Numerical Optimization

Lecture Notes \＃14
Practical Newton Methods－Hessian Modifications

Peter Blomgren，

〈blomgren．peter＠gmail．com〉

Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／
Fall 2018

Hessian Modifications －（1／22）

Hessian Modification

Robust Inexact Newton Methods

Quick Recap：Building Robust Inexact Newton Methods

We looked at combining a modified version of the linear CG－solver （or preferably a PCG（M）－solver）with a line－search algorithm to produce an almost＂unbreakable＂approximate Newton method．

The modification to the CG－solver comprise of an additional termination criterion for the case where the local Hessian （ $\left.\nabla^{2} f\left(\overline{\mathbf{x}}_{k}\right)\right)$ is not positive definite，and we get a CG－internal search direction for which $\overline{\mathbf{p}}^{T} \nabla^{2} f\left(\overline{\mathbf{x}}_{k}\right) \overline{\mathbf{p}} \leq 0$ ，i．e the search takes into a part of space with negative curvature．

The worst we do（in a particular iteration）is to take a steepest descent step．

Potential Outstanding Problem：$\overline{\mathbf{p}}^{T} \nabla^{2} f\left(\overline{\mathbf{x}}_{k}\right) \overline{\mathbf{p}}$ small and positive \rightsquigarrow long step．

Recap
－Robust Inexact Newton Methods

Hessian Modifications
－Eigenvalue Modification
－ $\mathbf{B}=\mathbf{A}+\tau \mathbf{I}$
－Gershgorin Modification

Quick Recap：Building Robust Inexact Newton Methods

We also discussed how to specify the forcing sequence $\left\{\eta^{(k)}\right\}$ for the tolerance termination criterion $\left(\left\|\overline{\mathbf{r}}_{k}\right\| \leq \eta^{(k)}\left\|\nabla f\left(\overline{\mathbf{x}}_{k}\right)\right\|\right)$ so that the overall convergence rate of the resulting algorithm is quadratic （when $B_{k}=\nabla^{2} f\left(x_{k}\right)$ ）or super－linear（when $B_{k} \approx \nabla^{2} f\left(x_{k}\right)$ ）．

We also hinted at a different approach to dealing with non－positive definite Hessians in the direct－linear－solver－framework－a modification of the Hessian $\left(\nabla^{2} f\left(\overline{\mathbf{x}}_{k}\right)+E_{k}\right)$ so that the resulting matrix is sufficiently positive definite；today we take a closer look at this approach．

We look at modifying the Hessian matrix $\nabla^{2} f\left(\overline{\mathbf{x}}_{k}\right)$ by either explicitly or implicitly adding a matrix E_{k}（usually a multiple of the identity matrix）so that the resulting matrix

$$
B_{k}=\nabla^{2} f\left(\bar{x}_{k}\right)+E_{k}
$$

is sufficiently positive definite（all the eigenvalues of B_{k} are bounded away from zero．）

There are a number of different approaches，we look at a few．．．
－Eigenvalue Modification
－Direct and Indirect modification of the Hessian

Hessian Modifications
Eigenvalue Modification
Hessian Modifications
$\mathrm{B}=\mathrm{A}+\tau \mathrm{I}$
Gershgorin Modification

Idea\＃1：Replace negative eigenvalues by some positive number δ ，e．g． $\delta=\sqrt{\epsilon^{\text {mach }}}$

In 32－bit double precision（and Matlab）$\epsilon^{\text {mach }} \approx 10^{-16}$ ，so $\delta=10^{-8}$ seems like a reasonable choice（？）We can express the Hessian modification as

$$
B_{k}=\sum_{i=1}^{2} \lambda_{i} \overline{\mathbf{q}}_{i} \overline{\mathbf{q}}_{i}^{T}+\delta \overline{\mathbf{q}}_{3} \overline{\mathbf{q}}_{3}^{T} \quad\left[=\sum_{i=1}^{n} \max \left(\lambda_{i}, \delta\right) \overline{\mathbf{q}}_{i} \overline{\mathbf{q}}_{i}^{T}\right]
$$

