

SAN DIEGO STAT UNIVERSITY

- (3/22)

direction for which $\mathbf{\bar{p}}^T \nabla^2 f(\mathbf{\bar{x}}_k) \mathbf{\bar{p}} \leq 0$, *i.e* the search takes into a part of space with negative curvature.

The worst we do (in a particular iteration) is to take a steepest descent step.

Potential Outstanding Problem: $\mathbf{\bar{p}}^T \nabla^2 f(\mathbf{\bar{x}}_k)\mathbf{\bar{p}}$ small and positive \rightsquigarrow long step.

We also hinted at a different approach to dealing with non-positive definite Hessians in the direct-linear-solver-framework — a modification of the Hessian $(\nabla^2 f(\bar{\mathbf{x}}_k) + E_k)$ so that the resulting matrix is sufficiently positive definite; today we take a closer look at this approach.

Recap Hessian Modifications	Eigenvalue Modification B = $A + \tau I$ Gershgorin Modification	Recap Eigenvalue Modification Hessian Modifications B = A + \(\tau\)I Gershgorin Modification	
Hessian Modifications	Old Default Project: modelhes	s⊖ Eigenvalue Modification	1 of 6
We look at modifying the Hessian matrix $\nabla^2 f(\bar{\mathbf{x}}_k)$ by either explicitly or implicitly adding a matrix E_k (usually a multiple of the identity matrix) so that the resulting matrix $B_k = \nabla^2 f(\bar{\mathbf{x}}_k) + E_k$		Since $\nabla^2 f(\mathbf{\bar{x}}_k)$ is symmetric we can always find an orthonormal matrix Q_k and a diagonal matrix $\Lambda_k = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ so that (dropp the subscripts k) $\nabla^2 f(\mathbf{\bar{x}}) = Q\Lambda Q^T = \sum_{i=1}^n \lambda_i \mathbf{\bar{q}}_i \mathbf{\bar{q}}_i^T$.	trix ing
is sufficiently positive definite (all the eigenvalues of B_k are bounded away from zero.)		For simplicity of argument, let us assume $Q = I$ (we can get to the scenario by an appropriate change of variables.)	5
 There are a number of different approaches, we look at a few Eigenvalue Modification Direct and Indirect modification of the Mession 		$\nabla f(\bar{\mathbf{x}}) = \begin{bmatrix} 1\\ -3\\ 2 \end{bmatrix}, \ \nabla^2 f(\bar{\mathbf{x}}) = \operatorname{diag}(10, 3, -1) \ \Rightarrow \ \bar{\mathbf{p}}^N = \begin{bmatrix} -0.1\\ 1\\ 2 \end{bmatrix}$	
		and $\nabla f(\mathbf{\bar{x}})^T \mathbf{\bar{p}}^N = 0.90$, hence $\mathbf{\bar{p}}^N$ is not a descent direction . (continued)	San Dieco State University
Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Hessian Modifications — (5/2	2) Peter Blomgren, (blomgren.peter@gmail.com) Hessian Modifications	— (6/22)
Recap Hessian Modifications	Eigenvalue Modification B = A + τ I Gershgorin Modification	$\begin{array}{c} \text{Recap} \\ \text{Hessian Modifications} \\ \text{B} = \text{A} + \tau \text{I} \\ \text{Gershgorin Modification} \end{array}$	
Eigenvalue Modification	2 o	f 6 Eigenvalue Modification	3 of 6
Idea#1: Replace negative eigenvalues by some positive number δ , <i>e.g.</i> $\delta = \sqrt{\epsilon^{\text{mach}}}$		The long step length violates the spirit of Newton's method — rec the quadratic convergence properties come from a local argument	all that with

SAN DIEGO STATE UNIVERSITY

- (7/22)

