

The Trust-region framework does not require that the model Hessian is positive definite.

It is possible to use the exact Hessian $B_k = \nabla^2 f(\bar{\mathbf{x}}_k)$ directly and find the search direction $\mathbf{\bar{p}}_k$ by solving the trust-region subproblem

$$\min_{\bar{\mathbf{p}}\in\mathbb{R}^n} f(\bar{\mathbf{x}}_k) + \nabla f(\bar{\mathbf{x}}_k)^T \bar{\mathbf{p}} + \frac{1}{2} \bar{\mathbf{p}}^T B_k \bar{\mathbf{p}}, \quad \|\bar{\mathbf{p}}\| \leq \Delta_k$$

Some of the techniques we discussed, e.g. dogleg, require that B_k is positive definite.

Newton-Dogleg Newton-2D-Subspace-Minimization Newton-Iterative "Nearly Exact" Solution Trust-Region Newton-(P)CG

Review + Add Hessian Modifications and/or CG-solvers

We have seen quite few ideas floating around, lets review what we have seen in the context of our methods:

- the dogleg method, (i)
- 2D-subspace minimization, (ii)
- nearly exact solution, and (iii)
- the CG method. (iv)

The goal is to improve the methods and remove as many restrictions as possible.

		San Diego State University			SAN DIEGO STATE UNIVERSITY
Peter Blomgren, <pre> <b< th=""><th>Trust-Region Newton Methods</th><th>— (5/21)</th><th>Peter Blomgren, {blomgren.peter@gmail.com}</th><th>Trust-Region Newton Methods</th><th>— (6/21)</th></b<></br></br></pre>	Trust-Region Newton Methods	— (5/21)	Peter Blomgren, {blomgren.peter@gmail.com}	Trust-Region Newton Methods	— (6/21)
Recap Trust-Region Newtor			Recap Trust-Region Newton	Newton-Dogleg Newton-2D-Subspace-Minimization Newton-Iterative "Nearly Exact" Solution Trust-Region Newton-(P)CG	
Newton-Dogleg "New	ton" $\Rightarrow B_k = \nabla^2 f(x_k)$	1 of 2	Newton-Dogleg	Convexification	2 of 2

- (7/21)

When B_k is positive definite the dogleg method — minimizing the model over the **dogleg path**

$$ilde{ar{p}}(au) = \left\{ egin{array}{cc} au \, ar{f p}^U_k & 0 \leq au \leq 1 \ ar{f p}^U_k + (au-1)(ar{f p}^B_k - ar{f p}^U_k) & 1 \leq au \leq 2 \end{array}
ight.$$

where

$$\underbrace{\mathbf{\bar{p}}_{k}^{B} = -B_{k}^{-1}\nabla f(\mathbf{\bar{x}}_{k})}_{\text{The Full Step}}, \quad \underbrace{\mathbf{\bar{p}}_{k}^{U} = -\frac{\nabla f(\mathbf{\bar{x}}_{k})^{T}\nabla f(\mathbf{\bar{x}}_{k})}{\nabla f(\mathbf{\bar{x}}_{k})^{T}B_{k}\nabla f(\mathbf{\bar{x}}_{k})}\nabla f(\mathbf{\bar{x}}_{k})}_{\text{The unconstrained minimum of the quadratic model}}$$

along the steepest descent direction

gives good approximate solutions to the trust-region subproblems which can be computed efficiently.

However, when B_k is not positive definite we cannot safely compute $\mathbf{\bar{p}}_{k}^{B}$, further the denominator $\nabla f(\mathbf{\bar{x}}_{k})^{T}B_{k}\nabla f(\mathbf{\bar{x}}_{k})$ could be zero... Subjurgative

Trust-Region Newton Methods

In order to make the dogleg method work for non-positive definite B_k s we can use the Hessian modification from last time to replace

$$B_k
ightarrow \underbrace{(B_k + E_k)}_{\text{Pos.Def}}$$

and use this matrix in the dogleg solution.