We now have

$$
B_{k}=\operatorname{diag}\left(10,3,10^{-8}\right) \Rightarrow \overline{\mathbf{p}} \approx\left[\begin{array}{r}
-0.1 \\
1 \\
-200,000,000
\end{array}\right]
$$

We notice that $\overline{\mathbf{p}}$ is approximately parallel to $\overline{\mathbf{q}}_{3}$ ，and huge．．．
Since $\nabla^{2} f\left(\overline{\mathbf{x}}_{k}\right)$ is symmetric we can always find an orthonormal matrix Q_{k} and a diagonal matrix $\Lambda_{k}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ so that（dropping the subscripts k ）

$$
\nabla^{2} f(\overline{\mathbf{x}})=Q \wedge Q^{T}=\sum_{i=1}^{n} \lambda_{i} \overline{\mathbf{q}}_{i} \overline{\mathbf{q}}_{i}^{T}
$$

For simplicity of argument，let us assume $Q=I$（we can get to this scenario by an appropriate change of variables．）

Example：

$$
\nabla f(\overline{\mathbf{x}})=\left[\begin{array}{r}
1 \\
-3 \\
2
\end{array}\right], \quad \nabla^{2} f(\overline{\mathbf{x}})=\operatorname{diag}(10,3,-1) \Rightarrow \overline{\mathbf{p}}^{N}=\left[\begin{array}{r}
-0.1 \\
1 \\
2
\end{array}\right]
$$

and $\nabla f(\overline{\mathbf{x}})^{T} \overline{\mathbf{p}}^{N}=0.90$ ，hence $\overline{\mathbf{p}}^{N}$ is not a descent direction． （continued．．．）

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Hessian Modifications

Eigenvalue Modification

The long step length violates the spirit of Newton＇s method－recall that the quadratic convergence properties come from a local argument with the Taylor expansion．
Idea\＃2：Replace negative eigenvalues by $-\lambda_{i}$
Now $B_{k}=\operatorname{diag}\left(\left|\lambda_{1}\right|,\left|\lambda_{2}\right|, \ldots,\left|\lambda_{n}\right|\right)$ ，and in our example we get

$$
\overline{\mathbf{p}}=\left[\begin{array}{r}
-0.1 \\
1 \\
-2
\end{array}\right], \quad \nabla f(\overline{\mathbf{x}})^{T} \overline{\mathbf{p}}=-7.1, \text { descent direction! }
$$

This seems to work？！？
It may reorder the eigenvalues（and thus the＂importance＂／ordering of subspaces），i．e．

$$
\lambda_{1}<\lambda_{2}<\lambda_{3}, \quad \text { but } \quad\left|\lambda_{2}\right|<\left|\lambda_{1}\right|<\left|\lambda_{3}\right| .
$$

Let＇s reconsider Idea\＃1，what went wrong？When we solve $B \overline{\mathbf{p}}=-\nabla f(\overline{\mathbf{x}})$ we get

$$
\overline{\mathbf{p}}=-B^{-1} \nabla f(\overline{\mathbf{x}})=-\sum_{i=1}^{2} \frac{1}{\lambda_{i}} \overline{\mathbf{q}}_{i}\left(\overline{\mathbf{q}}_{i}^{T} \nabla f(\overline{\mathbf{x}})\right)-\frac{1}{\delta} \overline{\mathbf{q}}_{3}\left(\overline{\mathbf{q}}_{3}^{\top} \nabla \mathbf{f}(\overline{\mathbf{x}})\right),
$$

it＇s clearly the right－most term that makes us violate the spirit of Newton＇s method．

We could simply just drop this term（i．e．ignore the subspace corresponding to negative eigenvalues），or

Select δ so that we ensure that the step length is not excessive （trust－region flavor！）．

Bad news：There is no accepted＂best＂way of modifying the Hessian in this manner．

Peter Blomgren，〈blomgren．peter＠gmail．com〉
Hessian Modifications
Eigenvalue Modification
Hessian Modifications

