

The Linear Conjugate Gradient Method $A\bar{p}$ vs. A^{-} The Linear Conjugate Gradient Method Adding the Gradient to the Mix.. Adding the Gradient to the Mix. The CG Algorithm The CG Algorithm Non-Linear CG for Optimization Problems Non-Linear CG for Optimization Problems The CG Algorithm... and Krylov Subspaces The CG Algorithm... and Krylov Subspaces Comment: $A\mathbf{\bar{p}}$ vs. A^{-1} Enter: The Gradient The **Conjugate Gradient** method is a conjugate direction method, which Generates the next conjugate vector $\mathbf{\bar{p}}_k$ using only the previous vector $\mathbf{\bar{p}}_{k-1}$ (earlier vectors are not needed.) Cheap to compute, and store. Each direction $\mathbf{\bar{p}}_k$ is a clever linear combination of $\mathbf{\bar{p}}_{k-1}$ and the negative gradient of the objective $-\nabla \Phi(\bar{\mathbf{x}}_k) = -\bar{\mathbf{r}}(\bar{\mathbf{x}}_k)$ (a.k.a "the (negative) residual," or "the steepest descent direction.") — Recall that we have a cheap update for the residual nz = 4096 Figure: If the matrix A is sparse (many elements are zero, e.g. the matrix illustrated $\mathbf{\bar{r}}_k = \mathbf{\bar{r}}_{k-1} + \alpha_{k-1} \underbrace{\mathcal{A}\mathbf{\bar{p}}_{k-1}}_{k-1}.$ to the left), the computation of the matrix-vector product $A\bar{\mathbf{p}}$ can be economized. However, generally, the inverse of a sparse matrix is dense (the matrix on the right). **Å** This is one indication that the conjugate direction method may be useful. SAN DIEGO STAT SAN DIEGO Peter Blomgren, blomgren.peter@gmail.com Linear CG, Part #2 - (5/32) Peter Blomgren, blomgren.peter@gmail.com Linear CG, Part #2 — (6/32) The Linear Conjugate Gradient Method The Linear Conjugate Gradient Method The CG Algorithm Adding the Gradient to the Mix... The CG Algorithm Adding the Gradient to the Mix Non-Linear CG for Optimization Problems Non-Linear CG for Optimization Problems The CG Algorithm... and Krylov Subspaces The CG Algorithm... and Krylov Subspace A New Conjugate Direction The Conjugate Gradient Algorithm (version 0.99α) We let the new conjugate direction be Algorithm: Preliminary Conjugate Gradient $\mathbf{\bar{p}}_{k} = -\mathbf{\bar{r}}_{k} + \beta_{k} \mathbf{\bar{p}}_{k-1},$ Given A, $\mathbf{\bar{b}}$ and $\mathbf{\bar{x}}_0$: $\mathbf{\bar{r}}_0 = A\mathbf{\bar{x}}_0 - \mathbf{\bar{b}}, \ \mathbf{\bar{p}}_0 = -\mathbf{\bar{r}}_0, \ k = 0$ while ($\|m{ar{r}}_k\|>0$, or other stopping condition) and we select the scalar β_k so that $\mathbf{\bar{p}}_k$ and $\mathbf{\bar{p}}_{k-1}$ are A-conjugate $\alpha_k = -\frac{\bar{\mathbf{r}}_k^T \bar{\mathbf{p}}_k}{\bar{\mathbf{p}}_k^T A \bar{\mathbf{p}}_k}, \qquad \text{Store the vector } A \bar{\mathbf{p}}_k} \text{ and the scalar } \bar{\mathbf{p}}_k^T A \bar{\mathbf{p}}_k$ $\bar{\mathbf{p}}_{k-1}^T A \bar{\mathbf{p}}_k = -\bar{\mathbf{p}}_{k-1}^T A \bar{\mathbf{r}}_k + \beta_k \bar{\mathbf{p}}_{k-1}^T A \bar{\mathbf{p}}_{k-1} = 0.$ $\mathbf{\bar{x}}_{k+1} = \mathbf{\bar{x}}_k + \alpha_k \mathbf{\bar{p}}_k$ Hence. $\beta_k = \frac{\bar{\mathbf{p}}_{k-1}^T A \bar{\mathbf{r}}_k}{\bar{\mathbf{p}}_{k-1}^T A \bar{\mathbf{p}}_{k-1}} = \frac{\bar{\mathbf{r}}_k^T A \bar{\mathbf{p}}_{k-1}}{\bar{\mathbf{p}}_{k-1}^T A \bar{\mathbf{p}}_{k-1}},$ $\mathbf{\bar{r}}_{k+1} = \mathbf{\bar{r}}_k + \alpha_k \mathbf{A} \mathbf{\bar{p}}_k$ $\beta_{k+1} = \frac{\bar{\mathbf{r}}_{k+1}^T \mathbf{A} \bar{\mathbf{p}}_k}{\bar{\mathbf{p}}_{k}^T \mathbf{A} \bar{\mathbf{p}}_k}$ where, again, the quantities $[A\bar{\mathbf{p}}_{k-1}]$ and $\bar{\mathbf{r}}_{k}^{T}A\bar{\mathbf{p}}_{k-1}$ are "free" (already $\mathbf{\bar{p}}_{k+1} = -\mathbf{\bar{r}}_{k+1} + \beta_{k+1}\mathbf{\bar{p}}_k$ computed). k = k+1**Note!!!** The first direction $\mathbf{\bar{p}}_0$ is set to be the steepest descent direction end-while Êı Ê at the initial point $\overline{\mathbf{x}}_0$. SAN DIEGO ST/ UNIVERSITY

