Numerical Optimization

Lecture Notes #12 Conjugate Gradient Methods — Nonlinear CG

> Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Fall 2018

Peter Blomgren, (blomgren.peter@gmail.com)

Nonlinear Conjugate Gradient Methods

-(1/24)

Linear Conjugate Gradient Methods

Nonlinear Conjugate Gradient Methods Projects

Conjugate Gradient Algorithms The Effect of Preconditioning — CG vs. PCG(M)

Quick Recap: Linear Conjugate Gradient Methods

We have introduced the Conjugate Gradient (CG) and Preconditioned Conjugate Gradient (PCG) methods for solution of the linear system $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$, where A is symmetric positive definite.

Linear CG is guaranteed to converge in *n* iterations, but as we have seen, in many cases — eigenvalue clustering and/or r < ndistinct eigenvalues, convergence is much faster.

We briefly discussed preconditioning, where we use a simplified version $M \approx A$, and hope that $M^{-1}A \approx I$ has a favorable eigenvalue spectrum. We must be able to solve $M\bar{\mathbf{y}} = \bar{\mathbf{r}}$ fast.

Today:

- (i) An example of CG vs. PCG performance.
- (ii) Non-linear CG.
- (iii) Projects!

— (3/24)

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods

Outline

- Linear Conjugate Gradient Methods
 - Recap
 - Conjugate Gradient Algorithms
 - The Effect of Preconditioning CG vs. PCG(M)
- 2 Nonlinear Conjugate Gradient Methods
 - New Ideas... Fletcher-Reeves, etc...
 - Practical Considerations
 - Convergence
- 3 Projects
 - Separate Handouts, etc...

Peter Blomgren, (blomgren.peter@gmail.com)

Nonlinear Conjugate Gradient Methods

-(2/24)

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods Projects

Conjugate Gradient Algorithms

The Effect of Preconditioning — CG vs. PCG(M)

The CG Algorithm (version 1.0, "Standard")

Algorithm: Conjugate Gradient

Given A, $\bar{\mathbf{b}}$ and $\bar{\mathbf{x}}_0$:

$$\bar{\mathbf{r}}_0 = A\bar{\mathbf{x}}_0 - \bar{\mathbf{b}}, \ \bar{\mathbf{p}}_0 = -\bar{\mathbf{r}}_0, \ k = 0$$

while ($||r_k|| > 0$, or other stopping condition)

$$\alpha_k = \frac{\kappa}{\bar{\mathbf{p}}_k^T A \bar{\mathbf{p}}_k},$$

Store the vector $A\mathbf{\bar{p}}_k$ and the scalar $\bar{\mathbf{r}}_{k}^{T}\bar{\mathbf{r}}_{k}$

 $\mathbf{\bar{x}}_{k+1} = \mathbf{\bar{x}}_k + \alpha_k \mathbf{\bar{p}}_k$

$$\mathbf{\bar{r}}_{k+1} = \mathbf{\bar{r}}_k + \alpha_k \mathbf{A} \mathbf{\bar{p}}_k$$

$$\beta_{k+1} = \frac{\mathbf{r}_{k+1}'\mathbf{r}_{k+1}}{\mathbf{\overline{r}_k''}\mathbf{\overline{r}_k}},$$

Keep numerator for next step!

 $\mathbf{\bar{p}}_{k+1} = -\mathbf{\bar{r}}_{k+1} + \beta_{k+1}\mathbf{\bar{p}}_k$ k = k+1

end-while

Peter Blomgren, (blomgren.peter@gmail.com)

Nonlinear Conjugate Gradient Methods

Conjugate Gradient Algorithms

The Effect of Preconditioning — CG vs. PCG(M)

Preconditioned CG Algorithm (a.k.a. "PCG(M)")

Algorithm: PCG

Given
$$A$$
, $\mathbf{M} = \mathbf{C}^\mathsf{T} \mathbf{C}$, $\bar{\mathbf{b}}$ and $\bar{\mathbf{x}}_0$: compute $\bar{\mathbf{r}}_0 = A\bar{\mathbf{x}}_0 - \bar{\mathbf{b}}$, $\bar{\mathbf{y}}_0 = \mathbf{M}^{-1}\bar{\mathbf{r}}_0$, $\bar{\mathbf{p}}_0 = -\bar{\mathbf{y}}_0$, $k = 0$

while (
$$\|r_k\| > 0$$
, or other stopping condition)

