Numerical Optimization

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Fall 2018

Peter Blomgren, (blomgren.peter@gmail.com)

Trust-Region Newton Methods

— (1/21)

Recap Trust-Region Newton Hessian Modifications Trust Region Algorithm

Hessian Modifications

We discussed strategies for modifying the Hessian in order to make it positive definite:

If we use the Frobenius matrix norm, the smallest change is of the type "change negative eigenvalues to small positive ones:"

$$B = A + \Delta A$$
, where $\Delta A = Q \operatorname{diag}(\tau_i) Q^T$, $\tau_i = \left\{ egin{array}{ll} 0 & \lambda_i \geq \delta \\ \delta - \lambda_i & \lambda_i < \delta. \end{array}
ight.$

If, on the other hand, we use the Euclidean norm the smallest change is a multiple of the identity matrix, *i.e.* "shift the eigenvalue spectrum, so all eigenvalues are positive:"

$$B = A + \Delta A$$
, where $\Delta A = \tau I$, $\tau = \max(0, \delta - \lambda_{\min}(A))$.

Outline

- Recap
 - Hessian Modifications
 - Trust Region Algorithm
- 2 Trust-Region Newton
 - Newton-Dogleg
 - Newton-2D-Subspace-Minimization
 - Newton-Iterative "Nearly Exact" Solution
 - Trust-Region Newton-(P)CG

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

Trust-Region Newton Methods

— (2/21)

Recap Trust-Region Newton Hessian Modifications Trust Region Algorithm

Recall: The Trust Region Algorithm

Algorithm: Trust Region

```
[ 1] Set k=1, \widehat{\Delta}>0, \Delta_0\in(0,\widehat{\Delta}), and \eta\in[0,\frac{1}{4}]
[ 2] While optimality condition not satisfied
          Get \bar{\mathbf{p}}_k (approximate solution, Today's Discussion)
          Evaluate \rho_k
[5]
          if \rho_k < \frac{1}{4}
Γ 61
             \Delta_{k+1} = \frac{1}{4}\Delta_k
[7]
           else
             if 
ho_k > rac{3}{4} and \|ar{\mathbf{p}}_k\| = \Delta_k
[ 8]
[ 9]
                 \Delta_{k+1} = \min(2\Delta_k, \widehat{\Delta})
[10]
              else
[11]
               \Delta_{k+1} = \Delta_k
[12]
              endif
[13]
           endif
[14]
          if \rho_k > \eta
[15]
             \bar{\mathbf{x}}_{k+1} = \bar{\mathbf{x}}_k + \bar{\mathbf{p}}_k
Г167
          else
[17]
           \bar{\mathbf{x}}_{k+1} = \bar{\mathbf{x}}_k
[18]
           endif
          k = k + 1
[19]
[20] End-While
```

-(4/21)

Trust-Region Methods: B_k not Positive Definite is OK(?)

The Trust-region framework does not require that the model Hessian is positive definite.

It is possible to use the exact Hessian $B_k = \nabla^2 f(\bar{\mathbf{x}}_k)$ directly and find the search direction $\bar{\mathbf{p}}_k$ by solving the trust-region subproblem

$$\min_{ar{\mathbf{p}} \in \mathbb{R}^n} f(ar{\mathbf{x}}_k) + \nabla f(ar{\mathbf{x}}_k)^T ar{\mathbf{p}} + \frac{1}{2} ar{\mathbf{p}}^T B_k ar{\mathbf{p}}, \quad \|ar{\mathbf{p}}\| \leq \Delta_k.$$

Some of the **techniques** we discussed, e.g. dogleg, **require that** B_k is positive definite.

Peter Blomgren, (blomgren.peter@gmail.com)

Trust-Region Newton Methods

-(5/21)

Trust-Region Newton

Newton-Dogleg Newton-Iterative "Nearly Exact" Solution Trust-Region Newton-(P)CG

Newton-Dogleg

"Newton" $\Rightarrow B_k = \nabla^2 f(x_k)$

1 of 2

When B_k is positive definite the dogleg method — minimizing the model over the dogleg path

$$m{ ilde{ar{p}}}(au) = \left\{egin{array}{ll} au m{ar{p}}_k^U & 0 \leq au \leq 1 \ m{ar{p}}_k^U + (au - 1)(m{ar{p}}_k^B - m{ar{p}}_k^U) & 1 \leq au \leq 2 \end{array}
ight.$$

where

$$\underline{\bar{\mathbf{p}}_{k}^{B} = -B_{k}^{-1}\nabla f(\bar{\mathbf{x}}_{k})}, \quad \bar{\mathbf{p}}_{k}^{U} = -\frac{\nabla f(\bar{\mathbf{x}}_{k})^{T}\nabla f(\bar{\mathbf{x}}_{k})}{\nabla f(\bar{\mathbf{x}}_{k})^{T}B_{k}\nabla f(\bar{\mathbf{x}}_{k})}\nabla f(\bar{\mathbf{x}}_{k})$$

along the steepest descent direction

gives good approximate solutions to the trust-region subproblems which can be computed efficiently.

However, when B_k is not positive definite we cannot safely compute $\bar{\mathbf{p}}_k^B$, further the denominator $\nabla f(\bar{\mathbf{x}}_k)^T B_k \nabla f(\bar{\mathbf{x}}_k)$ could be zero... SunDigital States of the support of the suppor

Review + Add Hessian Modifications and/or CG-solvers

We have seen quite few ideas floating around, lets review what we have seen in the context of our methods:

- the dogleg method,
- 2D-subspace minimization,
- nearly exact solution, and (iii)
- (iv) the CG method.