- (7/32)

Adding the Gradient to the Mix... The CG Algorithm... and Krylov Subspace

Does the CG Algorithm Work?

In order to guarantee convergence in *n* steps, the directions $\{\bar{\mathbf{p}}_i\}$ must be *A*-conjugate; maybe we should show this?! But, first a definition:

Definition (Krylov Subspace)

A **Krylov** subspace of degree k for $\overline{\mathbf{r}}_0$ is the space

 $\mathcal{K}(\overline{\mathbf{r}}_0, k) \stackrel{\text{\tiny def}}{=} \operatorname{span}\{\overline{\mathbf{r}}_0, A\overline{\mathbf{r}}_0, A^2\overline{\mathbf{r}}_0, \dots, A^{k-1}\overline{\mathbf{r}}_0\}.$

We state a theorem which shows that the directions are indeed conjugate; further it shows that the residuals are mutually orthogonal, and that the search directions and residuals are contained in a Krylov subspace. These facts will allow us to optimize the CG algorithm for speed (computational effort).

A More Efficient Implementation

We now combine our results in order to tighten up the algorithm.

First, we use the relation (update for $\mathbf{\bar{p}}_k$ in the algorithm)

$$\mathbf{\bar{p}}_k = -\mathbf{\bar{r}}_k + \beta_k \mathbf{\bar{p}}_{k-1},$$

and the result (from lecture #10, or slide #10)

$$\mathbf{\bar{r}}_k^T \mathbf{\bar{p}}_i = 0, \ i = 0, 1, \dots, k-1,$$

thus the numerator in the expression for α_k can be rewritten:

$$\overline{\mathbf{r}}_{k}^{T}\overline{\mathbf{p}}_{k} = \overline{\mathbf{r}}_{k}^{T}(-\overline{\mathbf{r}}_{k} + \beta_{k}\overline{\mathbf{p}}_{k-1}) = -\overline{\mathbf{r}}_{k}^{T}\overline{\mathbf{r}}_{k} + \beta_{k}\underbrace{\overline{\mathbf{r}}_{k}^{T}\overline{\mathbf{p}}_{k-1}}_{0} = -\overline{\mathbf{r}}_{k}^{T}\overline{\mathbf{r}}_{k}.$$

Ap vs. A⁻¹ Adding the Gradient to the Mix... The CG Algorithm... and Krylov Subspaces

"The CG Theorem"

Theorem

Êı

SAN DIEGO ST

(11/32)

