> Numerical Optimization Lecture Notes #12 Conjugate Gradient Methods — Nonlinear CG

> > Peter Blomgren, (blomgren.peter@gmail.com)

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Fall 2018

— (1/24)

Outline

1 Linear Conjugate Gradient Methods

- Recap
- Conjugate Gradient Algorithms
- The Effect of Preconditioning CG vs. PCG(M)

2 Nonlinear Conjugate Gradient Methods

- New Ideas... Fletcher-Reeves, etc...
- Practical Considerations
- Convergence

3 Projects

• Separate Handouts, etc...

— (2/24)

Quick Recap: Linear Conjugate Gradient Methods

We have introduced the Conjugate Gradient (CG) and Preconditioned Conjugate Gradient (PCG) methods for solution of the linear system $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$, where A is symmetric positive definite.

Linear CG is guaranteed to converge in *n* iterations, but as we have seen, in many cases — eigenvalue clustering and/or r < n distinct eigenvalues, convergence is much faster.

We briefly discussed preconditioning, where we use a simplified version $M \approx A$, and hope that $M^{-1}A \approx I$ has a favorable eigenvalue spectrum. We must be able to solve $M\bar{\mathbf{y}} = \bar{\mathbf{r}}$ fast.

Today:

(i) An example of CG vs. PCG performance.(ii) Non-linear CG.(iii) Projects!

Recap Conjugate Gradient Algorithms The Effect of Preconditioning — CG vs. PCG(M)

The CG Algorithm (version 1.0, "Standard")

Algorithm: Conjugate Gradient

Given A,
$$\mathbf{\bar{b}}$$
 and $\mathbf{\bar{x}}_0$:
 $\mathbf{\bar{r}}_0 = A\mathbf{\bar{x}}_0 - \mathbf{\bar{b}}$, $\mathbf{\bar{p}}_0 = -\mathbf{\bar{r}}_0$, $k = 0$
while $(||r_k|| > 0$, or other stopping condition)
 $\alpha_k = \frac{\mathbf{\bar{r}}_k^T \mathbf{\bar{r}}_k}{\mathbf{\bar{p}}_k^T A \mathbf{\bar{p}}_k}$, Store the vector $A \mathbf{\bar{p}}_k$
 $\mathbf{\bar{x}}_{k+1} = \mathbf{\bar{x}}_k + \alpha_k \mathbf{\bar{p}}_k$
 $\mathbf{\bar{x}}_{k+1} = \mathbf{\bar{x}}_k + \alpha_k \mathbf{A} \mathbf{\bar{p}}_k$
 $\mathbf{\bar{r}}_{k+1} = \mathbf{\bar{r}}_k + \alpha_k \mathbf{A} \mathbf{\bar{p}}_k$
 $\beta_{k+1} = \frac{\mathbf{\bar{r}}_{k+1}^T \mathbf{\bar{r}}_{k+1}}{\mathbf{\bar{r}}_k^T \mathbf{\bar{r}}_k}$, Keep numerator for next step!
 $\mathbf{\bar{p}}_{k+1} = -\mathbf{\bar{r}}_{k+1} + \beta_{k+1} \mathbf{\bar{p}}_k$
 $k = k+1$
end-while

Recap Conjugate Gradient Algorithms The Effect of Preconditioning — CG vs. PCG(M)

Preconditioned CG Algorithm (a.k.a. "PCG(M)")

Algorithm: PCG

Given A, $\mathbf{M} = \mathbf{C}^{T}\mathbf{C}$, $\mathbf{\bar{b}}$ and $\mathbf{\bar{x}}_0$: compute $\mathbf{\bar{r}}_0 = A\mathbf{\bar{x}}_0 - \mathbf{\bar{b}}$,						
$\mathbf{\overline{y}}_0 = \mathbf{M}^{-1}\mathbf{\overline{r}}_0, \ \mathbf{\overline{p}}_0 = -\mathbf{\overline{y}}_0, \ k = 0$						
while ($\ r_k\ >0$, or other stopping condition)						
0	_	$\mathbf{\bar{r}}_{k}^{T} \mathbf{\bar{y}}_{k}$	Store the vector $A ar{\mathbf{p}}_k$			
α_k	=	$\overline{\mathbf{p}_{k}^{T}A\mathbf{p}_{k}}$	and the scalar $\bar{r}_k^T \bar{y}_k$			
$ar{x}_{k+1}$	=	$\mathbf{\bar{x}}_k + \alpha_k \mathbf{\bar{p}}_k$				
$\overline{\mathbf{r}}_{k+1}$	=	$\mathbf{\bar{r}}_k + \alpha_k \mathbf{A} \mathbf{\bar{p}}_k$				
$\overline{\mathbf{y}}_{\mathbf{k}+1}$	=	$M^{-1}\overline{r}_{k+1}$				
β_{k+1}	=	$\frac{\overline{\mathbf{r}}_{k+1}^{\mathcal{T}}\overline{\mathbf{y}}_{k+1}}{\overline{\mathbf{r}}_{k}^{T}\overline{\mathbf{y}}_{k}},$	Save the numerator for next step!			
$\mathbf{ar{p}}_{k+1}$	=	$-\mathbf{\bar{y}_{k+1}} + \beta_{k+1}\mathbf{\bar{p}}_k$				
k	=	k+1				
end-while						

