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Quick Recap: Linear Conjugate Gradient Methods

We have introduced the Conjugate Gradient (CG) and
Preconditioned Conjugate Gradient (PCG) methods for solution of
the linear system Ax̄ = b̄, where A is symmetric positive definite.

Linear CG is guaranteed to converge in n iterations, but as we
have seen, in many cases — eigenvalue clustering and/or r < n
distinct eigenvalues, convergence is much faster.

We briefly discussed preconditioning, where we use a simplified
version M ≈ A, and hope that M−1A ≈ I has a favorable
eigenvalue spectrum. We must be able to solve M ȳ = r̄ fast.

Today:
(i) An example of CG vs. PCG performance.
(ii) Non-linear CG.
(iii) Projects!
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The CG Algorithm (version 1.0, “Standard”)

Algorithm: Conjugate Gradient

Given A, b̄ and x̄0:

r̄0 = Ax̄0 − b̄, p̄0 = −r̄0, k = 0

while ( ‖rk‖ > 0, or other stopping condition )

αk =
r̄Tk r̄k

p̄Tk Ap̄k
,

Store the vector Ap̄k

and the scalar r̄T
k
r̄k

x̄k+1 = x̄k + αk p̄k

r̄k+1 = r̄k + αkAp̄k

βk+1 =
r̄Tk+1r̄k+1

r̄Tk r̄k
, Keep numerator for next step!

p̄k+1 = −r̄k+1 + βk+1p̄k

k = k + 1

end-while

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Nonlinear Conjugate Gradient Methods — (4/24)



Linear Conjugate Gradient Methods
Nonlinear Conjugate Gradient Methods

Projects

Recap
Conjugate Gradient Algorithms
The Effect of Preconditioning — CG vs. PCG(M)

Preconditioned CG Algorithm (a.k.a. “PCG(M)”)

Algorithm: PCG

Given A, M = CTC, b̄ and x̄0: compute r̄0 = Ax̄0 − b̄,
ȳ0 = M−1r̄0, p̄0 = −ȳ0, k = 0

while ( ‖rk‖ > 0, or other stopping condition )

αk =
r̄Tk ȳk
p̄Tk Ap̄k

,
Store the vector Ap̄k

and the scalar r̄Tk ȳk

x̄k+1 = x̄k + αk p̄k

r̄k+1 = r̄k + αkAp̄k

ȳk+1 = M−1r̄k+1

βk+1 =
r̄Tk+1ȳk+1

r̄Tk ȳk
, Save the numerator for next step!

p̄k+1 = −ȳk+1 + βk+1p̄k

k = k + 1

end-while
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Example: CG vs. PCG(M) Performance 1 of 7

Problem: Solve ∇2u(x , y) = f (x , y) in the domain

D = {(x , y) : −1 ≤ x , y ≤ 1}− {(x , y) : (x +1)2 + (y +1)2 < 1}

Set u(x , y) = 0 on Γ = ∂D (Dirichlet Boundary Conditions).
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Example: CG vs. PCG(M) Performance 2 of 7
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Figure: We discretize ∇2u(x , y) by the standard 5-point finite difference
approximation of the Laplacian.

We study the numerical solution of the resulting linear system Aū = f̄ for
varying discretizations of the square (from 2× 2 to 64× 64 grids.)

We look at CG, PCG(M) with M being the tri-diagonal preconditioner, and
PCG(M) with M = L̃L̃T , where L̃ is given by the incomplete (zero fill-in)
Cholesky factorization.
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Example: CG vs. PCG(M) Performance 3 of 7
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Figure: We discretize ∇2u(x , y) by the standard 5-point finite difference approx-
imation of the Laplacian on the numerical domain (illustrated on the left with a
48 × 48 grid), the corresponding matrix A is illustrated to the right; it has a tri-
diagonal component, and two additional elements on every row — the bandwidth
is not constant due to the cut-out in the domain.
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Figure: To the left we see the L given by complete Cholesky factorization — we notice
how the entire band fills in, we get a total of 67,071 non-zero entries. To the left we see
the L̃ given by incomplete Cholesky factorization — here we only get 5,020 non-zero
entries. (A had 8,336 non-zero entries)