Suppose that the k^{th} iterate generated by the CG method is not the solution (i.e. $\bar{\mathbf{x}}_k \neq \bar{\mathbf{x}}^*$). The following properties hold

(1)	$\mathbf{\bar{r}}_{k}^{T}\mathbf{\bar{r}}_{i}$	=	$0, i=0,1,\ldots,k-1$
(2)	$span\{\overline{\mathbf{r}}_0,\overline{\mathbf{r}}_1,\ldots,\overline{\mathbf{r}}_k\}$	=	$span\{\overline{\mathbf{r}}_0, A\overline{\mathbf{r}}_0, A^2\overline{\mathbf{r}}_0, \dots, A^k\overline{\mathbf{r}}_0\}$
(3)	$span\{ar{\mathbf{p}}_0,ar{\mathbf{p}}_1,\ldots,ar{\mathbf{p}}_k\}$	=	$span\{\overline{\mathbf{r}}_0, A\overline{\mathbf{r}}_0, A^2\overline{\mathbf{r}}_0, \dots, A^k\overline{\mathbf{r}}_0\}$
(4)	$\mathbf{\bar{p}}_{k}^{T} A \mathbf{\bar{p}}_{i}$	=	$0, i = 0, 1, \dots, k - 1$

Therefore, the sequence $\{\bar{\mathbf{x}}_k\}$ converges to $\bar{\mathbf{x}}^*$ in at most n steps.

Note: The theorem is true **if and only if** the first search direction is the steepest descent direction. We notice that the search direction (and not the gradients/residuals) are conjugate in the "conjugate gradient method."

— (9/32)	Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Linear CG, Part #2	— (10/32)
g	The Linear Conjugate Gradient Method The CG Algorithm Non-Linear CG for Optimization Problems	Increased Efficiency The Standard CG Algorithm More Speed Preconditioning	
α_{k} (Numerator)	A More Efficient Implementation		β_k

Second, we use the update formula for the residual

$$\overline{\mathbf{r}}_{k} = \overline{\mathbf{r}}_{k-1} + \alpha_{k-1} A \overline{\mathbf{p}}_{k-1} \quad \Leftrightarrow \quad \alpha_{k-1} A \overline{\mathbf{p}}_{k-1} = \overline{\mathbf{r}}_{k} - \overline{\mathbf{r}}_{k-1},$$

and again (from lecture #10, or slide #10)

$$\mathbf{\bar{r}}_k^T \mathbf{\bar{p}}_i = 0, \ i = 0, 1, \dots, k-1,$$

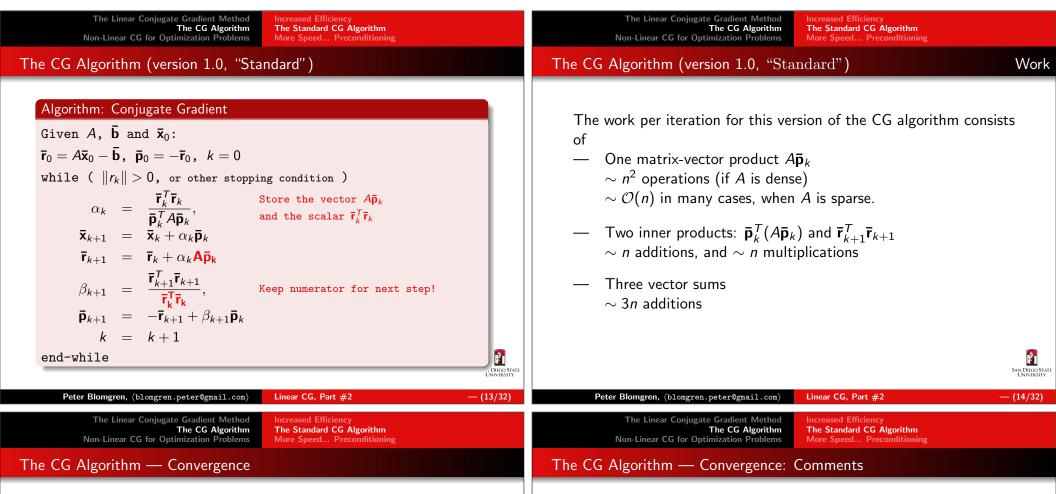
as well as the update for $\mathbf{\bar{p}}_k$ in the algorithm