- (5/24)

AEGO STATE

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods Projects Nonlinear Conjugate Gradient Methods Projects Nonlinear Conjugate Gradient Methods Conjugate Gradient Algorithms The Effect of Preconditioning — CG vs. PCG(M)

Example: CG vs. PCG(M) Performance

Problem: Solve $\nabla^2 u(x, y) = f(x, y)$ in the domain

— (6/24)

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods **Conjugate Gradient Algorithms** The Effect of Preconditioning — CG vs. PCG(M) Projects

Example: CG vs. PCG(M) Performance

Figure: We discretize $\nabla^2 u(x, y)$ by the standard 5-point finite difference approximation of the Laplacian.

We study the numerical solution of the resulting linear system $A\bar{\mathbf{u}} = \bar{\mathbf{f}}$ for varying discretizations of the square (from 2×2 to 64×64 grids.)

We look at CG, PCG(M) with M being the tri-diagonal preconditioner, and PCG(M) with $M = \tilde{L}\tilde{L}^{T}$, where \tilde{L} is given by the incomplete (zero fill-in) Cholesky factorization.

— (7/24)

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods Projects The Effect of Preconditioning — CG vs. PCG(M)

Example: CG vs. PCG(M) Performance

Figure: We discretize $\nabla^2 u(x, y)$ by the standard 5-point finite difference approximation of the Laplacian on the numerical domain (illustrated on the left with a 48 × 48 grid), the corresponding matrix *A* is illustrated to the right; it has a tridiagonal component, and two additional elements on every row — the bandwidth is not constant due to the cut-out in the domain.

— (8/24)

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods Projects Projects Nonlinear Conjugate Gradient Algorithms The Effect of Preconditioning — CG vs. PCG(M)

Example: CG vs. PCG(M) Performance

Figure: To the left we see the *L* given by complete Cholesky factorization — we notice how the entire band fills in, we get a total of 67,071 non-zero entries. To the left we see the \tilde{L} given by **incomplete Cholesky factorization** — here we only get 5,020 non-zero entries. (*A* had 8,336 non-zero entries)

We will use the preconditioners $M = \tilde{L}\tilde{L}^{T}$, and $M = \operatorname{tridiag}(A)$.

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods Projects The Effect of Preconditioning — CG vs. PCG(M)

Example: CG vs. PCG(M) Performance

 $\operatorname{cond}(L^{-1}AL^{-T})$

n _{GRID}	48 ²	64 ²		
A	1704 imes 1704	3094 imes 3094		
L = ichol(A), $LL^T \approx A$				
$\ A - LL^T\ _F / \ A\ _F$	0.0900	0.0907		
$\operatorname{cond}(A)$	924.5193	1656.936		
$\operatorname{cond}(L^{-1}AL^{-T})$	133.4733	238.4772		
L = chol(tridiag(A)), $LL^T \approx A$				
$\frac{\ A - LL^T\ _F}{\ A\ _F}$	0.3131	0.3139		
$\operatorname{cond}(A)$	924.5193	1656.936		

463.1769

829.6574

SAN DIEGO STATE UNIVERSITY

— (10/24)

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods Projects The Effect of Preconditioning — CG vs. PCG(M)

Example: CG vs. PCG(M) Performance

6 of 7

Figure: The performance of **CG** and **PCG(M)** on our test problem. The discretization of the square $[-1, 1]^2$ ranges from 2×2 to 64×64 , which gives us a matrix A of dimensions ranging from 3×3 to 3094×3094 . The stopping criteria was a relative reduction of $\|\mathbf{\overline{r}}\|$ by 10^{-6} .

Recap Conjugate Gradient Algorithms The Effect of Preconditioning — CG vs. PCG(M)

Example: CG vs. PCG(M) Performance

7 of 7

Figure: The solution to our test problem on the 48×48 grid, with the right-hand-side f(x, y) = 1.

- (12/24)

Nonlinear Conjugate Gradient Methods

We now turn our attention to making the CG methods useful for optimization problems (the non-linear situation).

