 3

The trust region sub-problem is given by

p̄k = argmin
‖p̄‖≤∆k

[

f (x̄k) + p̄T∇f (x̄k) +
1

2
p̄TBk p̄

]

.

The full step is the unconstrained minimum of the quadratic
model

p̄FS
k = −B−1

k ∇f (x̄k).

The step in the steepest descent direction is given by the
unconstrained minimum of the quadratic model along the
steepest descent direction

p̄U
k = − ∇f (x̄k)

T∇f (x̄k)

∇f (x̄k)TBk∇f (x̄k)
∇f (x̄k).
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Improvement #1: The Dogleg Method (Review) 3 of 3

Algorithm: The Dogleg Step

If( ‖p̄U
k‖ ≥ ∆k ), then

p̄DL
k = ∆k · p̄U

k / ‖p̄U
k‖,

elseif( ‖p̄FS
k ‖ ≤ ∆k ), then

p̄DL
k = p̄FS

k ,

else

p̄DL
k = p̄U

k + (τ∗ − 1)(p̄FS
k − p̄U

k)

where τ∗ ∈ [1, 2] so that ‖p̄U
k + (τ∗ − 1)(p̄FS

k − p̄U
k)‖

2 = ∆2
k

end

Next we look at improvements of the dogleg method.
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Lookahead: Improvements to the Cauchy Point / Dogleg Method

We seek other improvements to the Cauchy point, with the goal of
developing trust region methods with better convergence
properties.

In this lecture, we look at:

2-D Subspace Method:
Another simplified model for the optimal solution to the model
problem in the trust-region. Here, the search for an optimal solu-
tion of the model is restricted to a plane (Rn → R

2).

Iterative “Nearly Exact” Solutions to the Subproblem:
Useful only for small problems; costlier per iteration, but needs
fewer iterations. (*) Definition of “small” may vary.
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2-D Subspace Minimization 1 of 9

Method: 2-D Subspace Minimization for Trust-region

Use When: The model Hessian Bk is positive definite, and (modified
version) when Bk is indefinite.

Without too much extra effort, we can expand the minimization from the
dogleg path to the entire plane spanned by the steepest descent vector
p̄U
k and the full step vector p̄FS

k ,

argmin
p̄

[

f (x̄k) + p̄T∇f (x̄k) +
1

2
p̄TBk p̄

︸ ︷︷ ︸

mk (p̄)

]

, s.t. ‖p̄‖ ≤ ∆k , p̄ ∈ span[p̄U
k , p̄

FS
k ]

Figure: The two-dimensional subspace
spanned by p̄U

k
and p̄FS

k
, with the dogleg

path indicated.
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2-D Subspace Minimization 2 of 9

The plane is parameterized by (η1, η2):

p̄(η1, η2) = η1p̄
U
k + η2p̄

FS
k .

Hence we are reduced to solving the problem

η̄k = argmin
η1,η2

[

f (x̄k )+(η1p̄
U
k +η2p̄

FS
k )T∇f (x̄k )+

1

2
(η1p̄

U
k +η2p̄

FS
k )TBk (η1p̄

U
k +η2p̄

FS
k )

]

,

subject to ‖p̄(η1, η2)‖ ≤ ∆k .

This is a minimization of a quadratic model in two variables —
mk(η1, η2); to find the minimum, we set

[
∂

∂η1
mk(η1, η2),

∂

∂η2
mk(η1, η2)

]T

= 0̄.
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2-D Subspace Minimization 3 of 9

[
∂

∂η1
mk(η1, η2),

∂

∂η2
mk(η1, η2)

]T

= 0̄

is a set (2-by-2) of linear equations, and with “some” algebraic
manipulation we can explicitly write down the solution (η1, η2).

