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Recap: Iterative “Nearly Exact” Solution of the Subproblem

Recap & Introduction Eiftels Logalier]

Recap: — Iterative “Nearly Exact” Solution of the Subproblem

Recap: Iterative “Nearly Exact” Solution of the Subproblem

Recap & Introduction Quick Lookahead

On Today's Menu

Last time we looked at nearly exact solution of the subproblem

1
. - — —T — o1, =
min m(p) = min f(Xe) +p" VI(xk) + P Bkp

This approach is viable for problems with few degrees of freedom, e.g.
Ty CR" n “small.” Where “small” means that the unitary
diagonalization Qk/\kaT = By is computable in a “reasonable” amount
of time.

From a theoretical characterization of the exact problem, we derived an
algorithm which finds a nearly exact solution at a cost per iteration
approximately three times that of dogleg and 2D-subspace minimization.

The scheme was based on a 1-D Newton iteration (with some clever
tricks), and some careful analysis of special (hard) cases.
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We wrap up the first pass of Trust Region methods —

— We briefly discuss global convergence properties for trust region methods.

—  We look at some theorems, but leave the proofs as “exercises.”

—  For second order (Byx # V?f(Xx)) models we can show convergence
to a stationary point.

- For trust-region Newton methods (Bx = V?f(Xx)) models we can
show convergence to a point where the second order necessary
conditions hold.

We look at modifications for poorly scaled problems, as well as the use
of non-spherical trust regions.

Theorem (Second Order Necessary Conditions)

If X* is a local minimizer of f and V?f is continuous in an open
neighborhood of X*, then Vf(X*) = 0 and V?f(X*) is positive 2
semi-definite. mco ST
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Proof of Lemma The Cauchy Point

Recall: The trust-region subproblem is

_ : _ . _ - 1+, -
px = arg min my(p) = argmin f(Xi) + p’ VF(Xk) + =’ Bip.
IBll<A IBl<A 2

The following lemma gives us a lower bound for the decrease in the
model at the Cauchy point:

Lemma (Cauchy point descent)

The Cauchy point p§, satisfies

mi(8) ~ mi(f) = 3190 min |4, S,

1Bk
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We recall the explicit expressions for the Cauchy point (from

lecture 7)
Ay
ps —Tk ———— V1 (Xk)
A , IV
whnere
{ 1 if VF(X)T BV (%) <0
Tk = ; V£ :
min (].7 W’m) otherwise
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Figure: The three possible scenarios for selection of . SAN DIFGO STATE
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Global Convergence Tool #1 — A Lemma: The Cauchy Point Global Convergence Tool #1 — A Lemma: The Cauchy Point
Global Convergence... Tool #2 — A Theorem Global Convergence... Tool #2 — A Theorem
Enhancements Recall: The Trust Region Algorithm Enhancements Recall: The Trust Region Algorithm
Proof of Lemma Case#1 Proof of Lemma Case#2
Y Y . S 3
Case#l (VF(Xk)BiVF(X) < 0): Case#2 (VF(R)BAVF(R) >0, and 5 olVEL o <1).
H H nCc) — 09|
In this scenario my (B) — m«(0) In this scenario the Cauchy point is in the interior of the trust region, and
< A, VI ) ) mi(Pg) — mi(0) =
= Mg k - my o7
IV (%)l
0. - 4 - 4
T S S e S BN 75 SN SN 1747 G
= VIR + 3 rm e S E0 BV () VAR TNV 2 (VIR TB R - k) BV k)
<0 -
= 1 VF(xk)||*
< AV S 0]
2 Vf(xk) Bka(Xk) 106
. VF(x %[ 5.)(12
< s min (8, FEH) < 2 VS LIV
1Bkl 2[|Bil[ IV (xe)I? 2 [IBll ‘ g
Hence, 1 _ _ V(X 0% 2 i s
< 2 |VFR)] min (Ak,””B(k”)” ‘
mi(8) — mi(55) > 1V F (&) min <Ak, W) > V0| min <Ak, W)
. . SiRezos Use the minus sign to flip the inequality, and we're there! ipEmos
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Proof of Lemma Case#3 Global Convergence: Tool #2 — A Theorem
- = IVfEI® .
Case#3 (Vf(Xk)BkVf(x) >0, and T AL A e Ok Theorem
N