The **Fletcher-Reeves** (CG-FR, published in 1964) extension requires two modifications to the CG algorithm:

- 1: The computation of the step length α_k is replaced by a line-search which minimizes the non-linear objective $f(\cdot)$ along the search direction $\mathbf{\bar{p}}_k$.
- 2: The instances of the residual $\overline{\mathbf{r}}$ (which are just $\nabla \Phi(\cdot)$ for the quadratic objective in standard CG) are replaced by the gradient of the non-linear objective $\nabla f(\cdot)$.

Fletcher, R., and Reeves, C. M. "Function minimization by conjugate gradients." *The computer journal*, 7, no. 2 (1964), 149-154.

-(13/24)

The Fletcher-Reeves FR-CG Algorithm

Algorithm: Fletcher-Reeves

Given
$$\bar{\mathbf{x}}_0$$
:
Evaluate $f_0 = f(\bar{\mathbf{x}}_0)$, $\nabla f_0 = \nabla f(\bar{\mathbf{x}}_0)$.
Set $\bar{\mathbf{p}}_0 = -\nabla f_0$, $k = 0$
while ($\|\nabla f_k\| > 0$, ...)
 α_k = linesearch(...)
 $\bar{\mathbf{x}}_{k+1} = \bar{\mathbf{x}}_k + \alpha_k \bar{\mathbf{p}}_k$
 $\nabla f_{k+1} =$ Evaluate $\nabla f(\bar{\mathbf{x}}_{k+1})$
 $\beta_{k+1}^{\text{FR}} = \frac{\nabla f_{k+1}^T \nabla f_{k+1}}{\nabla f_k^T \nabla f_k}$, Save numerator!
 $\bar{\mathbf{p}}_{k+1} = -\nabla f_{k+1} + \beta_{k+1}^{\text{FR}} \bar{\mathbf{p}}_k$
 $k = k+1$
end-while

— (14/24)

TEGO STATE

VERSITY

Comments: The Fletcher-Reeves FR-CG Algorithm

Sanity check: If $f(\bar{\mathbf{x}})$ is a strongly convex quadratic, and α_k the exact minimizer, then FR-CG reduces to linear CG.

Each iteration requires evaluation of the objective function (for the line-search), and the gradient of the objective. — No Hessian evaluation, nor matrix operations are required. **Good** for large non-linear optimization problems.

If we require that α_k satisfies the strong Wolfe conditions

$$\begin{aligned} f(\bar{\mathbf{x}}_k + \alpha \bar{\mathbf{p}}_k) &\leq f(\bar{\mathbf{x}}_k) + c_1 \alpha \bar{\mathbf{p}}_k^T \nabla f_k \\ |\bar{\mathbf{p}}_k^T \nabla f(\bar{\mathbf{x}}_k + \alpha \bar{\mathbf{p}}_k)| &\leq c_2 |\bar{\mathbf{p}}_k^T \nabla f_k| \end{aligned}$$

where $0 < c_1 < c_2 < \frac{1}{2}$, then FR-CG converges globally.

-(15/24)

Variants: The Polak-Ribière (PR-CG) Method

1 of 2

The following modification to FR-CG was suggested by Polak-Ribière

$$\beta_{k+1}^{\mathsf{FR}} = \frac{\nabla f_{k+1}^{\mathsf{T}} \nabla f_{k+1}}{\nabla f_{k}^{\mathsf{T}} \nabla f_{k}} \quad \rightarrow \quad \beta_{k+1}^{\mathsf{PR}} = \frac{\nabla \mathbf{f}_{k+1}^{\mathsf{T}} (\nabla \mathbf{f}_{k+1} - \nabla \mathbf{f}_{k})}{\nabla \mathbf{f}_{k}^{\mathsf{T}} \nabla \mathbf{f}_{k}}$$

when f is a strongly convex quadratic, and the line search is exact, the gradients are orthogonal and $\beta_{k+1}^{\text{FR}} = \beta_{k+1}^{\text{PR}}$.

On general non-linear objectives, an inexact line-searches PR-CG tends to be **more robust** and **more efficient** than FR-CG.

Polak, Elijah, and Gerard Ribiere. "Note sur la convergence de méthodes de directions conjugués." *Revue française d'informatique et de recherche opérationnelle.* Série rouge 3, no. 16 (1969): 35-43.

-(16/24)

New Ideas... Fletcher-Reeves, etc... Practical Considerations Convergence

Variants: The Polak-Ribière (PR-CG) Method

2 of 2

One problem: The strong Wolfe conditions **do not** guarantee that $\mathbf{\bar{p}}_k$ is always descent direction for PR-CG. In order to fix this, β is defined to be

$$\beta_{k+1}^+ = \max(\beta_{k+1}^{\mathsf{PR}}, \mathbf{0})$$

the resulting algorithm is known as PR+.

There are a number of other choices for β in the literature, but they are not (in general) more efficient than Polak-Ribière PR-CG/PR+.