The optimal parameters (η1, η2) are given by(1)

[
η1
η2

]

= −
[

(p̄U
k)

TBk p̄
U
k (p̄U

k)
TBk p̄

FS
k

(p̄FS
k )

TBk p̄
U
k (p̄FS

k )
TBk p̄

FS
k

]−1 [
(p̄U

k)
T∇f (x̄k)

(p̄FS
k )

T∇f (x̄k)

]

,

as long as this gives p̄(η1, η2) ∈ Tk ; otherwise
(2) we perform a

one-parameter search η1 ∈ [0,∆k/‖p̄U
k‖] ⇔ η2 ∈ [0,∆k/‖p̄FS

k ‖] so
that η21‖p̄U

k‖2 + η22‖p̄FS
k ‖2 + 2η1η2〈p̄U

k , p̄
FS
k 〉 = ∆2

k .
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2-D Subspace Minimization Gram-Schmidt Orthonormalization 31
2 of 9

Some basic linear algebra can greatly simplify the one-parameter
search “η1 ∈ [0,∆k/‖p̄U

k‖] ⇔ η2 ∈ [0,∆k/‖p̄FS
k ‖] so that

η21‖p̄U
k‖2 + η22‖p̄FS

k ‖2 + 2η1η2〈p̄U
k , p̄

FS
k 〉 = ∆2

k”:

Use Gram-Schmidt to build an orthonormal basis for the 2D
subspace —

q̄1k =
p̄U
k

‖p̄U
k‖

, q̄2k =
p̄FS
k − 〈p̄FS

k , q̄
1
k〉q̄1k

‖p̄FS
k − 〈p̄FS

k , q̄
1
k〉q̄1k‖

now, span(q̄1k , q̄
2
k) = span(p̄U

k , p̄
FS
k ) and we can use to search for

p̄(θ) = ∆
(
cos(θ)q̄1k + sin(θ)q̄2k

)

θ∗ = argmin
θ∈[0,2π]

mk(p̄(θ))  p̄ (θ∗) : ‖p̄ (θ∗) ‖ = ∆.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 2-D Subspace & Iterative Methods — (11/42)



Trust Region Methods
Iterative “Nearly Exact” Solution to the Subproblem

Recap
2-D Subspace Minimization

2-D Subspace Minimization Indefinite Bk 4 of 9

The main advantage of this approach is that we can extend it to
the case where Bk is indefinite.

When Bk has negative eigenvalues, the 2-D subspace minimization
is performed over a different subspace: —

Since we no longer safely can compute the full step
p̄FS
k = −B−1

k ∇f (x̄k), we define a new (modified) step p̄∗k to replace
the full step

span(p̄U
k , p̄

FS
k ) → span(p̄U

k , p̄
∗
k)

The goal is that p̄∗k should be “close” to p̄FS
k , but guaranteed safe

to compute.
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2-D Subspace Minimization Indefinite Bk 5 of 9

How do we select p̄∗k?

Let λ1 denote the most negative eigenvalue of Bk , and select a
parameter β ∈ (−λ1,−2λ1]. Then the matrix (Bk + βI ) must be
positive definite.

We now define
p̄∗k = −(Bk + βI )−1∇f (x̄k)

Note: In the case ‖p̄∗k‖ ≤ ∆k the modified full step is feasible,
so we do not have to perform the subspace optimization.
However, we do not use the step p̄∗k ...

Instead, the step is defined to be p̄k = p̄∗k + v̄ where the vector v̄

satisfies v̄T p̄∗k ≥ 0 (so that ‖p̄k‖ ≥ ‖p̄∗k‖). This is a safeguard
which makes sure that p̄k does not approach 0, in which case the
algorithm is not making any progress. [Details Follow...]
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2-D Subspace Minimization Indefinite Bk 6 of 9

Note: The computation of β for (Bk + βI ) can be computed by e.g. the
Lanczos method(∗).

For a description leading up to, but not completely covering, the Lanczos
method see Math 543, and/or Numerical Linear Algebra, Lloyd N.
Trefethen and David Bau, III, Society for Industrial and Applied
Mathematics (SIAM), 1997. ISBN 0-89871-361-7.

Note: For descriptions on the selection of v̄, see e.g.
• R.H. Byrd, R.B. Schnabel, and G.A. Schultz, Approximate

solution of the trust regions problem by minimization over
two-dimensional subspaces, Mathematical Programming, 40
(1988) pp. 247–263.

• G.A. Schultz, R.B. Schnabel, and R.H. Byrd, A family of trust-
region-based algorithms for the unconstrained minimization
with strong global convergence properties, SIAM Journal on
Numerical Analysis, 22 (1985), pp. 47–67.
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2-D Subspace Minimization Lanczos Iteration

Lanczos method is an iterative method for computing the
eigenvalues of a Hermitian (in the real case, symmetric) matrix.

