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Robust Inexact Newton Methods

Quick Recap: Building Robust Inexact Newton Methods

We looked at combining a modified version of the linear CG-solver
(or preferably a PCG(M)-solver) with a line-search algorithm to
produce an almost “unbreakable” approximate Newton method.

The modification to the CG-solver comprise of an additional
termination criterion for the case where the local Hessian
(∇2f (x̄k)) is not positive definite, and we get a CG-internal search
direction for which p̄T∇2f (x̄k)p̄ ≤ 0, i.e the search takes into a
part of space with negative curvature.

The worst we do (in a particular iteration) is to take a steepest
descent step.

Potential Outstanding Problem: p̄T∇2f (x̄k)p̄ small and positive
 long step.
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Quick Recap: Building Robust Inexact Newton Methods

We also discussed how to specify the forcing sequence {η(k)} for
the tolerance termination criterion (‖̄rk‖ ≤ η(k)‖∇f (x̄k)‖) so that
the overall convergence rate of the resulting algorithm is quadratic
(when Bk = ∇2f (xk)) or super-linear (when Bk ≈ ∇2f (xk)).

We also hinted at a different approach to dealing with non-positive
definite Hessians in the direct-linear-solver-framework — a
modification of the Hessian (∇2f (x̄k) + Ek) so that the resulting
matrix is sufficiently positive definite; today we take a closer look
at this approach.
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Hessian Modifications Old Default Project: modelhess()

We look at modifying the Hessian matrix ∇2f (x̄k) by either
explicitly or implicitly adding a matrix Ek (usually a multiple of the
identity matrix) so that the resulting matrix

Bk = ∇2f (x̄k) + Ek

is sufficiently positive definite (all the eigenvalues of Bk are
bounded away from zero.)

There are a number of different approaches, we look at a few...

• Eigenvalue Modification

• Direct and Indirect modification of the Hessian
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Eigenvalue Modification 1 of 6

Since ∇2f (x̄k) is symmetric we can always find an orthonormal matrix
Qk and a diagonal matrix Λk = diag(λ1, λ2, . . . , λn) so that (dropping
the subscripts k)

∇2f (x̄) = QΛQT =
n∑

i=1

λi q̄i q̄
T
i .

For simplicity of argument, let us assume Q = I (we can get to this
scenario by an appropriate change of variables.)

Example:

∇f (x̄) =




1
−3
2


 , ∇2f (x̄) = diag(10, 3,−1) ⇒ p̄N =




−0.1
1
2




and ∇f (x̄)T p̄N = 0.90, hence p̄N is not a descent direction.

(continued...)
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Eigenvalue Modification 2 of 6

Idea#1: Replace negative eigenvalues by some positive number δ, e.g.
δ =

√
ǫmach

In 32-bit double precision (and Matlab) ǫmach ≈ 10−16, so δ = 10−8 seems
like a reasonable choice(?) We can express the Hessian modification as

Bk =
2∑

i=1

λi q̄i q̄
T
i + δq̄3q̄

T
3

[
=

n∑

i=1

max(λi , δ)q̄i q̄
T
i

]

We now have

Bk = diag(10, 3, 10−8) ⇒ p̄ ≈




−0.1
1

−200, 000, 000




We notice that p̄ is approximately parallel to q̄3, and huge...

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Hessian Modifications — (7/22)

Recap
Hessian Modifications

Eigenvalue Modification
B = A + τ I
Gershgorin Modification

Eigenvalue Modification 3 of 6

The long step length violates the spirit of Newton’s method — recall that
the quadratic convergence properties come from a local argument with
the Taylor expansion.

Idea#2: Replace negative eigenvalues by −λi

Now Bk = diag(|λ1|, |λ2|, . . . , |λn|), and in our example we get

p̄ =




−0.1
1

−2


 , ∇f (x̄)T p̄ = −7.1, descent direction!

This seems to work?!?

It may reorder the eigenvalues (and thus the “importance”/ ordering of
subspaces), i.e.

λ1 < λ2 < λ3, but |λ2| < |λ1| < |λ3|.
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Eigenvalue Modification 4 of 6

Let’s reconsider Idea#1, what went wrong? When we solve
Bp̄ = −∇f (x̄) we get

p̄ = −B−1∇f (x̄) = −
2∑

i=1

1

λi
q̄i (q̄

T
i ∇f (x̄))− 1

δ
q̄3(q̄

T
3∇f(x̄)),

it’s clearly the right-most term that makes us violate the spirit of
Newton’s method.

We could simply just drop this term (i.e. ignore the subspace
corresponding to negative eigenvalues), or

Select δ so that we ensure that the step length is not excessive
(trust-region flavor!).

Bad news: There is no accepted “best” way of modifying the Hessian
in this manner.
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Eigenvalue Modification 5 of 6

If we for a moment “forget” about the issue of selecting δ so that the
step length is reasonable, we can ask the question “what is the smallest
change to A, which gives us an positive definite matrix B?”

The answer depends on how we measure... Two standard measures are
the Frobenius norm ‖A‖F , and the Euclidean norm ‖A‖

‖A‖2F =
∑

i,j

a2ij , ‖A‖ = max
‖x̄‖=1

x̄TAx̄ = max |eig(A)| .

If we use the Frobenius norm, the smallest change is of the type “change
negative eigenvalues to small positive ones:”

B = A+∆A, where ∆A = Q diag(τi )Q
T , τi =

{
0 λi ≥ δ
δ − λi λi < δ
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Eigenvalue Modification 6 of 6

If, on the other hand, we use the Euclidean norm the smallest change
includes a multiple of the identity matrix, i.e. “shift the eigenvalue
spectrum, so all eigenvalues are positive:”

B = A+∆A, where ∆A = τ I , τ = max(0, δ − λmin(A))

We recognize this type of modification to A from our discussion on
“Nearly exact solutions to the subproblem” for trust-region methods
(Lecture #9)...