- (17/24)

Practical Considerations

If the line-search uses quadratic (or cubic) interpolation along the search direction $\mathbf{\bar{p}}_k$, then if/when $f(\cdot)$ is a strictly convex quadratic, the step lengths α_k will be the exact 1D-minimizers \Rightarrow the non-linear algorithm reduces to linear CG. [THIS IS HIGHLY DESIRABLE!]

Restarting: CG gets its favorable convergence properties from the conjugacy of the search directions **near** the optimum. If we start "far" from the optimum, the algorithm does not necessarily gain anything from maintaining this conjugacy.

Therefore, we should periodically restart the algorithm, by setting $\beta = 0$ (*i.e.* taking a steepest-descent step).

The *n*-step convergence is only guaranteed when we start with a steepest-descent step, and the model is quadratic. Hence a restart close to $\bar{\mathbf{x}}^*$ will (approximately) guarantee *n*-step convergence.

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods Projects New Ideas... Fletcher-Reeves, etc... Practical Considerations Convergence

Practical Considerations: Restarting Conditions

2 of 2

Restarting conditions: The most common condition is based on the fact that for the strictly quadratic objective, the residuals are orthogonal. Hence, when two consecutive residuals are "far" from orthogonal

$$\frac{\nabla f_k^T \nabla f_{k-1}}{\nabla f_k^T \nabla f_k} \ge \nu \sim 0.1$$

a restart is triggered.

The formula

$$\beta_{k+1}^+ = \max(\beta_{k+1}^{\mathsf{PR}}, \mathbf{0})$$

in PR+ can be viewed as a restart-condition. This is not practical since these "restarts" are very infrequent — in practice β_{k+1}^{PR} is positive most of the time.

-(19/24)

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods Projects New Ideas... Fletcher-Reeves, etc... Practical Considerations Convergence

Nonlinear CG: Global Convergence

Linear CG: Global convergence properties well understood, and optimal. Nonlinear CG: Convergence properties not so well understood, except in special cases. The behavior is sometimes surprising and bizarre!

We look at some results, under the following non-restrictive assumptions

Assumptions:

- (i) The level set $\mathcal{L} = \{ \mathbf{\bar{x}} \in \mathbb{R}^n : f(\mathbf{\bar{x}}) \le f(\mathbf{\bar{x}}_0) \}$ is bounded.
- (ii) In some neighborhood N of L, the objective function f is Lipschitz continuously differentiable, *i.e.* there exists a constant L > 0 such that

$$\|
abla f(\mathbf{ar{x}}) -
abla f(\mathbf{ar{y}})\| \le L \|\mathbf{ar{x}} - \mathbf{ar{y}}\|, \quad \forall \mathbf{ar{x}}, \mathbf{ar{y}} \in \mathcal{N}$$

AN DIEGO STATI

Linear Conjugate Gradient Methods	New Ideas Fletcher-Reeves, etc
Nonlinear Conjugate Gradient Methods	Practical Considerations
Projects	Convergence

Global Convergence: FR-CG

Theorem

Suppose that the assumptions hold, and that FR-CG is implemented with a line search which satisfies the strong Wolfe conditions, with $0 < c_1 < c_2 < \frac{1}{2}$. Then

 $\liminf_{k\to\infty} \|\nabla f_k\| = 0.$

This does not say that the limit of the sequence of gradients $\{\nabla f_k\}$ is zero; but it does tell us that at least the sequence is not bounded away from zero.

If, however, we restart the algorithm every n steps, we get n-step quadratic convergence:

$$\|ar{\mathbf{x}}_{k+n} - ar{\mathbf{x}}^*\| = \mathcal{O}(\|ar{\mathbf{x}}_k - ar{\mathbf{x}}^*\|^2).$$

Global Convergence: PR-CG

In practice PR-CG performs better than FR-CG, but we cannot prove a theorem like the one for FR-CG on the previous slide.

The following surprising result **can** be shown:

Theorem

Consider the Polak-Ribiere PR-CG method with an ideal line search. There exists a twice continuously differentiable objective function $f : \mathbb{R}^3 \to \mathbb{R}$ and a starting point $\bar{\mathbf{x}}_0 \in \mathbb{R}^3$ such that the sequence of gradients { $\|\nabla f_k\|$ } is **bounded away from zero**.

The modification (PR+)

$$\beta_{k+1}^{+} = \max(\beta_{k+1}^{\mathsf{PR}}, 0)$$

fixes this strange behavior, and it is possible to show global convergence for PR+.

-(22/24)

Linear	Conjugate	Gradient	Methods
Nonlinear	Conjugate	Gradient	Methods
			Projects

Separate Handouts, etc...

- (23/24)

Linear Conjugate Gradient Methods Nonlinear Conjugate Gradient Methods Projects	Separate Handouts, etc
Index	