If we for a moment＂forget＂about the issue of selecting δ so that the step length is reasonable，we can ask the question＂what is the smallest change to A ，which gives us an positive definite matrix B ？＂

The answer depends on how we measure．．．Two standard measures are the Frobenius norm $\|A\|_{F}$ ，and the Euclidean norm $\|A\|$

$$
\|A\|_{F}^{2}=\sum_{i, j} a_{i j}^{2}, \quad\|A\|=\max _{\|\overrightarrow{\mathbf{x}}\|=1} \overline{\mathbf{x}}^{T} A \overline{\mathbf{x}}=\max |\operatorname{eig}(A)| .
$$

If we use the Frobenius norm，the smallest change is of the type＂change negative eigenvalues to small positive ones：＂

$$
B=A+\Delta A, \text { where } \Delta A=Q \operatorname{diag}\left(\tau_{i}\right) Q^{T}, \tau_{i}= \begin{cases}0 & \lambda_{i} \geq \delta \\ \delta-\lambda_{i} & \lambda_{i}<\delta\end{cases}
$$

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Hessian Modifications

	Hessian Modifications	Ceashroain
$\mathbf{B}=\mathbf{A}+\tau \mathbf{I}$		
In adding a multiple of the identity matrix，we identify a scalar τ so that		
$\tau=\max \left(0, \delta-\lambda_{\text {min }}(A)\right)$		

Usually we do not have access to $\lambda_{\text {min }}(A)$ ，so we have to use some clever heuristic to get an estimate and generate

$$
\begin{cases}\tau=0 & \text { if } \lambda_{\text {min }}(A) \geq \delta \\ \tau \geq \delta-\lambda_{\min }(A) & \text { if } \lambda_{\text {min }}(A)<\delta\end{cases}
$$

It is important not to select a value of τ that is unnecessarily large， since this biases the direction toward the steepest descent direction．

The following algorithm uses the fact that

$$
\left|\lambda_{i}\right| \leq\|A\|_{F}, \quad \forall i=1,2, \ldots, n
$$

it is quite expensive since a new factorization is attempted in each loop， further the generated τ may be unnecessarily large．

Algorithm

$\beta=\|A\|_{F}, \mathrm{k}=0$

$\operatorname{if}\left(\min \left(a_{i i}\right)>0\right)\left\{\tau_{0}=0\right\}$ else $\left\{\tau_{0}=\beta / 2\right\}$ endif
while（ $k<$ maxiter ）
ATTEMPT（Incomplete）Cholesky Factorization
$L L^{T}=A+\tau_{k} l$
if（ successful＿factorization ），return（L）
else，$\tau_{\mathbf{k}+1}=\max \left(2 \tau_{\mathbf{k}}, \beta / 2\right)$
endif
end（while）

If we want to require that the matrix $L D L^{T}$ is sufficiently positive definite，we simply modify the elements d_{j} ：

$$
\mathbf{d}_{\mathbf{j}}=\mathbf{c}_{\mathrm{ij}} \quad \rightarrow \quad \mathbf{d}_{\mathbf{j}}=\max \left(\mathbf{c}_{\mathrm{ij}}, \delta\right)
$$

Usually，we also want to have a bound on the size of the off－diagonal entries of $M=L D^{1 / 2}$ ，i．e．$\left|m_{i j}\right| \leq \beta(i>j)$ ，we set

$$
\theta_{j}=\max _{j<i \leq n}\left|c_{i j}\right|
$$

and let

$$
d_{j}=c_{j j} \quad \rightarrow \quad d_{j}=\max \left(c_{j j}, \delta,\left[\frac{\theta_{j}}{\beta}\right]^{2}\right)
$$

we have

$$
\left|m_{i j}\right|=\left|\iota_{i j} \sqrt{d_{j}}\right|=\frac{\left|c_{i j}\right|}{\sqrt{d_{j}}} \leq \frac{\left|c_{i j}\right| \beta}{\theta_{j}} \leq \beta
$$