There is a price to pay. When the matrix B_k is modified, the importance of different directions are potentially changed in different ways, and the 1D-path (approximating the optimal path) is moved in nD-space. This may negatively impact the benefits of the trust-region approach.

Modifications of the type $E_k = \tau I$ behave somewhat more predictably than modifications of the type $E_k = \text{diag}(\tau_1, \tau_2, \ldots, \tau_n)$.

Usage of the dogleg method for non-convex problems is somewhat dicey, and even though it may work it is not the preferred method. SAN DIEGO ST UNIVERSIT

Recan **Trust-Region Newton**

Newton-Dogleg Newton-2D-Subspace-Minimization Newton-Iterative "Nearly Exact" Solution Trust-Region Newton-(P)CG

Newton-2D-Subspace-Minimization

In much the same way we modified the dogleg method, we can adapt the 2D-subspace minimization subproblem to work in the case of indefinite B_k

$$\min_{\bar{\mathbf{p}}\in\mathbb{R}^n} f(\bar{\mathbf{x}}_k) + \nabla f(\bar{\mathbf{x}}_k)^T \bar{\mathbf{p}} + \frac{1}{2} \bar{\mathbf{p}}^T B_k \bar{\mathbf{p}}, \quad \|\bar{\mathbf{p}}\| \leq \Delta_k, \quad \bar{\mathbf{p}} \in \operatorname{span}(\nabla f(\bar{\mathbf{x}}_k), \bar{\mathbf{p}}^B)$$

can be applied when B_k is positive definite, and with a modified $\tilde{B}_k = (B_k + E_k)$ which is positive definite in the case when B_k is not positive definite:

$$\min_{\bar{\mathbf{p}}\in\mathbb{R}^n} f(\bar{\mathbf{x}}_k) + \nabla f(\bar{\mathbf{x}}_k)^T \bar{\mathbf{p}} + \frac{1}{2} \bar{\mathbf{p}}^T \tilde{B}_k \bar{\mathbf{p}}, \quad \|\bar{\mathbf{p}}\| \leq \Delta_k, \quad \bar{\mathbf{p}} \in \mathsf{span}(\nabla f(\bar{\mathbf{x}}_k), \bar{\mathbf{p}}^{\tilde{B}})$$

The 2D-subspace method is only marginally more "expensive" (per iteration) than the dogleg approach; it is however more robust with respect to Hessian modification.

Trust-Region Newton Methods - (9/21) Trust-Region Newton Methods Peter Blomgren, (blomgren.peter@gmail.com) **Peter Blomgren**, (blomgren.peter@gmail.com) . . . Newton-Dogleg Newton-2D-Subspace-Minimization Recap **Trust-Region Newton** Newton-Iterative "Nearly Exact" Solution Trust-Region Newton-(P)CG

Ê

SAN DIEGO STATE

Êı

SAN DIEGO STA UNIVERSITY - (11/21)

The trust-region subproblem

Trust-Region Newton-CG

$$\min_{\bar{\mathbf{p}}\in\mathbb{R}^n} f(\bar{\mathbf{x}}_k) + \nabla f(\bar{\mathbf{x}}_k)^T \bar{\mathbf{p}} + \frac{1}{2} \bar{\mathbf{p}}^T B_k \bar{\mathbf{p}}, \quad \|\bar{\mathbf{p}}\| \leq \Delta_k,$$

can be solved using the [Preconditioned] Conjugate Gradient ([P]CG) method, with two additional termination criteria (one of which we have seen already).

For each subproblem we must solve

$$B_k \mathbf{\bar{p}}_k = -\nabla f(\mathbf{\bar{x}}_k)$$

We apply CG with the following stopping criteria

(standard) The system has been solved to desired accuracy.

(previous) Negative curvature encountered.

(new) Size of the approximate solution exceeds the trust-region radius.