In 32-bit double precision (and Matlab) $\epsilon^{
m mach} pprox 10^{-16}$, so $\delta = 10^{-8}$ seems like a reasonable choice(?) We can express the Hessian modification as

$$B_k = \sum_{i=1}^{2} \lambda_i \bar{\mathbf{q}}_i \bar{\mathbf{q}}_i^{T} + \delta \bar{\mathbf{q}}_3 \bar{\mathbf{q}}_3^{T} \quad \left[= \sum_{i=1}^{n} \max(\lambda_i, \delta) \bar{\mathbf{q}}_i \bar{\mathbf{q}}_i^{T} \right]$$

We now have

$$B_k = ext{diag}(10, 3, 10^{-8}) \ \Rightarrow \ ar{\mathbf{p}} pprox \left[egin{array}{c} -0.1 \ 1 \ -200, 000, 000 \end{array}
ight]$$

We notice that $\mathbf{\bar{p}}$ is approximately parallel to $\mathbf{\bar{q}}_3$, and huge...

the Taylor expansion.

Idea#2: Replace negative eigenvalues by $-\lambda_i$

Now $B_k = \text{diag}(|\lambda_1|, |\lambda_2|, \dots, |\lambda_n|)$, and in our example we get

$$\mathbf{\bar{p}} = \begin{bmatrix} -0.1 \\ 1 \\ -2 \end{bmatrix}, \quad \nabla f(\mathbf{\bar{x}})^{T} \mathbf{\bar{p}} = -7.1, \text{ descent direction!}$$

This seems to work?!?

It may reorder the eigenvalues (and thus the "importance" / ordering of subspaces), *i.e.*

$$\lambda_1 < \lambda_2 < \lambda_3, \quad \text{but} \quad |\lambda_2| < |\lambda_1| < |\lambda_3|.$$

۴ı

Recap Hessian ModificationsEigenvalue Modification $B = A + \tau I$ Gershgorin Modification	Recap Eigenvalue Modification Hessian Modifications B = A + \(\tau\) I Gershgorin Modification	
Eigenvalue Modification 4 of 6	Eigenvalue Modification 5 of 6	
Let's reconsider Idea#1, what went wrong? When we solve $B\mathbf{\bar{p}} = -\nabla f(\mathbf{\bar{x}})$ we get $\mathbf{\bar{p}} = -B^{-1}\nabla f(\mathbf{\bar{x}}) = -\sum_{i=1}^{2} \frac{1}{\lambda_{i}} \mathbf{\bar{q}}_{i}(\mathbf{\bar{q}}_{i}^{T} \nabla f(\mathbf{\bar{x}})) - \frac{1}{\delta} \mathbf{\bar{q}}_{3}(\mathbf{\bar{q}}_{3}^{T} \nabla \mathbf{f}(\mathbf{\bar{x}})),$	If we for a moment "forget" about the issue of selecting δ so that the step length is reasonable, we can ask the question "what is the smallest change to A , which gives us an positive definite matrix B ?" The answer depends on how we measure Two standard measures are the Frobenius norm $ A _F$, and the Euclidean norm $ A $	
it's clearly the right-most term that makes us violate the spirit of Newton's method.	$\ A\ _F^2 = \sum_{i,j} a_{ij}^2, \ A\ = \max_{\ \bar{\mathbf{x}}\ =1} \bar{\mathbf{x}}^T A \bar{\mathbf{x}} = \max \operatorname{eig}(A) .$	
We could simply just drop this term (<i>i.e.</i> ignore the subspace corresponding to negative eigenvalues), or Select δ so that we ensure that the step length is not excessive (trust-region flavor!). Bad news: There is no accepted "best" way of modifying the Hessian in this manner	If we use the Frobenius norm, the smallest change is of the type "change negative eigenvalues to small positive ones:" $B = A + \Delta A, \text{ where } \Delta A = Q \operatorname{diag}(\tau_i) Q^T, \ \tau_i = \begin{cases} 0 & \lambda_i \ge \delta \\ \delta - \lambda_i & \lambda_i < \delta \end{cases}$	
SNN DIEGO STATE UNIVERSITY	SAN DIEGO STATE UNIVERSITY	
Peter Biomgren, (blomgren.peter@gmail.com) Hessian Modifications — (9/22) Recap Eigenvalue Modification B = A + τ I Gershgorin Modification	Peter Biomgren, (blomgren.peter@gmail.com) Hessian Modifications — (10/22) Recap Hessian Modifications $B = A + \tau I$ Gershgorin Modification Gershgorin Modification	
Eigenvalue Modification 6 of 6	$\mathbf{B} = \mathbf{A} + \tau \mathbf{I} $ 1 of 5	
If, on the other hand, we use the Euclidean norm the smallest change includes a multiple of the identity matrix, <i>i.e.</i> "shift the eigenvalue spectrum, so all eigenvalues are positive:"	In adding a multiple of the identity matrix, we would like to identify a scalar $ au$ so that	