We note that in this scenario V£ (Xx)" BiVF(Xx) < W, and Let px be any vector, ||p«|| < Ak, such that
mi(pg) — mi(0) = - _ = _

' mi(0) = mi(Be) = ea(mi(0) — mi(B5)

A 1 A2 then
= e VR S o V(Rk) T BV (%)
V£ (%k)l 2 || V(x| _ IVF ()|
0) — mi(Pr) > 2| VF(R)| min | A, 2K
1 A2 ”Vf(ik)H?’ mk( ) mk(pk) =5 ” (Xk)H min k> ||Bk” :
< _A vf -— - k 0.99)
= AV S viwae A
1 _ Both the dogleg, and 2-D subspace minimization algorithms (as well as
= —iAkHVf(Xk)H Steihaug's algorithm) fall into this category, with ¢; = 1, since they all
B N ; produce px which give at least as much descent as the Cauchy point, i.e.
< —5IviR) | min (2, ISR | me(B) < me(5).
k We are going to use this result to show convergence for the trust region

Use the minus sign to flip the inequality, and we're there! TR algorithm (see next slide). SO
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The Trust Region Algorithm
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Convergence to Stationary Points

Convergence to Stationary Points

Algorithm: Trust Region

[1] Set k=1, A >0, A € (0,A), and n € [0, }
[ 2] While optimality condition not satisfied
[ 31 Get py (approximate solution)

[ 41 Evaluate py

[5] if pp<i

[ 6] Dyyr = 304

[ 7] else

L8 if p > 3 and [l = Ak

[ 9] Dy = min(2Ay, A)

[10] else

[11] Api1 = Ay

[12] endif

[13] endif

[14] if px > 1

[15] X1 = Xg + Pk

[16] else

171 Ryl = Ri

[18]  endif

[19] k=k+1
[20] End-While
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Case n=0
accept any step which produces descent in f — we can show that
the sequence of gradients {Vf(Xx)} has a limit point at zero.

Casen >0
accept a step only if the decrease in f is at least some fixed
fraction of the predicted decrease — we can show the stronger

result {Vf(xc)} — 0.

In order for the proof(s) to work, we must assume that the model
Hessians By are uniformly bounded, i.e. ||Bk|| < (3, and that f is
bounded below on the levelset {x € R" : f(X) < f(Xo)}.

The trust-region bound can be relaxed so that the results hold as
long as the solution to the subproblems satisfy
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|Pk]| < YAk, for some constant v > 1.
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Convergence to Stationary Points: n =0 Convergence to Stationary Points: n > 0
Theorem Theorem
. . . 1\ - . .
Let n = 0 in the trust region algorithm. Suppose that ||Bi|| < S for some Letn € (0,7) in the trust region algorithm. Suppose that_HBkH < B for
constant (3, that f is continuously differentiable and bounded below on some constant f3, that f is Lipschitz continuously differentiable and
v v v - v n . v b
the bounded set {x € R" : f(X) < f(Xo)}, and that all approximate bounded below on the bounded set {xe R? f(x) < f(xo)}:, and that
solutions to the trust-region subproblem satisfy the inequalities all approximate solutions to the trust-region subproblem satisfy the
inequalities

_ _ _ . ||Vf(>_(k)|q
mi(0) — me(pi) > || VF(X mm{A,, _ X

0= mdp) = alvrEIlmi | B g m(©) ~ mi(0) > e[V (50 min [y, HE
k

and

1Bl < vAx, and

[Bwll < vAx
for some positive constants ¢; and v. Then we have
kILmoon(xk) =0.
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for some positive constants ¢; and . Then we have

lim inf | V£ (%) = 0.
k— o0

JIEGO STATE
NIVERSITY

Peter Blomgren, (blomgren.peterQgmail.com) TR: Global Convergence and Enhancements — (13/23) Peter Blomgren, (blomgren.peter@gmail.com) TR: Global Convergence and Enhancements — (14/23)
Global Convergence Global Convergence
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Proofs: Convergence to Statlonary Points Convergence: lterative “Nearly Exact” Solutions pj, for Trust-Region Newton

The complete proofs are in NW'* pp.90-91, and pp.92-93; or NW>"

pp.80-82, and pp.82-83. Theorem (NW?™ p.92, proof in Moré & Sorensen (1983))