It is more efficient to let the Cholesky factorization routine directly modify the matrix A so that the factorization succeeds．

What can go wrong in Cholesky factorization？

We look at the Cholesky factorization in $L D L^{T}$－form－set $M=L D^{1 / 2}$ to get to $M M^{T}$ form．

Algorithm：Cholesky Factorization，$L D L^{T}$－form

for $\mathrm{j}=1: \mathrm{n}$

$$
\begin{aligned}
& c_{j j}=a_{j j}-\sum_{s=1}^{j-1} d_{s} l_{j s}^{2} \\
& \mathrm{~d}_{\mathrm{j}}=\mathrm{c}_{\mathrm{ij}} \\
& \text { for } \mathrm{i}=(\mathrm{j}+1): \mathrm{n} \\
& \quad c_{i j}=a_{i j}-\sum_{s=1}^{j-1} d_{s} l_{i s} l_{j s} \\
& \quad l_{i j}=c_{i j} / \mathrm{d}_{\mathrm{j}} \\
& \text { end }
\end{aligned}
$$

end

Peter Blomgren，〈blomgren．peter＠gmail．com〉		Hessian Modifications	－（14／22）
	Recap Hessian Modifications	Eigenvalue Modification $\mathbf{B}=\mathbf{A}+\tau \mathbf{l}$ Gershgorin Modification	
$\mathbf{B}=\mathbf{A}+\operatorname{diag}\left(\overline{\mathbf{d}}^{\text {add }}\right)$	－Modifying	lesky	5 of 5

Finally，we throw in an absolute value on the $c_{j j}$ term for good measure， and come up with

$$
d_{j}=\max \left(\left|c_{j j}\right|, \delta,\left[\frac{\theta_{j}}{\beta}\right]^{2}\right), \quad d_{j}^{\text {add }}=d_{j}-c_{j j}
$$

This exactly what the module choldecomp（）in the old default project does！（With some modifications for computational efficiency－the algorithm generates the factorization directly in $L L^{T}$－form）

Theorem（Gershgorin＇s circle theorem）

tells us where the eigenvalues of a matrix are located：

$$
\left|\lambda_{i}-a_{i i}\right| \leq \sum_{j \neq i}\left|a_{i j}\right|, \quad i=1, \ldots, n .
$$

Now given a matrix A ，let \mathbf{b}_{1} be the smallest value which makes $A+b_{1} l$ positive definite from the Gershgorin circle theorem．

Let $\mathbf{b}_{2}=$ maxadd from choldecomp（），and let $\mu=\min \left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)$ ．Now $A+\mu I$ is guaranteed to be positive definite．

This is essentially modelhess（）．In addition modelhess（）returns the $L L^{T}$－decomposition of $A+\mu I$ ，and there are tests prior to the first call to choldecomp（）which takes care of negative diagonal elements of A and large eff－diagonal elements of A

Note that modelhess（）is similar to the algorithm on slide \＃13，but requires at most two calls to a Cholesky factorization algorithm．

Eigenvalue Modification Gershgorin Modification

Gershgorin＇s Circle Theorem：Illustration

Gershgorin＇s Theorem for hilb（20）

Hessian Modifications

Eigenvalue Modification
Gershgorin Modification

$$
A=\left[\begin{array}{ccc}
1 & 1 / 2 & 1 / 5 \\
1 / 2 & 2 & 1 / 3 \\
1 / 5 & 1 / 3 & 3 / 2
\end{array}\right], \quad \lambda(A)=\{0.7875,1.3363,2.3762\}
$$

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Hessian Modifications
Eigenvalue Modification
Gershgorin Modification
Project Expectation and Deliverables

Gershgorin＇s Theorem for hilb（12）

－Practical Newton Methods：Trust－Region Newton Methods
－Calculating Derivatives：Finite Differencing \＆Automatic Differentiation
－Quasi－Newton Methods．．．
matrix norm
Euclidean， 10
Frobenius， 10
theorem
Gershgorin＇s circle theorem， 17