Newton-Dogleg Recan Trust-Region Newton

Newton-2D-Subspace-Minimization Newton-Iterative "Nearly Exact" Solution Trust-Region Newton-(P)CG

Iterative "Nearly Exact" Solution of the Trust-Region Subproblem

Recall the characterization of the exact solution, from lecture #9:

Theorem

The vector $\mathbf{\bar{p}}^*$ is a global solution of the trust-region problem

$$\min_{\bar{\mathbf{p}}\|\leq\Delta_k} f(\bar{\mathbf{x}}_k) + \bar{\mathbf{p}}^T \nabla f(\bar{\mathbf{x}}_k) + \frac{1}{2} \bar{\mathbf{p}}^T B_k \bar{\mathbf{p}}$$

if and only if $\mathbf{\bar{p}}^*$ is feasible and there is a scalar $\lambda \geq 0$ such that the following conditions are satisfied:

1.
$$(B_k + \lambda I) \bar{\mathbf{p}}^* = -\nabla f(\bar{\mathbf{x}}_k)$$

2. $\lambda (\Delta_k - \|\bar{\mathbf{p}}^*\|) = 0$
3. $(B_k + \lambda I)$ is positive semi-definite

This approach is already using the Hessian modification in the "Euclidian" form $E_k = \lambda I$, good for "small problems."

SAN DIEGO S UNIVERSIT

on	Recap Trust-Region Newton	Newton-2D-Subspace-Minimization Newton-Iterative "Nearly Exact" Solution Trust-Region Newton-(P)CG	
1 of 4	Trust-Region Newton-CG	Steihaug's Method	2 of 4

In the case of *negative curvature* we follow the direction to the boundary of the trust region; we get Steihaug's Method

Algorithm: CG-Steihaug

```
Given \epsilon > 0; set \mathbf{\bar{p}}_0 = 0, \mathbf{\bar{r}}_0 = \nabla f(\mathbf{\bar{x}}_k), \mathbf{\bar{d}}_0 = -\mathbf{\bar{r}}_0
if( \|\mathbf{\bar{r}}_0\| < \epsilon ) return(\mathbf{\bar{p}}_0)
while( TRUE )
      if( \mathbf{\bar{d}}_i^T B \mathbf{\bar{d}}_i \leq 0 ) % Negative Curvature
           Find \tau \geq 0 such that \bar{\mathbf{p}} = \bar{\mathbf{p}}_i + \tau \bar{\mathbf{d}}_i satisfies \|\bar{\mathbf{p}}\| = \Delta
           return(p)
      endif
     \overline{\alpha_i} = \overline{\mathbf{r}}_i^T \overline{\mathbf{r}}_i / \overline{\mathbf{d}}_i^T B \overline{\mathbf{d}}_j, \ \overline{\mathbf{p}}_{i+1} = \overline{\mathbf{p}}_j + \alpha_j \overline{\mathbf{d}}_j
     if ( \|\mathbf{\tilde{p}}_{i+1}\| \ge \Delta ) % Step outside trust region
           Find \tau > 0 such that \mathbf{\bar{p}} = \mathbf{\bar{p}}_i + \tau \mathbf{\bar{d}}_i satisfies \|\mathbf{\bar{p}}\| = \Delta
           return(\mathbf{\bar{p}})
      endif
      \overline{\mathbf{r}}_{i+1} = \overline{\mathbf{r}}_i + \alpha_i B \overline{\mathbf{d}}_i
      if \|\mathbf{\bar{r}}_{i+1}\| \leq \epsilon \|\mathbf{\bar{r}}_0\| ) return(\mathbf{\bar{p}}_{i+1})
      \beta_{j+1} = \overline{\mathbf{r}}_{j+1}^T \overline{\mathbf{r}}_{j+1} / \overline{\mathbf{r}}_j^T \overline{\mathbf{r}}_j, \ \overline{\mathbf{d}}_{j+1} = -\overline{\mathbf{r}}_{j+1} + \beta_{j+1} \overline{\mathbf{d}}_j
                                                                                                                                                                                                                                        Å
end-while
```