$$\begin{array}{rcl} \alpha_k & = & \frac{\overline{\mathbf{r}}_k^T \overline{\mathbf{y}}_{\mathbf{k}}}{\overline{\mathbf{p}}_k^T A \overline{\mathbf{p}}_k}, & \text{Store the vector } A \overline{\mathbf{p}}_k \\ \overline{\mathbf{x}}_{k+1} & = & \overline{\mathbf{x}}_k + \alpha_k \overline{\mathbf{p}}_k \\ \overline{\mathbf{r}}_{k+1} & = & \overline{\mathbf{r}}_k + \alpha_k A \overline{\mathbf{p}}_k \end{array}$$

$$ar{\mathbf{y}}_{\mathsf{k}+1} = oldsymbol{\mathsf{M}}^{-1} ar{\mathsf{r}}_{\mathsf{k}+1}$$

$$\beta_{k+1} = \frac{\overline{\mathbf{r}}_{k+1}^T \overline{\mathbf{y}}_{k+1}}{\overline{\mathbf{r}}_{k}^T \overline{\mathbf{y}}_{k}},$$

Peter Blomgren, (blomgren.peter@gmail.com)

$$\bar{\mathbf{p}}_{k+1} = -\bar{\mathbf{y}}_{k+1} + \beta_{k+1}\bar{\mathbf{p}}_k$$

Nonlinear Conjugate Gradient Methods

Save the numerator for next step!

-(5/24)

Linear Conjugate Gradient Methods

Nonlinear Conjugate Gradient Methods Projects

Conjugate Gradient Algorithms The Effect of Preconditioning — CG vs. PCG(M)

Example: CG vs. PCG(M) Performance

2 of 7

A

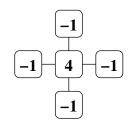


Figure: We discretize $\nabla^2 u(x, y)$ by the standard 5-point finite difference approximation of the Laplacian.

We study the numerical solution of the resulting linear system $A\bar{\bf u} = \bar{\bf f}$ for varying discretizations of the square (from 2×2 to 64×64 grids.)

We look at CG, PCG(M) with M being the tri-diagonal preconditioner, and PCG(M) with $M = \tilde{L}\tilde{L}^T$, where \tilde{L} is given by the incomplete (zero fill-in) Cholesky factorization.

— (7/24)

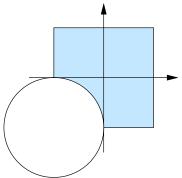
Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods

Conjugate Gradient Algorithms The Effect of Preconditioning — CG vs. PCG(M)

Example: CG vs. PCG(M) Performance

1 of 7

Problem: Solve $\nabla^2 u(x,y) = f(x,y)$ in the domain



$$D = \{(x,y) : -1 \le x, y \le 1\} - \{(x,y) : (x+1)^2 + (y+1)^2 < 1\}$$

Set u(x, y) = 0 on $\Gamma = \partial D$ (Dirichlet Boundary Conditions).

Projects

Nonlinear Conjugate Gradient Methods

-(6/24)

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods

Peter Blomgren, (blomgren.peter@gmail.com)

Conjugate Gradient Algorithms

The Effect of Preconditioning — CG vs. PCG(M)

Example: CG vs. PCG(M) Performance

3 of 7

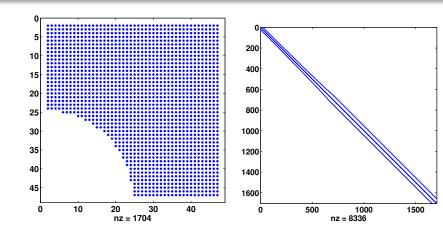


Figure: We discretize $\nabla^2 u(x,y)$ by the standard 5-point finite difference approximation of the Laplacian on the numerical domain (illustrated on the left with a 48×48 grid), the corresponding matrix A is illustrated to the right; it has a tridiagonal component, and two additional elements on every row — the bandwidth is not constant due to the cut-out in the domain.

— (8/24)

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods Recap Conjugate Gradient Algorithms

The Effect of Preconditioning — CG vs. PCG(M)

Example: CG vs. PCG(M) Performance

4 of 7

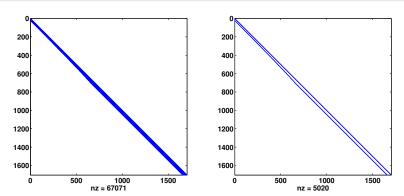


Figure: To the left we see the L given by complete Cholesky factorization — we notice how the entire band fills in, we get a total of 67,071 non-zero entries. To the left we see the \tilde{L} given by **incomplete Cholesky factorization** — here we only get 5,020 non-zero entries. (A had 8,336 non-zero entries)

We will use the preconditioners $M = \tilde{L}\tilde{L}^T$, and M = tridiag(A).