$$\mathbf{\bar{p}}_k = -\mathbf{\bar{r}}_k + \beta_k \mathbf{\bar{p}}_{k-1}$$

We get

$$\beta_{k} = \frac{\mathbf{\bar{r}}_{k+1}^{T} A \mathbf{\bar{p}}_{k}}{\mathbf{\bar{p}}_{k}^{T} A \mathbf{\bar{p}}_{k}} = \frac{\mathbf{\bar{r}}_{k+1}^{T} (\mathbf{\bar{r}}_{k+1} - \mathbf{\bar{r}}_{k})}{\alpha_{k} \mathbf{\bar{p}}_{k}^{T} A \mathbf{\bar{p}}_{k}} = \frac{\mathbf{\bar{r}}_{k+1}^{T} \mathbf{\bar{r}}_{k+1}}{(-\mathbf{\bar{r}}_{k} + \beta_{k} \mathbf{\bar{p}}_{k-1})^{T} (\mathbf{\bar{r}}_{k+1} - \mathbf{\bar{r}}_{k})}$$
$$= \frac{\mathbf{\bar{r}}_{k+1}^{T} \mathbf{\bar{r}}_{k+1}}{-\mathbf{\bar{r}}_{k}^{T} \mathbf{\bar{r}}_{k+1} + \beta_{k} \mathbf{\bar{p}}_{k-1}^{T} \mathbf{\bar{r}}_{k+1} + \mathbf{\bar{r}}_{k}^{T} \mathbf{\bar{r}}_{k} - \mathbf{\bar{r}}_{k}^{T} \mathbf{\bar{r}}_{k+1}} = \frac{\mathbf{\bar{r}}_{k+1}^{T} \mathbf{\bar{r}}_{k+1}}{\mathbf{\bar{r}}_{k}^{T} \mathbf{\bar{r}}_{k}}.$$

— (12/32)



In exact arithmetic CG converges in at most *n* iterations.

In many cases, the algorithm will find the solution in many fewer iterations. We leave the detailed convergence analysis for some other day, but state some key results:

Theorem

If A has only r distinct eigenvalues, then the CG iteration will terminate at the solution $\bar{\mathbf{x}}^*$ in at most r iterations.

Theorem

If A has eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$, we have that

$$\|\mathbf{\bar{x}}_{k+1} - \mathbf{\bar{x}}^*\|_A \leq \left[rac{\lambda_{n-k} - \lambda_1}{\lambda_{n-k} + \lambda_1}
ight] \|\mathbf{\bar{x}}_0 - \mathbf{\bar{x}}^*\|_A.$$

The second theorem tells us that the CG algorithm selects **exactly** the optimal sequence of conjugate search directions $\{\bar{\mathbf{p}}_i\}$.

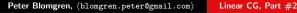
If there is a cluster of eigenvalues of A around λ_1 , *i.e.* $\lambda_1 = 1$, $\lambda_{3900} = 1.0002$, $\lambda_{4000} = 1.03$, and $\lambda_n = \lambda_{4032}$, then after 32 iterations we would have

$$\|\mathbf{\bar{x}}_{32} - \mathbf{\bar{x}}^*\|_A \leq \left[\frac{0.03}{2.03}\right] \|\mathbf{\bar{x}}_0 - \mathbf{\bar{x}}^*\|_A$$

and after another 100 iterations

$$\|\mathbf{\bar{x}}_{132} - \mathbf{\bar{x}}^*\|_{\mathcal{A}} \le \left[\frac{0.0002}{2.0002}\right] \|\mathbf{\bar{x}}_0 - \mathbf{\bar{x}}^*\|_{\mathcal{A}}$$

With tight clustering (which is quite common) we often achieve very good convergence after a $k \ll n$ iterations.