Recap Newton Trust-Region Newton

When we get close to the optimum, the trust-region constraint becomes

inactive (the model becomes a good approximation of the objective, and

Good properties of TR-Newton-CG: **Globally convergent**, the first step in the $-\nabla f(\bar{\mathbf{x}}_k)$ direction identifies the Cauchy point, the subsequent

Advantages over LS-Newton-CG: Step lengths are controlled by the

At this juncture, we need to pay particular attention to how the ϵ in CG-Steihaug is selected. It should be given by the forcing sequence $\{\eta_k\}$

which gives us quadratic convergence, *i.e.* $\epsilon \sim \|\nabla f(\mathbf{\bar{x}}_k)\|$.

steps improve on $\mathbf{\bar{p}}^{c}$. No matrix factorizations are necessary.

trust region. Directions of negative curvature are **explored**.

Newton-Dogleg Newton-2D-Subspace-Minimization Newton-Iterative "Nearly Exact" Solution Trust-Region Newton-(P)CG

Trust-Region Newton-CG

the radius of the trust-region grows).

3 of 4

Recap Trust-Region Newton Newton-Dogleg Newton-2D-Subspace-Minimization Newton-Iterative "Nearly Exact" Solution Trust-Region Newton-(P)CG

4 of 4

Trust-Region Newton-CG

Room for Improvement: Any direction of negative curvature is accepted — the accepted direction can give an insignificant reduction in the model.

There is an extension of CG known as **Lanczos method**, and it is possible to build a TR-Newton-Lanczos algorithm which does not terminate when encountering the *first* direction of curvature, but continues to search for a direction of *sufficient negative curvature*.

TR-Newton-Lanczos is more robust, but comes at a cost of a more expensive solution of the subproblem.

We leave the discussion of the Lanczos algorithm to Math 643 (to be offered in \sim Spring 2049).

		SAN DIEGO STATE University			SAN DIEGO STATE University
Peter Blomgren, <code>{blomgren.peter@gmail.com}</code>	Trust-Region Newton Methods	— (13/21)	Peter Blomgren, <pre> blomgren.peter@gmail.com</pre>	Trust-Region Newton Methods	— (14/21)
Recap Trust-Region Newton	Newton-Dogleg Newton-2D-Subspace-Minimization Newton-Iterative "Nearly Exact" Solution Trust-Region Newton-(P)CG		Recap Trust-Region Newton	Newton-Dogleg Newton-2D-Subspace-Minimization Newton-Iterative "Nearly Exact" Solution Trust-Region Newton-(P)CG	
Trust-Region Newton-PCG(M)		1 of 5	Trust-Region Newton-PCG(M)		2 of 5

- (15/21)

As we have seen in other (very similar) settings, adding preconditioning to the CG-solver can cut the number of iterations quite drastically.

It would seem like a good (and natural) idea to add preconditioning to the Trust-Region Newton-CG scheme.

We have to be a little careful... For the standard CG-Steihaug, the following is true $% \left(\mathcal{A}_{n}^{\prime}\right) =\left(\mathcal{A}_{n}^{\prime}\right) \left(\mathcal{A}_{n}$

Theorem

The sequence of vectors generated by CG-Steihaug satisfies

 $0 = \|\bar{\mathbf{p}}_0\|_2 < \|\bar{\mathbf{p}}_1\|_2 < \dots < \|\bar{\mathbf{p}}_j\|_2 < \|\bar{\mathbf{p}}_{j+1}\|_2 < \dots \|\bar{\mathbf{p}}\|_2 \le \Delta$

This does not hold for preconditioned PCG(M)-Steihaug. This means that the sequence can leave the trust region, and then come back!

It is possible to define a weighed norm in which the PCG(M) iterates grow monotonically — this weighted norm depends on the preconditioner.