The proofs are based on manipulation of p — the ratio of actual Letn € (0, %)_"” the algo_rithm. on 5”‘_19 11, let B, = V*f(%y), and
(objective) reduction and predicted (model) reduction; Taylor's theorem; suppose that py at each iteration satisfy

then deriving a contradiction from the supposition ||V f(Xk)|| > € using _ _ _ .

careful selection of scalings and bounds for Ay. mi(0) — mi(Pr) = c1(mi(0) — m(Px)),

. and ||pk|| < vAk, for some positive constant 7y, and ¢; € (0,1]. Then
Definition (limsup and liminf)

Let {s,} be a sequence of real numbers. Let E be the set of values x so that s, — x kILm HVf(Xk)” =0
for some subsequence {s;, }. This set E contains all sub-sequential limits, plus
possibly +oo; let

*

_ . If, in addition, the set {x € R" : f(X) < f(Xo)} is compact, then either
s*=supE, s.=infE . ) S\ /

the algorithm terminates at a point Xy at which the second order
necessary conditions for a local minimum hold, or {Xx} has a limit point
limsupsy = s*,  liminf s, = s x* e {xeR": f(x) < f(Xo)} at which the conditions hold.

n— 00 n—0oo '
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The values s* and s, are the upper and lower limits of {s,}, and we use the notation
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Scaling

Enhancement: Scaling — The Solution

3 E 2

|
]
As we have seen before (in the context of steepest descent / line-search),
scaling (ill-conditioning) can cause problems. — If the objective is more

sensitive to changes in one variable than other, the contour lines stretch
out to be narrow ellipses (in 2D).

Clearly, a circular trust-region may be quite limiting in this scenario. —  _
The radius is limited by the sensitive variable.

SAN DIEGO STATE
UNIVERSITY

The solution to the problem of poor scaling is to use elliptical trust
regions. We define a diagonal scaling matrix

D:diag(dl,dg,...,dn)7 d; > 0.

Then, the constraint ||Dp|| < A defines an elliptical trust region, and we
get the following scaled trust-region subproblem:

1
i f(Xk) + P VI (%) + =P’ Bib.
serr T A, (Xk) +p' VF(Xk) + P B«
The scaling matrix can be built using information about the gradient
Vf(Xk) and the Hessian V2f(X,) along the solution path. — We can
allow D = Dy to change from iteration to iteration.

All our analysis/algorithms still work with scaling added — but we get
factors of D=2, D=1 D, and D? in our expressions.
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Feature: Non-Euclidean Trust Regions 1of4 Feature: Non-Euclidean Trust Regions 2 of 4
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Figure: lllustration of (unscaled) trust region boundaries for, from left-to-right: Figure: lllustration of (unscaled) trust region boundaries for, from left-to-right:
Pll2 < Ak, [IPllr < Ak, [IPll4 < Ak, and |plloo < A IBlls < A, IBll3 < Ak [1Bll3 < A, and [[plly < A
Most of the time using trust regions based on norms with g # 2: Using g < 1 leads to non-convex trust regions, which may be a bit
_ _ of a pain?!?
IPllg < Ak (unscaled), [|Dpllqg < Ak (scaled)
This may, however, be useful /necessary for non-convex
cause us a giant head-ache. There are however some situations ~ optimization problems. -
when such regions come in handy...
S S
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Feature: Non-Euclidean Trust Regions 4 of 4

For constrained problems, e.g.

min f(X),

subjectto x; >0, i=1,2,...
XeR"

the trust-region subproblem may be

min mi(p), subject to Xx+p > 0, (component-wise), ||p|| < Ag

pER"
This trust region is the intersection of the disk centered at X, and
the first quadrant. It could look like this:

SAN DIEGO STATE
UNIVERSITY

Such a region is hard to describe, and hard to work with.

If, instead, we work with the || - ||oo-norm, the trust region is the
intersection of the square with sides A, centered at X, and the
first quadrant:

Much easier to work with...
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Reference(s):

MS-1983 J.J. Moré and D.C. Sorensen, Computing a Trust Region Step, SIAM Journal on Scientific and Statistical
Computing, 4 (1983), pp. 553-572.
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