Stage#1: It is easy (Math 543), to find an orthonormal similarity
transformation QBkQ

T = Tk so that Tk is triangular.

Stage#2: The Lanczos Iteration —
Using a 3-term recurrence relation it produces the coefficients
for another sequence of symmetric tri-diagonal matrices, whose
eigenvalues converge to the eigenvalues of the original matrix;
in particular we get convergence to the outliers, i.e. largest and
smallest eigenvalues, first.
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2-D Subspace Minimization Indefinite Bk 8 of 9

According to Byrd-Schnabel-Schultz (1988), we let

p̄∗k = −(Bk + βI )−1∇f (x̄k),

and when
‖p̄∗k‖ ≤ ∆k ,

we let v̄ = ξv̄−, where v̄− is a vector in the negative curvature
direction of Bk , and ξ is chosen so that

‖p̄k‖ = ‖p̄∗k + ξv̄−‖ = ∆k ,

in particular, the Rayleigh Coefficient must indicate sufficient
negative curvature in the v̄−-direction

v̄T−Bk v̄−

v̄T− v̄−
∈
[

λ1(Bk),
1

1 + ρ
λ1(Bk)

]

, where ρ ∈ (0, 1).
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2-D Subspace Minimization Indefinite Bk 9 of 9

Figure: Visualization of p̄Uk , p̄
∗
k , and v̄−: [Left] The modified full step

p̄∗k falls inside the trust region; [center] From, p̄∗k we follow a direction of
negative curvature (of the original un-shifted Bk) v̄− out to the trust-region
boundary; [Center+Right] the direction v̄− does not necessarily fall in
the plane spanned by p̄Uk and p̄∗k , so we end up exploring a 3rd dimension.
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Interpretation: +βI 1 of 2
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Figure: The addition of βI to Bk can be seen as adding positive curvature β in all
directions. In the left panel we see a saddle with eigenvalues {−1, 2}; in the center
panel, we have added β = 0.75 and we can see that the convex direction has become
more convex, and the concave direction less concave; finally, in the right panel we have
added β = 1.5 so that both directions in the “modified saddle” now are convex.

We note that the absolute distances between the eigenvalues are the same in all three
cases, but that the condition numbers change — in this example they are 2, 11, and 7.
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Interpretation: +βI 2 of 2
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The shift, β

Figure: We see the condition number κ(Bk + βI ) has a spike (to ∞) at β = 1, so
somehow we need to make sure that we make the modified matrix positive definite
“enough” that the resulting condition number does not destroy our computational
scheme. (More details on conditioning and its effects in Math 543.)
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Computing B−1
k ∇f (x̄k) or (Bk + βI )−1∇f (x̄k) 1 of 2

In the dogleg as well as in the 2-D subspace minimization
algorithms, we must compute the solution of a linear system, either
B−1
k ∇f (x̄k) or (Bk + βI )−1∇f (x̄k).

When Bk is large, i.e. we have a large number of unknowns in our
minimization problem, solving these linear systems may be quite
costly. — In fact, this is probably where we are likely to spend
most of our computational resources!

Much research has been done on this issue — instead of solving
the linear system exactly, we will look at approximate solutions.
However, we need approximate solutions which yield improvements
to the Cauchy point when used inside our optimization algorithms.
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Computing B−1
k ∇f (x̄k) or (Bk + βI )−1∇f (x̄k) 2 of 2

Steihaug’s Approach (NW1st pp.75-77, NW2nd pp.171-173) is an
adaptation of such an approximate solution scheme (the
conjugate gradient algorithm).

For now, we will sweep these issues under the rug. — Soon we will
take a close look at conjugate gradient (CG) methods. Once we
have added the CG “tool” to our bag-of-tricks we will re-visit both
line-search and trust-region methods and integrate the CG-tools
into the discussion.