If we express the preconditioning of B_k in terms of a non-singular matrix D, which guarantees that the eigenvalues of $D^{-T}B_kD^{-1}$ have a favorable distribution, when the subproblem takes the form

$$\min_{\bar{\mathbf{p}}\in\mathbb{R}^n} f(\bar{\mathbf{x}}_k) + \nabla f(\bar{\mathbf{x}}_k)^T \bar{\mathbf{p}} + \frac{1}{2} \bar{\mathbf{p}}^T B_k \bar{\mathbf{p}}, \quad \|\mathbf{D}\bar{\mathbf{p}}\| \leq \Delta_k$$

if we formally make the change of variables $\widehat{\mathbf{p}} = D\overline{\mathbf{p}}$, and set $\widehat{\mathbf{g}}_k = D^{-T} \nabla f(\overline{\mathbf{x}}_k)$, $\widehat{B}_k = D^{-T} B_k D^{-1}$, the subproblem transform into

$$\min_{\mathbf{\bar{s}}\in\mathbb{R}^n}f(\mathbf{\bar{x}}_k)+\widehat{\mathbf{g}}_k^T\widehat{\mathbf{p}}+\frac{1}{2}\widehat{\mathbf{p}}^T\widehat{B}_k\widehat{\mathbf{p}},\quad \|\widehat{\mathbf{p}}\|\leq\Delta_k$$

to which we can apply CG-Steihaug.

Peter Blomgren, {blomgren.peter@gmail.com}

Trust-Region Newton Methods

— (16/21)

SAN DIEGO

Newton-Dogleg
Newton-2D-Subspace-Minimization
Newton-Iterative "Nearly Exact" Solut
Trust-Region Newton-(P)CG

Trust-Region Newton-PCG(M)

As usual, we never make this change of variables explicitly. Instead the CG-Steihaug algorithm is modified so that the wherever we have a multiplication by D^{-1} or D^{-T} we solve the appropriate linear system.

Note, if $D^{-T}B_kD^{-1} = I$ the preconditioning is perfect. Usually

Recap

Trust-Region Newton

$$D^{-T}B_kD^{-1}=I+E$$

and if we multiply by D^{T} from the left and D from the right we see

$$B_k = \underbrace{D^T D}_M + \underbrace{D^T E D}_R$$

So that $M \approx B_k$, and R captures the "inexactness" of the preconditioning.

3 of 5

ion

4 of 5

SAN DIEGO STA

Trust-Region Newton-PCG(M)

We can get a good general-purpose preconditioner by using a variant of the Cholesky factorization, $LL^T = B_k$.

We have discussed two ideas in connection with the Cholesky factorization — last time, we talked about how to **modify** it to get an approximate factorization of an indefinite matrix, *i.e.*

$$[L, L^{T}] = \begin{cases} \text{choldecomp}(B_k) = \text{cholesky}(B_k + \text{diag}(\tau_1, \tau_2, \dots, \tau_n)) \\ \text{modelhess}(B_k) = \text{cholesky}(B_k + \lambda I) \end{cases}$$

We have also (in general terms) talked about the **incomplete Cholesky factorization**, which preserves the sparsity pattern of B_k by not allowing fill-ins.

Putting the two together we get something like the algorithm on the next slide... (do not implement this one!)

SAN DIEGO STATE

Newton-Dogleg Newton-2D-Subspace-Minimization Newton-Iterative "Nearly Exact" Solution Trust-Region Newton-(P)CG

Index

Reference(s):

Steihaug, Trond. The conjugate gradient method and trust regions in large scale optimization. SIAM Journal on Numerical Analysis 20, no.3 (1983): 626–637.

Recap

Trust-Region Newton

• Nicholas IM Gould, Stefano Lucidi, Massimo Roma, and Philippe L. Toint. *Solving the trust-region subproblem using the Lanczos method*. SIAM Journal on Optimization 9, no. 2 (1999): 504–525.

Peter Blomgren, blomgren.peter@gmail.com

Trust-Region Newton Methods

— (21/21)

SAN DIEGO STATE UNIVERSITY