We will use the preconditioners M = L̃L̃T , and M = tridiag(A).
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Example: CG vs. PCG(M) Performance 5 of 7

ngrid 482 642

A 1704× 1704 3094× 3094

L = ichol(A), LLT ≈ A

‖A− LLT‖F / ‖A‖F 0.0900 0.0907
cond(A) 924.5193 1656.936
cond(L−1AL−T ) 133.4733 238.4772

L = chol(tridiag(A)), LLT ≈ A

‖A− LLT‖F / ‖A‖F 0.3131 0.3139
cond(A) 924.5193 1656.936
cond(L−1AL−T ) 463.1769 829.6574
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Figure: The performance of CG and PCG(M) on our test problem. The discretization
of the square [−1, 1]2 ranges from 2 × 2 to 64 × 64, which gives us a matrix A of
dimensions ranging from 3 × 3 to 3094 × 3094. The stopping criteria was a relative
reduction of ‖̄r‖ by 10−6.
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Figure: The solution to our test problem on the 48×48 grid, with the right-hand-side f (x , y) = 1.
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Nonlinear Conjugate Gradient Methods

We now turn our attention to making the CG methods useful for
optimization problems (the non-linear situation).

The Fletcher-Reeves (CG-FR, published in 1964) extension
requires two modifications to the CG algorithm:

1: The computation of the step length αk is replaced by a
line-search which minimizes the non-linear objective f (·) along
the search direction p̄k .

2: The instances of the residual r̄ (which are just ∇Φ(·) for the
quadratic objective in standard CG) are replaced by the gradient
of the non-linear objective ∇f (·).

Fletcher, R., and Reeves, C. M. “Function minimization by conjugate gradients.” The

computer journal, 7, no. 2 (1964), 149-154.
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The Fletcher-Reeves FR-CG Algorithm

Algorithm: Fletcher-Reeves

Given x̄0:

Evaluate f0 = f (x̄0), ∇f0 = ∇f (x̄0).

Set p̄0 = −∇f0, k = 0

while ( ‖∇fk‖ > 0, ... )

αk = linesearch(...)

x̄k+1 = x̄k + αk p̄k

∇fk+1 = Evaluate ∇f (x̄k+1)

βFR

k+1 =
∇f Tk+1∇fk+1

∇f Tk ∇fk
, Save numerator!

p̄k+1 = −∇fk+1 + βFR

k+1p̄k

k = k + 1

end-while
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Comments: The Fletcher-Reeves FR-CG Algorithm

Sanity check: If f (x̄) is a strongly convex quadratic, and αk the
exact minimizer, then FR-CG reduces to linear CG.

Each iteration requires evaluation of the objective function (for the
line-search), and the gradient of the objective. — No Hessian
evaluation, nor matrix operations are required. Good for large
non-linear optimization problems.

If we require that αk satisfies the strong Wolfe conditions

f (x̄k + αp̄k) ≤ f (x̄k) + c1αp̄
T
k ∇fk

|p̄Tk ∇f (x̄k + αp̄k)| ≤ c2|p̄
T
k ∇fk |

where 0 < c1 < c2 <
1
2 , then FR-CG converges globally.
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Variants: The Polak-Ribière (PR-CG) Method 1 of 2

The following modification to FR-CG was suggested by
Polak-Ribière

βFR
k+1 =

∇f Tk+1∇fk+1

∇f Tk ∇fk
→ βPR

k+1 =
∇fTk+1(∇fk+1 −∇fk)

∇fTk ∇fk

when f is a strongly convex quadratic, and the line search is exact,
the gradients are orthogonal and βFR

k+1 = βPR
k+1.

On general non-linear objectives, an inexact line-searches PR-CG
tends to be more robust and more efficient than FR-CG.