(15/32)

The Linear Conjugate Gradient Method Increased Efficiency The CG Algorithm The Standard CG Algorithm Non-Linear CG for Optimization Problems More Speed Preconditioning	The Linear Conjugate Gradient Method Increased Efficiency The CG Algorithm The Standard CG Algorithm Non-Linear CG for Optimization Problems More Speed Preconditioning
The CG Algorithm — Example 1 of 2	The CG Algorithm — Example 2 of 2
Let $A = \operatorname{diag}(k^{2} l_{k}, k = 1 \dots 5), \mathbf{\bar{b}} = \mathbf{\bar{1}}, \mathbf{\bar{x}}_{0} = \mathbf{\bar{0}}.$ We get $\mathbf{\bar{r}}_{0}, \mathbf{\bar{r}}_{1}, \mathbf{\bar{r}}_{2}, \mathbf{\bar{r}}_{3}, \mathbf{\bar{r}}_{4}, \mathbf{\bar{r}}_{5}$: $\ \mathbf{\bar{r}}_{0}\ = \sqrt{15}, \ \mathbf{\bar{r}}_{1}\ = 2.16025, \ \mathbf{\bar{r}}_{2}\ = 1.54919, \ \mathbf{\bar{r}}_{3}\ = 1.13389, \ \mathbf{\bar{r}}_{4}\ = 0.745356, \ \mathbf{\bar{r}}_{5}\ = 2.20786 \times 10^{-14}$ $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	Let $A = \operatorname{diag}(k^2 l_k, k = 15), \mathbf{\bar{b}} = \mathbf{\bar{1}}, \mathbf{\bar{x}}_0 = \mathbf{\bar{0}}.$ We get $\mathbf{\bar{x}}_1, \mathbf{\bar{x}}_2, \mathbf{\bar{x}}_3, \mathbf{\bar{x}}_4, \mathbf{\bar{x}}_5 = \mathbf{\bar{x}}^*$: $\begin{bmatrix} 0.0667\\ 0.0286\\ 0.0397\\ 0.0397\\ 0.0397\\ 0.0397\\ 0.0397\\ 0.0397\\ 0.0397\\ 0.0397\\ 0.04\\ 0.0$
Peter Blomgren, (blomgren.peter@gmail.com) Linear CG, Part #2 - (17/32)	Peter Blomgren, (blomgren.peter@gmail.com) Linear CG, Part #2 (18/32)
The Linear Conjugate Gradient Method Increased Efficiency The CG Algorithm The Standard CG Algorithm Non-Linear CG for Optimization Problems More Speed Preconditioning	The Linear Conjugate Gradient Method The CG Algorithm Non-Linear CG for Optimization Problems More Speed Preconditioning
Contrasting Example: "Maximal Subspace Collapse" 1 of 2	Contrasting Example: "Maximal Subspace Collapse" 2 of 2
What happens is we select a sequence of search directions which collapse the maximal number of dimensions of the residual (which coincidentally, in this example, is the subspace corresponding to the largest eigenvalue)? $\bar{\mathbf{p}}_{0} = \begin{bmatrix} 0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0$	We get the following sequence of residuals $\mathbf{\bar{r}}_{1}^{MSC} \approx \begin{bmatrix} 1\\1\\1\\1\\1\\1\\1\\1\\1\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0$

San Diego State University

- (19/32)

0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 $1 \\ 1$ 0 ${\bf \bar p}_0\,=\,$ 0 $, \quad \overline{p}_1 =$ $\mathbf{\bar{p}}_2 =$ $,\quad {\bf \bar p}_3=$ $,\quad {\bf \bar{p}}_4 =$, 0 0 0 0 0 0 0 L L

 $\label{eq:cg} \textbf{Table: CG gives the optimal sequence of residual lengths at each iteration!}$