San Diego Stati University

(11/22)

$$au = \max\left(0,\,\delta - \lambda_{\mathsf{min}}(\mathcal{A})
ight)$$

Usually we do not have access to $\lambda_{\min}(A)$, so we have to use some clever heuristic to get an estimate and generate

$$\left\{ egin{array}{ll} au &= 0 & ext{if } \lambda_{\min}(A) \geq \delta \ au &\geq \delta - \lambda_{\min}(A) & ext{if } \lambda_{\min}(A) < \delta \end{array}
ight.$$

It is important not to select a value of τ that is unnecessarily large, since this biases the direction toward the steepest descent direction.

rely on an exact spectral decomposition (full computation of the eigenvalues) of the Hessian, but use a cousin of Gaussian Elimination

(usually the Cholesky factorization) which allows introduction of

 $B = A + \Delta A$, where $\Delta A = \tau I$, $\tau = \max(0, \delta - \lambda_{\min}(A))$

"Nearly exact solutions to the subproblem" for trust-region methods

Both constant-diagonal — τI — and "Frobenius-style" — $Q \operatorname{diag}(\tau_i) Q^T$ — modifications are used in production software. Generally they do not

We recognize this type of modification to A from our discussion on

(Lecture #9)...

modifications indirectly.

Ê SAN DIEGO STAT

(15/22)

$$\mathbf{d}_{\mathbf{j}} = \mathbf{c}_{\mathbf{j}\mathbf{j}} \quad \rightarrow \quad \mathbf{d}_{\mathbf{j}} = \max(\mathbf{c}_{\mathbf{j}\mathbf{j}}, \delta)$$

Usually, we also want to have a bound on the size of the off-diagonal entries of $M = LD^{1/2}$, *i.e.* $|m_{ii}| \leq \beta$ (i > j), we set

$$\theta_j = \max_{j < i \le n} |c_{ij}|$$

and let

 $d_j = c_{jj} \quad o \quad d_j = \max\left(c_{jj}, \delta, \left[rac{ heta_j}{eta}
ight]^2
ight)$

we have

$$|m_{ij}| = |I_{ij}\sqrt{d_j}| = rac{|c_{ij}|}{\sqrt{d_i}} \leq rac{|c_{ij}|eta}{ heta_j} \leq eta.$$

and come up with

$$d_{j} = \max\left(|c_{jj}|, \, \delta, \, \left[rac{ heta_{j}}{eta}
ight]^{2}
ight), \quad d_{j}^{\, \mathrm{add}} = d_{j} - c_{jj}$$

This exactly what the module choldecomp() in the old default project does! (With some modifications for computational efficiency - the algorithm generates the factorization directly in LL^{T} -form)

auit Project		
choldecomp()		
Theory (here)		
β		
$\sqrt{\delta}$		
$\max(\operatorname{diag}(\overline{\mathbf{d}}^{\operatorname{add}}))$		

Peter Blomgren, blomgren.peter@gmail.com **Hessian Modifications** (16/22)

SAN DIEGO S