Peter Blomgren, (blomgren.peter@gmail.com)

Nonlinear Conjugate Gradient Methods

Nonlinear Conjugate Gradient Methods

— (9/24)

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods Projects

Conjugate Gradient Algorithms
The Effect of Preconditioning — CG vs. PCG(M)

Example: CG vs. PCG(M) Performance

6 of 7

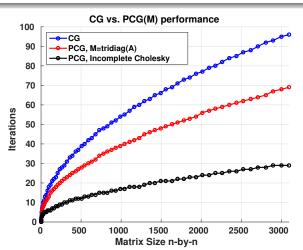


Figure: The performance of **CG** and **PCG(M)** on our test problem. The discretization of the square $[-1,1]^2$ ranges from 2×2 to 64×64 , which gives us a matrix A of dimensions ranging from 3×3 to 3094×3094 . The stopping criteria was a relative reduction of $\|\bar{\mathbf{r}}\|$ by 10^{-6} .

San Diego Stat University

— (11/24)

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods

Conjugate Gradient Algorithms
The Effect of Preconditioning — CG vs. PCG(M)

Example: CG vs. PCG(M) Performance

5 of 7

$n_{ m GRID}$	48 ²	64 ²
A	1704×1704	3094×3094
$L = ichol(A), LL^T \approx A$		
$\ A - LL^T\ _F / \ A\ _F$	0.0900	0.0907
$\mathtt{cond}(A)$	924.5193	1656.936
$cond(L^{-1}AL^{-T})$	133.4733	238.4772
$L = \text{chol(tridiag(A))}, LL^T \approx A$		
$ A - LL^T _F / A _F$	0.3131	0.3139
$\mathtt{cond}(A)$	924.5193	1656.936
$\operatorname{cond}(L^{-1}AL^{-T})$	463.1769	829.6574

SAN DIEGO STATI UNIVERSITY

-(10/24)

Peter Blomgren, (blomgren.peter@gmail.com)

Linear Conjugate Gradient Methods

Projects

Nonlinear Conjugate Gradient Methods

Nonlinear Conjugate Gradient Methods

Conjugate Gradient Algorithms
The Effect of Preconditioning — CG vs. PCG(M)

Example: CG vs. PCG(M) Performance

7 of 7

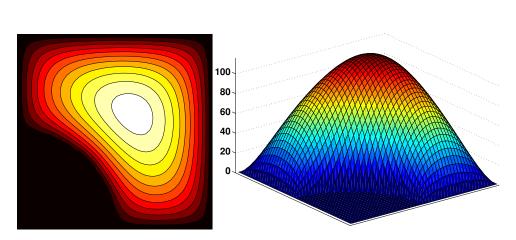


Figure: The solution to our test problem on the 48 × 48 grid, with the right-hand-side f(x, y) = 1.

Nonlinear Conjugate Gradient Methods

We now turn our attention to making the CG methods useful for optimization problems (the non-linear situation).

The **Fletcher-Reeves** (CG-FR, published in 1964) extension requires two modifications to the CG algorithm:

- 1: The computation of the step length α_k is replaced by a line-search which minimizes the non-linear objective $f(\cdot)$ along the search direction $\mathbf{\bar{p}}_k$.
- The instances of the residual $\bar{\mathbf{r}}$ (which are just $\nabla \Phi(\cdot)$ for the quadratic objective in standard CG) are replaced by the gradient of the non-linear objective $\nabla f(\cdot)$.

Fletcher, R., and Reeves, C. M. "Function minimization by conjugate gradients." The computer journal, 7, no. 2 (1964), 149-154.

Peter Blomgren, (blomgren.peter@gmail.com)

Nonlinear Conjugate Gradient Methods

-(13/24)

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods Projects

New Ideas... Fletcher-Reeves, etc... **Practical Considerations** Convergence

Comments: The Fletcher-Reeves FR-CG Algorithm

Sanity check: If $f(\bar{\mathbf{x}})$ is a strongly convex quadratic, and α_k the exact minimizer, then FR-CG reduces to linear CG.

Each iteration requires evaluation of the objective function (for the line-search), and the gradient of the objective. — No Hessian evaluation, nor matrix operations are required. **Good** for large non-linear optimization problems.