The CG-integration will do two things for us — (i) it will stabilize
the solution of the linear systems, and (ii) at the same time allow
us to solve much larger problems, essentially taking us from
“toy-problem” to large (realistic) problem size.
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Roadmap to Minimization (So Far)

The Global Minimization Problem

Iterative Solution −−− From x(k) to a better x(k+1)

LINESEARCH TRUSTREGION

Search Direction p(k)
Coordinate Descent
Steepest Descent
[Quasi−Newton]
Newton

Step Length
Initial Step
Methods

Backtracking
Interpolation

Quadratic
Cubic

Sufficient Decrease Condition
Wolfe Conditions
Strong Wolfe Conditions
[Goldstein Conditions]

Cauchy Point
Steepest Descent in TR framework

Dogleg
1D subproblem

2D Subspace Minimization

Model Hessian can be indefinite

[Steihaug’s Method]

Nearly Exact Subproblem
For low−dimensional problems

Convergence
Global
Rates

[Convergence]

2D subproblem
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Homework #3 — Due at 12:00pm, Friday October 19, 2018

Problem NW-4.1

Let
f (x̄) = 10(x2 − x21 )

2 + (1− x1)
2

At x̄0 = (0,−1) draw the contour lines of the quadratic model assuming
that B = ∇2f (x). Draw the family of solutions∗ of trust-region
subproblem as the radius varies from ∆ = 0 to ∆ = 2. Repeat at
x̄1 = (0, 0.5).

∗ Compute the solutions “almost exactly” using some method we have
discussed (or will discuss), or some ad hoc brute-force method. The
question is really “find, as best as you can, the optimal path.”

Note: The homework is due in Peter’s mailbox in GMCS-411 or in Peter’s
office GMCS-587 (slide under the door if I’m not there).
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Iterative “Nearly Exact” Methods for “Small” Problems

The methods we have looked at: Cauchy Point, Dogleg, and 2-D
Subspace Minimization do not try to solve the subproblem

p̄k = argmin
p̄∈Tk

mk(p̄) = min
p̄∈Tk

f (x̄k) + p̄T∇f (x̄k) +
1

2
p̄TBk p̄

exactly. — They use some of the information in the model Hessian Bk ,
and guarantee global convergence to a stationary point at a relatively low
cost.

For small problems, when the number of unknowns n is not too large, it
is sometimes worth the effort to solve the subproblem more accurately.

The cost (per iteration) of the method we describe here is about three
factorizations of the (model) Hessian Matrix. The hope is that, by
working harder in each step, significantly fewer iterations will be
necessary.
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Iterative “Nearly Exact” Methods: Setup

The basis of the nearly exact solution of the subproblem is:

— A good characterization of the exact solution.

— Application of Newton’s method in 1-D.

Essentially we are looking for a solution of

(Bk + λI )p̄ = −∇f (x̄k), (The Convexified Problem)

for an appropriate λ ≥ 0.
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Iterative “Nearly Exact” Methods: Key Result

Theorem

The vector p̄∗ is a global solution of the trust-region problem

p̄∗ = argmin
‖p̄‖≤∆k

[

f (x̄k) + p̄T∇f (x̄k) +
1

2
p̄TBk p̄

]

if and only if p̄∗ is feasible, and there is a scalar λ ≥ 0 such that
the following conditions are satisfied:

1. (Bk + λI )p̄∗ = −∇f (x̄k),
2. λ(∆k − ‖p̄∗‖) = 0,
3. (Bk + λI ) is positive semi-definite.

For the proof, see NW1st pp.84–87, or NW2nd pp.89–91.
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Iterative “Nearly Exact” Methods: Key Result — Discussion

The Conditions

1. (Bk + λI )p̄∗ = −∇f (x̄k)
2. λ(∆k − ‖p̄∗‖) = 0
3. (Bk + λI ) is positive semi-definite

Condition 1

implies that λp̄∗ = −Bk p̄
∗ −∇f (x̄k) = −∇mk(p̄

∗), i.e. p̄∗ is
collinear with the negative gradient of the model mk , and hence
normal to its contour lines. (Steepest Descent for the model,
in p̄∗.)

Condition 2

says that either λ = 0 (in which case Bk is positive semidefinite
and Bk p̄

∗ = −∇f (x̄k)), or p̄
∗ lies on the boundary of the trust

region.
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Iterative “Nearly Exact” Methods: The Scheme

Based on the theorem, we construct an algorithm for finding the
solution of the local subproblem:

Case #1: λ = 0 works, i.e. Bk is positive semi-definite, and
‖p̄∗‖ = ‖B†

k∇f (x̄k)‖ ≤ ∆k . [pseudo-inverse, B
†
k
: next slide].