Both constant-diagonal — τ I — and “Frobenius-style” — Q diag(τi)QT

— modifications are used in production software. Generally they do not
rely on an exact spectral decomposition (full computation of the
eigenvalues) of the Hessian, but use a cousin of Gaussian Elimination
(usually the Cholesky factorization) which allows introduction of
modifications indirectly.
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B = A+ τ I 1 of 5

In adding a multiple of the identity matrix, we would like to
identify a scalar τ so that

τ = max

(
0, δ − λmin(A)

)
.

Usually we do not have access to λmin(A), so we have to use some
clever heuristic to get an estimate and generate

{
τ = 0 if λmin(A) ≥ δ
τ ≥ δ − λmin(A) if λmin(A) < δ

It is important not to select a value of τ that is unnecessarily large,
since this biases the direction toward the steepest descent direction.
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B = A+ τ I 2 of 5

The following algorithm uses the fact that

|λi | ≤ ‖A‖F , ∀i = 1, 2, . . . , n

it is quite expensive since a new factorization is attempted in each loop,
further the generated τ may be unnecessarily large.

Algorithm

β = ‖A‖F , k=0

if( min(aii ) > 0 ) { τ0 = 0 } else { τ0 = β/2 } endif

while( k < maxiter )

ATTEMPT (Incomplete) Cholesky Factorization

LLT = A+ τk I
if( successful factorization ), return(L)

else, τk+1 = max(2τk, β/2)
endif

end(while)
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B = A+ diag(d̄add) — Breaking Cholesky 3 of 5

It is more efficient to let the Cholesky factorization routine directly
modify the matrix A so that the factorization succeeds.

What can go wrong in Cholesky factorization?

We look at the Cholesky factorization in LDLT -form — set M = LD1/2

to get to MMT form.

Algorithm: Cholesky Factorization, LDLT -form

for j = 1:n

cjj = ajj −
∑j−1

s=1 ds l
2
js

dj = cjj --- The diagonal entries in D (must be ≥ δ)
for i = (j+1):n

cij = aij −
∑j−1

s=1 ds lis ljs
lij = cij/dj --- We don’t want lij to be too large

end

end
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B = A+ diag(d̄add) — Modifying Cholesky 4 of 5

If we want to require that the matrix LDLT is sufficiently positive
definite, we simply modify the elements dj :

dj = cjj → dj = max(cjj, δ)

Usually, we also want to have a bound on the size of the off-diagonal
entries of M = LD1/2, i.e. |mij | ≤ β (i > j), we set

θj = max
j<i≤n

|cij |

and let

dj = cjj → dj = max

(
cjj , δ,

[
θj
β

]2)

we have

|mij | = |lij
√

dj | =
|cij |√
dj

≤ |cij |β
θj

≤ β.
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B = A+ diag(d̄add) — Modifying Cholesky 5 of 5

Finally, we throw in an absolute value on the cjj term for good measure,
and come up with

dj = max

(
|cjj |, δ,

[
θj
β

]2)
, d add

j = dj − cjj

This exactly what the module choldecomp() in the old default project
does! (With some modifications for computational efficiency — the
algorithm generates the factorization directly in LLT -form)

Old Default Project

choldecomp()

Implementation Theory (here)
maxoffl β

minl
√
δ

maxadd max(diag(d̄add))

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Hessian Modifications — (16/22)



Recap
Hessian Modifications

Eigenvalue Modification
B = A + τ I
Gershgorin Modification

Gershgorin Modification choldecomp() and modelhess()

Theorem (Gershgorin’s circle theorem)

tells us where the eigenvalues of a matrix are located:

|λi − aii | ≤
∑

j 6=i

|aij |, i = 1, . . . , n.

Now given a matrix A, let b1 be the smallest value which makes A+ b1I
positive definite from the Gershgorin circle theorem.

Let b2 = maxadd from choldecomp(), and let µ = min(b1,b2). Now,
A+ µI is guaranteed to be positive definite.

Old Default Project

This is essentially modelhess(). In addition modelhess() returns the LLT -decomposition of A + µI , and there are
tests prior to the first call to choldecomp() which takes care of negative diagonal elements of A and large
off-diagonal elements of A.

Note that modelhess() is similar to the algorithm on slide #13, but requires at most two calls to a Cholesky
factorization algorithm.
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Gershgorin’s Circle Theorem: Illustration 1 of 2

0.5 1 1.5 2 2.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

A =




1 1/2 1/5
1/2 2 1/3
1/5 1/3 3/2


 , λ(A) = { 0.7875, 1.3363, 2.3762 }
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Gershgorin’s Circle Theorem: Illustration 2 of 2
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Project Expectation and Deliverables Clarified

Solve a larger optimization problem (see e.g. the “examples of
past projects” handout from last time.

You can look at different types of methods; performance for
different test functions, etc... BEST: something relevant to
your thesis project.

Deliverables:
Project Proposal — 1 page, Due 11/16/2018
Presentation — 12–15 minutes, in-class (starting 12/10/2018)
email — presentation + code(s). (after presentation)
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Next...

Practical Newton Methods: Trust-Region Newton Methods

Calculating Derivatives: Finite Differencing & Automatic
Differentiation

Quasi-Newton Methods...
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Index

matrix norm
Euclidean, 10
Frobenius, 10

theorem
Gershgorin’s circle theorem, 17
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