 $\|\mathbf{\overline{r}}_2\|$

1.5492

2.4495

 $\|\mathbf{\overline{r}}_3\|$

1.7321 1.0000

1.1339

 $\|\overline{\mathbf{r}}_4\|$

0.7454

 $\|\mathbf{\overline{r}}_5\|$

pprox 0

pprox 0

 $\|m{ar{r}}_1\|$

2.1603

3.1623

 $\frac{\|\overline{\textbf{r}}_0\|}{\sqrt{15}}$

 $\sqrt{15}$

CG

MSC

Increased Efficiency The Standard CG Algorithm More Speed... Preconditioning

Contrasting Example #2: Steepest Descent

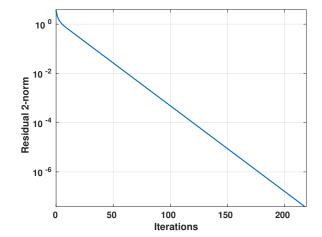


Figure: Since the condition number is only $5^2 = 25$, one may think that maybe steepest descent will do a decent job? But, alas, it takes over 200 iterations to get a reduction of the residual norm by 10^{-8} .

Increased Efficiency The Standard CG Algorithm More Speed... Preconditioning

The CG Algorithm — Convergence: More Comments

It is worth noting that the theorem gives an **upper bound** of the error, in practice it is *almost* true that if the eigenvalues of A occur in r distinct clusters, then (compare with the first theorem) the CG algorithm will approximately solve the problem after r steps.

Further it can be shown that for the CG algorithm

$$\|\mathbf{ar{x}}_k - \mathbf{ar{x}}^*\|_A \le 2\left[rac{\sqrt{\kappa(A)}-1}{\sqrt{\kappa(A)}+1}
ight]^k \|\mathbf{ar{x}}_0 - \mathbf{ar{x}}^*\|_A,$$

whereas (forgotten from lecture #5)

$$\|\mathbf{\bar{x}}_{k+1} - \mathbf{\bar{x}}^*\|_A \leq \left[rac{\kappa(A) - 1}{\kappa(A) + 1}
ight]^k \|\mathbf{\bar{x}}_0 - \mathbf{\bar{x}}^*\|_A,$$

for the steepest descent algorithm. Here $\kappa(A) = \lambda_n / \lambda_1$ is the condition number of the matrix A.

	ar CG, Part #2 — (21	1/32)	Pe	eter Blomgren, (bl	omgren.peter@į	gmail.com)	Linear C	G, Part #2		— (22/32)
The CG Algorithm The S	ased Efficiency Standard CG Algorithm 2 Speed Preconditioning			The Linear Co Non-Linear CG		Algorithn	The Sta	d Efficiency ndard CG Algorith eed Preconditio		
CG vs. Steepest Descent	1	of 2	CG vs. S	Steepest De	scent					2 of 2
Convergence Factor / I 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 50 0 100 Figure: Comparing the convergence factors $\left[\frac{\sqrt{\kappa}(1)}{\sqrt{\kappa}}\right]$	$\frac{CG}{Steepest Descent}$ $\frac{\overline{(A)}-1}{\overline{(A)}+1}$ (for Conjugate Gradient) and mbers, $\kappa(A) \in [2, 200]$.			Table: A c dient (CG) a reduce the notice a "sli	and Steep initial erro	est des∉ or ∥ x ₀ -	cent (SD) − x *∥ _A by	are required a factor of	in order to 10^{-6} . We	

(23/32)

Å

SAN DIEGO STATE UNIVERSITY

Peter Blomgren, (blomgren.peter@gmail.com) Linear CG, Part #2

Ê

SAN DIEGO STAT UNIVERSITY

The Linear Conjugate Gradient Method The CG Algorithm Non-Linear CG for Optimization Problems

The Standard CG Algorith More Speed... Preconditioning

Preconditioning: Speeding Things Up Even More

The CG method can be accelerated further by **preconditioning** the linear system; we [FORMALLY] make a non-singular change of variables