Case #2: Otherwise, we define a function

p̄(λ) = −(Bk + λI )−1∇f (x̄k)

which is defined for λ sufficiently large that (Bk + λI )
is positive semi-definite. Now, we seek the value of λ
so that ‖p̄(λ)‖ = ∆k .

Notice: this is a 1-D root-finding problem in λ.
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Iterative “Nearly Exact” Methods: The Scheme — Pseudo-Inverse

Definition (The Pseudo-Inverse)

Given A ∈ C
m×n, the pseudo-inverse is the unique matrix

A† ∈ C
n×m that satisfies the Moore-Penrose conditions:

(i) AA†A = A
(ii) A†AA† = A†

(iii) (AA†)∗ = AA†

(iv) (A†A)∗ = A†A

Computationally, the Pseudo-Inverse is typically implemented using
the QR-decomposition [A†

 R−1Q∗], or the Singular Value
Decomposition (SVD) [A†

 VΣ−1U∗] (see Math 543).
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Iterative “Nearly Exact” Methods: Properties of ‖p̄(λ)‖ 1 of 3

We take a closer look at the properties of ‖p̄(λ)‖ —

Since Bk is symmetric, it is unitarily diagonalizable (Math 543),
i.e. there exists an orthonormal matrix Q and a diagonal matrix
Λ = diag(λ1, λ2, . . . , λn) where λi are the eigenvalues of Bk listed
in increasing order, such that Bk = QΛQT . Now,

Bk + λI = Q(Λ + λI )QT ,

and we can write

p̄(λ) = −Q(Λ + λI )−1QT∇f (x̄k) = −
n∑

j=1

q̄Tj ∇f (x̄k)

λj + λ
q̄j ,

where q̄j is the jth column of Q.
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Iterative “Nearly Exact” Methods: Properties of ‖p̄(λ)‖ 2 of 3

The “definition” of a small problem is a problem for which we can
compute the unitary diagonalization Bk = QΛQT in reasonable
amount of time.

If Bk is of size n × n, then the number of operations required to
find the decomposition is ∼ O

(
n3
)
.

The details of the decomposition (which is a 2-phase algorithm,
first converting Bk into tridiagonal form Tk , and then iteratively
diagonalizing Tk using the QR-algorithm) is given in Math 543.
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Iterative “Nearly Exact” Methods: Properties of ‖p̄(λ)‖ 3 of 3

Now, we can write

‖p̄(λ)‖2 =
n∑

j=1

(q̄Tj ∇f (x̄k))
2

(λj + λ)2
.

Note that the numerators are all constants independent of λ.
If λ > −λ1, then (λj + λ) > 0, ∀j and ‖p̄(λ)‖ is a decreasing
function of λ in the interval (−λ1,∞).
We have the following

lim
λ→∞

‖p̄(λ)‖ = 0,

and when q̄Tj ∇f (x̄k) 6= 0

lim
λ→−λj

‖p̄(λ)‖ = ∞.
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Illustration: ‖p̄(λ)‖

Figure: Illustration, here λ1 = −3, λ2 = −1, and all other λj > 0. We see the
blow-ups of ‖p̄(λ)‖ at λ = 1, and λ = 3. The dash-dotted line illustrates the
trust-region bound ∆k = 0.05.
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Iterative “Nearly Exact” Methods: The Scheme, Revisited 1 of 2

Case #2a: If Bk is positive definite, but ‖B−1
k ∇f (x̄k)‖ > ∆k ,

there is a strictly positive λ for which ‖p̄(λ)‖ = ∆k ,
so we search for a λ ∈ (0,∞).

Case #2b: If Bk is indefinite, and q̄T1 ∇f (x̄k) 6= 0 we must search
in the interval (−λ1,∞)...

Case #2c: If Bk is indefinite, and q̄T1 ∇f (x̄k) = 0  “The Hard
Case.”

We would like to apply Newton’s method to

Φ1(λ) = ‖p̄(λ)‖ −∆k = 0,

but since ‖p̄(λ)‖ (and therefore Φ1(λ)) blows up around λ1,
Newton’s method may be slow and unreliable.
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Iterative “Nearly Exact” Methods: The Scheme, Revisited 2 of 2

Instead, we apply Newton’s method to the root finding problem

Φ2(λ) =
1

∆k

− 1

‖p̄(λ)‖ = 0.