If we require that α_k satisfies the strong Wolfe conditions

$$f(\bar{\mathbf{x}}_k + \alpha \bar{\mathbf{p}}_k) \leq f(\bar{\mathbf{x}}_k) + c_1 \alpha \bar{\mathbf{p}}_k^T \nabla f_k$$
$$|\bar{\mathbf{p}}_k^T \nabla f(\bar{\mathbf{x}}_k + \alpha \bar{\mathbf{p}}_k)| \leq c_2 |\bar{\mathbf{p}}_k^T \nabla f_k|$$

where $0 < c_1 < c_2 < \frac{1}{2}$, then FR-CG converges globally.

— (15/24)

The Fletcher-Reeves FR-CG Algorithm

Algorithm: Fletcher-Reeves

Given $\bar{\mathbf{x}}_0$:

Evaluate $f_0 = f(\bar{\mathbf{x}}_0), \ \nabla f_0 = \nabla f(\bar{\mathbf{x}}_0).$

Set $\mathbf{\bar{p}}_0 = -\nabla f_0$, k = 0

while ($\|\nabla f_k\| > 0$, ...)

 $\alpha_k = linesearch(...)$

 $\bar{\mathbf{x}}_{k+1} = \bar{\mathbf{x}}_k + \alpha_k \bar{\mathbf{p}}_k$

 $\nabla f_{k+1} = \text{Evaluate } \nabla f(\bar{\mathbf{x}}_{k+1})$

 $\beta_{k+1}^{\text{\tiny FR}} = \frac{\nabla f_{k+1}^T \nabla f_{k+1}}{\nabla f_{k}^T \nabla f_{k}},$

 $\bar{\mathbf{p}}_{k+1} = -\nabla f_{k+1} + \beta_{k+1}^{\mathrm{FR}} \bar{\mathbf{p}}_{k}$

Projects

k = k+1

Linear Conjugate Gradient Methods

Nonlinear Conjugate Gradient Methods

end-while

Polak-Ribière

Peter Blomgren, (blomgren.peter@gmail.com)

Nonlinear Conjugate Gradient Methods

New Ideas... Fletcher-Reeves, etc...

Convergence

Variants: The Polak-Ribière (PR-CG) Method

The following modification to FR-CG was suggested by

 $\beta_{k+1}^{\mathsf{FR}} = \frac{\nabla f_{k+1}^{\mathsf{T}} \nabla f_{k+1}}{\nabla f_{k}^{\mathsf{T}} \nabla f_{k}} \quad \rightarrow \quad \beta_{k+1}^{\mathsf{PR}} = \frac{\nabla \mathbf{f}_{k+1}^{\mathsf{T}} (\nabla f_{k+1} - \nabla f_{k})}{\nabla f_{k}^{\mathsf{T}} \nabla f_{k}}$

when f is a strongly convex quadratic, and the line search is exact, the gradients are orthogonal and $\beta_{k+1}^{FR} = \beta_{k+1}^{PR}$.

On general non-linear objectives, an inexact line-searches PR-CG tends to be **more robust** and **more efficient** than FR-CG.

Polak, Elijah, and Gerard Ribiere. "Note sur la convergence de méthodes de directions conjugués." Revue française d'informatique et de recherche opérationnelle. Série rouge 3, no. 16 (1969): 35-43.

— (14/24)

1 of 2

New Ideas... Fletcher-Reeves, etc... Practical Considerations

Convergence

Variants: The Polak-Ribière (PR-CG) Method

2 of 2

One problem: The strong Wolfe conditions do not guarantee that $\bar{\mathbf{p}}_k$ is always descent direction for PR-CG. In order to fix this, β is defined to be

$$\beta_{k+1}^+ = \max(\beta_{k+1}^{\mathsf{PR}}, 0)$$

the resulting algorithm is known as PR+.

There are a number of other choices for β in the literature, but they are not (in general) more efficient than Polak-Ribière PR-CG/PR+.

Peter Blomgren, (blomgren.peter@gmail.com)

Nonlinear Conjugate Gradient Methods

— (17/24)

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods Projects

New Ideas... Fletcher-Reeves, etc... **Practical Considerations** Convergence

Practical Considerations: Restarting Conditions

2 of 2

Restarting conditions: The most common condition is based on the fact that for the strictly quadratic objective, the residuals are orthogonal. Hence, when two consecutive residuals are "far" from orthogonal

$$\frac{\nabla f_k^T \nabla f_{k-1}}{\nabla f_k^T \nabla f_k} \ge \nu \sim 0.1$$

a restart is triggered.

The formula

$$\beta_{k+1}^+ = \max(\beta_{k+1}^{\mathsf{PR}}, 0)$$

in PR+ can be viewed as a restart-condition. This is not practical since these "restarts" are very infrequent — in practice β_{k+1}^{PR} is positive most of the time.