 $\widehat{\mathbf{x}} = C\overline{\mathbf{x}},$

and solve the linear system (and/or its equivalent minimization problem, $\min \widehat{\Phi}(\overline{\mathbf{x}})$

$$\begin{bmatrix} C^{-T}AC^{-1} \end{bmatrix} \widehat{\mathbf{x}} - C^{-T}\overline{\mathbf{b}}, \quad \widehat{\Phi}(\overline{\mathbf{x}}) = \frac{1}{2} \widehat{\mathbf{x}}^{T} \begin{bmatrix} C^{-T}AC^{-1} \end{bmatrix} \widehat{\mathbf{x}} - \begin{bmatrix} C^{-T}\overline{\mathbf{b}} \end{bmatrix}^{T} \widehat{\mathbf{x}}$$

Now, the convergence rate will depend on the eigenvalues of $\mathcal{A} = [C^{-T}AC^{-1}]$. Therefore, we would like to choose C such that the eigenvalues of \mathcal{A} are favorably clustered, and/or the condition number of \mathcal{A} is less than that of \mathcal{A} .

As in the case of the transformation guaranteeing *n*-step convergence, this change of variables does not have to be done explicitly.

The Standard CG Algorithm More Speed... Preconditioning

The Preconditioned CG Algorithm (a.k.a. "PCG")

Algorithm: PCG

Given A , $\mathbf{M} = \mathbf{C}^{T}\mathbf{C}$, $\mathbf{\bar{b}}$ and $\mathbf{\bar{x}}_0$: compute $\mathbf{\bar{r}}_0 = A\mathbf{\bar{x}}_0 - \mathbf{\bar{b}}$, $\mathbf{\bar{y}}_0 = \mathbf{M}^{-1}\mathbf{\bar{r}}_0$, $\mathbf{\bar{p}}_0 = -\mathbf{\bar{y}}_0$, $k = 0$						
while ($\ r$	$\ > \ _k \ > \ _k$	0, or other stopp	ing condition)			
0	_	Γ ^T _k y _k	Store the vector $A ar{\mathbf{p}}_k$			
α_k	=	$\frac{\bar{\mathbf{r}}_{k}^{T} \bar{\mathbf{y}}_{k}}{\bar{\mathbf{p}}_{k}^{T} A \bar{\mathbf{p}}_{k}},$	and the scalar $\bar{r}_k^T \bar{y}_k$			
$ar{x}_{k+1}$	=	$\mathbf{\bar{x}}_k + \alpha_k \mathbf{\bar{p}}_k$				
$\overline{\mathbf{r}}_{k+1}$	=	$\mathbf{\bar{r}}_k + \alpha_k \mathbf{A} \mathbf{\bar{p}}_k$				
ӯ ҝ+1	=	$M^{-1}\overline{r}_{k+1}$				
β_{k+1}	=	$\frac{\overline{\mathbf{r}}_{k+1}^{\mathcal{T}}\overline{\mathbf{y}}_{k+1}}{\overline{\mathbf{r}}_{k}^{T}\overline{\mathbf{y}}_{k}},$	Save the numerator for next step!			
$\mathbf{ar{p}}_{k+1}$	=	$-\overline{\mathbf{y}}_{\mathbf{k+1}} + \beta_{k+1}\overline{\mathbf{p}}_k$				
k	=	k+1				
end-while						

Peter Blomgren, <code>{blomgren.peter@gmail.com}</code>	Linear CG, Part #2	— (25/32)	Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Linear CG, Part #2	— (26/32)
The lines of the set of the Market	Landard FW data			La construction de la construcción de la construcci	
The Linear Conjugate Gradient Method The CG Algorithm Non-Linear CG for Optimization Problems			The Linear Conjugate Gradient Method The CG Algorithm Non-Linear CG for Optimization Problems		
CG: Comments			Finding Good Preconditions		1 of 2

Ê

Ê

SAN DIEGO ST

(27/32)

SAN DIEGO S UNIVERSIT

If we set M = I, then we recover standard CG.

We note that in each iteration, we have to solve the linear system $M\bar{\mathbf{y}}_{k+1} = \bar{\mathbf{r}}_{k+1} \Leftrightarrow (\bar{\mathbf{y}}_{k+1} = M^{-1}\bar{\mathbf{r}}_{k+1})$. We must select M so that we can do this guickly, otherwise we lose the overall-work advantage over Steepest descent or Gaussian elimination.