Φ2(λ) behaves nicely (linearly!) around λ1:

Φ2(λ) ≈
1

∆k

− λ+ λ1

C , C > 0, λ ≈ λ1

Hence, root-finding with Newton’s method will work.
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Illustration: Searching for 1/‖p̄(λ)‖ = 1/∆k

Figure: Illustration, here λ1 = −3, λ2 = −1, and all other λj > 0. We see that the
blow-ups of ‖p̄(λ)‖ at λ = 1, and λ = 3 have been “converted” into zeros. The
dashed line illustrates the converted trust-region bound 1/∆k = 1/0.05 = 20.0.
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Exact Trust Region: Newton-Iteration Module

We are now ready to write down the Newton iteration

λ(n+1) = λ(n) −
Φ2(λ

(n))

Φ′
2(λ

(n))

Algorithm: Exact Trust Region

1. Given λ(0), ∆k > 0
2. LOOP until convergence

3. TRY to factor B + λ(n)I = LTL

4. IF factorization failed

5. increase λ(n) and RETRY (3)

6. ELSE

7. Solve LTLp̄n = −∇f (x̄k ), LT q̄n = p̄n
8. Update

λ(n+1) = λ(n) +

[

‖p̄n‖

‖q̄n‖

]2 [‖p̄n‖ −∆

∆

]

9. ENDIF, ENDLOOP (n = n + 1)
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Cholesky Factorization — “TRY to factor B + λ(n)I = LTL”

Algorithm: Cholesky Factorization

for i = 1,2,. . . ,n

Lii =
√
Aii , this Fails if Aii < 0, (really if Aii < ǫ∗)

for j = i+1,i+2,. . . ,n

Lji = Aji/Lii
for k = i+1,i+2,. . . ,j

Ajk = Ajk − LjiLki
end-for-k

end-for-j

end-for-i

(∗) André-Louis Cholesky (15 October 1875 – 31 August 1918). He
served the French military as artillery officer, and was killed in battle
a few months before the end of World War I.
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Exact Trust Region: Success and Failure

This algorithm will work nicely for Case #2a and Case #2b,
unfortunately the story does not end there. (In Case #2a we can
apply Newton’s Method directly to the un-converted Φ1(λ), as
long as we enforce λ > 0 in the Newton iteration).

Recall that in Case #2b we assumed q̄T1 ∇f (x̄k) 6= 0. If that is not
true there may not be a value λ ∈ (−λ1,∞) for which
‖p̄(λ)‖ = ∆k . (See illustration on next slide.)

Since root finding on (−λ1,∞) fails, and the theorem guarantees
that λ ∈ [−λ1,∞), we must have λ = −λ1.

Finding p̄ in this case requires a little more work...
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Illustration: The Hard Case

Figure: Illustration, here λ1 = −3, λ2 = −1, and all other λj > 0. Here q̄T1 ∇f (x̄k ) = 0,
and we end up with the hard case where ‖p̄(λ)‖ = ∆ is not solvable in the region
λ ∈ (−λ1,∞). (We see the blow-up at −λ2, and the location of −λ1 has been marked
with a vertical dash-dotted line.)
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The Hard Case: Computing p̄

The matrix (B − λ1I ) is singular, therefore there exists a vector z̄ such
that ‖z̄‖ = 1 and (B − λ1I )z̄ = 0.

Hence z̄ is the eigenvector of B corresponding to λ1, by the orthogonality
of Q, we have q̄Tj z̄ = 0 for λj 6= λ1. If we set

p̄(τ, λ) = τ z̄+
∑

{j :λj 6=λ1}

q̄Tj ∇f (x̄k)

λj + λ
q̄j ,

for any τ ∈ R, then

‖p̄(τ, λ)‖2 = τ 2 +
∑

{j :λj 6=λ1}

(q̄Tj ∇f (x̄k))
2

(λj + λ)2
.

Since ‖p̄(0, λ1)‖ < ∆k and ‖p̄(τ, λ1)‖ is monotonically increasing in τ ,
we can find the unique τ∗ for which ‖p̄(τ∗, λ1)‖ = ∆k .
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