— (19/24)

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods New Ideas... Fletcher-Reeves, etc.. **Practical Considerations** Convergence

Practical Considerations

1 of 2

If the line-search uses quadratic (or cubic) interpolation along the search direction $\bar{\mathbf{p}}_k$, then if/when $f(\cdot)$ is a strictly convex quadratic, the step lengths α_k will be the exact 1D-minimizers \Rightarrow the non-linear algorithm reduces to linear CG. [This is Highly Desirable!]

Restarting: CG gets its favorable convergence properties from the conjugacy of the search directions **near** the optimum. If we start "far" from the optimum, the algorithm does not necessarily gain anything from maintaining this conjugacy.

Therefore, we should periodically restart the algorithm, by setting $\beta = 0$ (i.e. taking a steepest-descent step).

The *n*-step convergence is only guaranteed when we start with a steepest-descent step, and the model is quadratic. Hence a restart close to $\bar{\mathbf{x}}^*$ will (approximately) guarantee *n*-step convergence.

Peter Blomgren, (blomgren.peter@gmail.com)

Nonlinear Conjugate Gradient Methods

-(18/24)

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods New Ideas... Fletcher-Reeves, etc... **Practical Considerations** Convergence

Nonlinear CG: Global Convergence

Linear CG: Global convergence properties well understood, and optimal. **Nonlinear CG:** Convergence properties not so well understood, except in special cases. The behavior is sometimes surprising and bizarre!

We look at some results, under the following non-restrictive assumptions

Assumptions:

- The level set $\mathcal{L} = \{ \overline{\mathbf{x}} \in \mathbb{R}^n : f(\overline{\mathbf{x}}) \le f(\overline{\mathbf{x}}_0) \}$ is bounded.
- In some neighborhood \mathcal{N} of \mathcal{L} , the objective function f is Lipschitz continuously differentiable, *i.e.* there exists a constant L > 0 such that

$$\|\nabla f(\bar{\mathbf{x}}) - \nabla f(\bar{\mathbf{y}})\| \le L \|\bar{\mathbf{x}} - \bar{\mathbf{y}}\|, \quad \forall \bar{\mathbf{x}}, \bar{\mathbf{y}} \in \mathcal{N}$$

— (20/24)

Peter Blomgren, (blomgren.peter@gmail.com)

Nonlinear Conjugate Gradient Methods

Global Convergence: FR-CG

Theorem

Suppose that the assumptions hold, and that FR-CG is implemented with a line search which satisfies the strong Wolfe conditions, with $0 < c_1 < c_2 < \frac{1}{2}$. Then

$$\liminf_{k\to\infty}\|\nabla f_k\|=0.$$

This does not say that the limit of the sequence of gradients $\{\nabla f_k\}$ is zero; but it does tell us that at least the sequence is not bounded away from zero.

If, however, we restart the algorithm every n steps, we get n-step quadratic convergence:

$$\|\bar{\mathbf{x}}_{k+n} - \bar{\mathbf{x}}^*\| = \mathcal{O}(\|\bar{\mathbf{x}}_k - \bar{\mathbf{x}}^*\|^2).$$

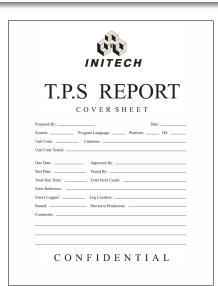
Peter Blomgren, (blomgren.peter@gmail.com)

Nonlinear Conjugate Gradient Methods

— (21/24)

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods Projects

Separate Handouts, etc...



Convergence

Global Convergence: PR-CG

In practice PR-CG performs better than FR-CG, but we cannot prove a theorem like the one for FR-CG on the previous slide.

The following surprising result can be shown:

Theorem

Consider the Polak-Ribiere PR-CG method with an ideal line search. There exists a twice continuously differentiable objective function $f: \mathbb{R}^3 \to \mathbb{R}$ and a starting point $\bar{\mathbf{x}}_0 \in \mathbb{R}^3$ such that the sequence of gradients $\{\|\nabla f_k\|\}$ is bounded away from zero.

The modification (PR+)

$$\beta_{k+1}^+ = \max(\beta_{k+1}^{PR}, 0)$$

fixes this strange behavior, and it is possible to show global convergence for PR+.

Peter Blomgren, (blomgren.peter@gmail.com)

Nonlinear Conjugate Gradient Methods

-(22/24)

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods **Projects**

Peter Blomgren, (blomgren.peter@gmail.com)

Separate Handouts, etc...

Index