Polak, Elijah, and Gerard Ribiere. “Note sur la convergence de méthodes de directions
conjugués.” Revue française d’informatique et de recherche opérationnelle. Série
rouge 3, no. 16 (1969): 35-43.
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Variants: The Polak-Ribière (PR-CG) Method 2 of 2

One problem: The strong Wolfe conditions do not guarantee
that p̄k is always descent direction for PR-CG. In order to fix this,
β is defined to be

β+
k+1 = max(βPR

k+1, 0)

the resulting algorithm is known as PR+.

There are a number of other choices for β in the literature, but
they are not (in general) more efficient than Polak-Ribière
PR-CG/PR+.
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Practical Considerations 1 of 2

If the line-search uses quadratic (or cubic) interpolation along the search
direction p̄k , then if/when f (·) is a strictly convex quadratic, the step
lengths αk will be the exact 1D-minimizers ⇒ the non-linear algorithm
reduces to linear CG. [This is Highly Desirable!]

Restarting: CG gets its favorable convergence properties from the
conjugacy of the search directions near the optimum. If we start “far”
from the optimum, the algorithm does not necessarily gain anything from
maintaining this conjugacy.

Therefore, we should periodically restart the algorithm, by setting β = 0
(i.e. taking a steepest-descent step).

The n-step convergence is only guaranteed when we start with a
steepest-descent step, and the model is quadratic. Hence a restart close
to x̄∗ will (approximately) guarantee n-step convergence.
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Practical Considerations: Restarting Conditions 2 of 2

Restarting conditions: The most common condition is based on the
fact that for the strictly quadratic objective, the residuals are orthogonal.
Hence, when two consecutive residuals are “far” from orthogonal

∇f Tk ∇fk−1

∇f Tk ∇fk
≥ ν ∼ 0.1

a restart is triggered.

The formula

β+
k+1 = max(βPR

k+1, 0)

in PR+ can be viewed as a restart-condition. This is not practical since
these “restarts” are very infrequent — in practice βPR

k+1 is positive most
of the time.
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Nonlinear CG: Global Convergence

Linear CG: Global convergence properties well understood, and optimal.

Nonlinear CG: Convergence properties not so well understood, except
in special cases. The behavior is sometimes surprising
and bizarre!

We look at some results, under the following non-restrictive assumptions

Assumptions:

(i) The level set L = {x̄ ∈ R
n : f (x̄) ≤ f (x̄0)} is bounded.

(ii) In some neighborhood N of L, the objective function f is Lipschitz
continuously differentiable, i.e. there exists a constant L > 0 such
that

‖∇f (x̄)−∇f (ȳ)‖ ≤ L‖x̄− ȳ‖, ∀x̄, ȳ ∈ N
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Global Convergence: FR-CG

Theorem

Suppose that the assumptions hold, and that FR-CG is
implemented with a line search which satisfies the strong Wolfe
conditions, with 0 < c1 < c2 <

1
2 . Then

lim inf
k→∞

‖∇fk‖ = 0.

This does not say that the limit of the sequence of gradients
{∇fk} is zero; but it does tell us that at least the sequence is not
bounded away from zero.

If, however, we restart the algorithm every n steps, we get n-step
quadratic convergence:

‖x̄k+n − x̄∗‖ = O(‖x̄k − x̄∗‖2).
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Global Convergence: PR-CG

In practice PR-CG performs better than FR-CG, but we cannot
prove a theorem like the one for FR-CG on the previous slide.

The following surprising result can be shown:

Theorem

Consider the Polak-Ribiere PR-CG method with an ideal line
search. There exists a twice continuously differentiable objective
function f : R3 → R and a starting point x̄0 ∈ R

3 such that the
sequence of gradients {‖∇fk‖} is bounded away from zero.

The modification (PR+)

β+
k+1 = max(βPR

k+1, 0)

fixes this strange behavior, and it is possible to show global
convergence for PR+.
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