There are several (usually competing) properties we would like Mto have:

- *M* should effectively impact the structure of the eigenvalues.
- *M* should be cheap to compute and store.
- The linear system $M\overline{\mathbf{y}} = \overline{\mathbf{r}}$ should be "easy."

There is no "best" way of finding M. The optimal M for a particular A may even depend on how much memory, etc your computer has.

In general M is a simplified version of A, e.g. we may take the tridiagonal part of A:

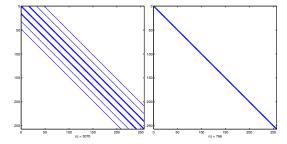


Figure: When A has a banded structure (left) with a significant bandwidth, then a tri-diagonal preconditioner M (right) may be a good choice. Recall that in this SAN DIEGO ST case we can solve $M\bar{\mathbf{v}} = \bar{\mathbf{r}}$ in $\mathcal{O}(n)$ operations.

Êı

Ê

The Linear Conjugate Gradient Method The CG Algorithm Non-Linear CG for Optimization Problems	Increased Efficiency The Standard CG Algorithm More Speed Preconditioning	The Linear Conjugate Gradient Method The CG Algorithm Non-Linear CG for Optimization Problems	HW#4, Due 11/2/2018, 12:00pm		
Finding Good Preconditioners	2 of 2	Homework #4, Problem $\#1$ of 2	Due 11/2/2018, 12:00pm		
Preconditioning is itself a science (or more detail in (???). One of the more efficient strategies is factorization . — The exact Cholesk has the form $LL^T = A$, where L Usually, even though A may be spars In incomplete Cholesky factorization, whenever a fill-in occurs, that value is with $M = \tilde{L}\tilde{L}$ where \tilde{L} and A have the same sparsit	is incomplete Cholesky sy factorization of an SPD matrix A L is lower triangular. se, L will be dense (due to fill-ins). , the same algorithm is followed, but is dropped — this way we end up $\tilde{L}^T \approx A$,	Problem #1 Implement the standard CG algorithm, and use it to solve linear systems describing the "Helical Coordinate Preconditioner for the Laplacian" in 1D, 2D, and 3D: $Matlab-centric problem matrices; push n until you run out of memory (or patience!) d = ones(n,1); A = spdiags([d -2*d d], [-1 0 1], n, n); d = ones(n^2, 1); A = spdiags([d d -4*d d d], [-n - 1 0 1 n], n^2, n^2); d = ones(n^3, 1); A = spdiags([d d -6*d d d d], [-n^2 - n - 1 0 1 n n^2], n^3, n^3); Ponder matrix size; number of iterations to drive the initial residual (given the initial guess of all zeros \vec{x}_0 = zeros(size(d)), with a right-hand-side of all ones \vec{b} = ones(size(d))) to a residual of size tol \times initial residual; execution time; condition numbers; non-zero matrix elements; total # of matrix elements, etc$			
Peter Blomgren, $\langle blomgren.peter@gmail.com \rangle$	Linear CG, Part #2 — (29/32)	Peter Blomgren, <pre> blomgren.peter@gmail.com</pre>	San Direco Start UNIVERSITY Linear CG, Part #2 — (30/32)		
The Linear Conjugate Gradient Method The CG Algorithm Non-Linear CG for Optimization Problems	HW#4, Due 11/2/2018, 12:00pm	The Linear Conjugate Gradient Method The CG Algorithm Non-Linear CG for Optimization Problems	HW#4, Due 11/2/2018, 12:00pm		
Homework #4, Problem #2 of 2		Index			
	which A is the Hilbert matrix, whose the right-hand-side to be all ones to be the origin $\vec{x_0} = \text{zeros}(n, 1)$. to the norm of the residual as a the norm is less than 10^{-6} up in the normal equations in least d is an example of a matrix with a rour matrices, and plot the spread of estimate how many steepest descent the problem to the same precision.	algorithm conjugate gradient, 13 preconditioned conjugate gradient, 26 Krylov subspace, 9	Sta Direc Star		
	SAN DHEO STATE UNIVERSITY		San Dheo State University		