The goal is to improve the methods and remove as many restrictions as possible.

2 of 2

Peter Blomgren, \(\text{blomgren.peter@gmail.com} \)

Trust-Region Newton Methods

— (6/21)

Trust-Region Newton

can use the **Hessian modification** from last time to replace

Newton-Dogleg Newton-Iterative "Nearly Exact" Solution Trust-Region Newton-(P)CG

Newton-Dogleg

Convexification

In order to make the dogleg method work for non-positive definite B_k s we

 $B_k \to \underbrace{\left(B_k + E_k\right)}_{E_k}$

and use this matrix in the dogleg solution.

Peter Blomgren, (blomgren.peter@gmail.com)

There is a price to pay. When the matrix B_k is modified, the importance of different directions are potentially changed in different ways, and the 1D-path (approximating the optimal path) is moved in nD-space. This may negatively impact the benefits of the trust-region approach.

Modifications of the type $E_k = \tau I$ behave somewhat more predictably than modifications of the type $E_k = \text{diag}(\tau_1, \tau_2, \dots, \tau_n)$.

Usage of the dogleg method for non-convex problems is somewhat dicey, and even though it may work it is not the preferred method.

Newton-2D-Subspace-Minimization

In much the same way we modified the dogleg method, we can adapt the 2D-subspace minimization subproblem to work in the case of indefinite B_k

$$\min_{\bar{\mathbf{p}} \in \mathbb{R}^n} f(\bar{\mathbf{x}}_k) + \nabla f(\bar{\mathbf{x}}_k)^T \bar{\mathbf{p}} + \frac{1}{2} \bar{\mathbf{p}}^T B_k \bar{\mathbf{p}}, \quad \|\bar{\mathbf{p}}\| \leq \Delta_k, \quad \bar{\mathbf{p}} \in \mathsf{span}(\nabla f(\bar{\mathbf{x}}_k), \bar{\mathbf{p}}^B)$$

can be applied when B_k is positive definite, and with a modified $\tilde{B}_k = (B_k + E_k)$ which is positive definite in the case when B_k is not positive definite:

$$\min_{\bar{\mathbf{p}} \in \mathbb{R}^n} f(\bar{\mathbf{x}}_k) + \nabla f(\bar{\mathbf{x}}_k)^T \bar{\mathbf{p}} + \frac{1}{2} \bar{\mathbf{p}}^T \tilde{B}_k \bar{\mathbf{p}}, \quad \|\bar{\mathbf{p}}\| \leq \Delta_k, \quad \bar{\mathbf{p}} \in \mathsf{span}(\nabla f(\bar{\mathbf{x}}_k), \bar{\mathbf{p}}^{\tilde{B}})$$

The 2D-subspace method is only marginally more "expensive" (per iteration) than the dogleg approach; it is however more robust with respect to Hessian modification.

Peter Blomgren, (blomgren.peter@gmail.com)

Trust-Region Newton Methods

— (9/21)

1 of 4

Recap Trust-Region Newton Newton-Dogleg Newton-2D-Subspace-Minimization Newton-Iterative "Nearly Exact" Solution Trust-Region Newton-(P)CG

Trust-Region Newton-CG

region Newton ed

The trust-region subproblem

$$\min_{\bar{\mathbf{p}} \in \mathbb{R}^n} f(\bar{\mathbf{x}}_k) + \nabla f(\bar{\mathbf{x}}_k)^T \bar{\mathbf{p}} + \frac{1}{2} \bar{\mathbf{p}}^T B_k \bar{\mathbf{p}}, \quad \|\bar{\mathbf{p}}\| \leq \Delta_k,$$

can be solved using the [Preconditioned] Conjugate Gradient ([P]CG) method, with two additional termination criteria (one of which we have seen already).

For each subproblem we must solve

$$B_k \bar{\mathbf{p}}_k = -\nabla f(\bar{\mathbf{x}}_k).$$

We apply CG with the following stopping criteria

(standard) The system has been solved to desired accuracy.

(previous) Negative curvature encountered.

(new) Size of the approximate solution exceeds the trust-region radius.

- (11/21)

Iterative "Nearly Exact" Solution of the Trust-Region Subproblem

Recall the characterization of the exact solution, from lecture #9:

Theorem

The vector $\mathbf{\bar{p}}^*$ is a global solution of the trust-region problem

$$\min_{\|\bar{\mathbf{p}}\| \leq \Delta_k} f(\bar{\mathbf{x}}_k) + \bar{\mathbf{p}}^T \nabla f(\bar{\mathbf{x}}_k) + \frac{1}{2} \bar{\mathbf{p}}^T B_k \bar{\mathbf{p}}$$

if and only if $\bar{\mathbf{p}}^*$ is feasible and there is a scalar $\lambda \geq 0$ such that the following conditions are satisfied:

- 1. $(B_k + \lambda I)\bar{\mathbf{p}}^* = -\nabla f(\bar{\mathbf{x}}_k)$
- $2. \qquad \lambda(\Delta_k \|\mathbf{\bar{p}}^*\|) = 0$
- 3. $(B_k + \lambda I)$ is positive semi-definite

This approach is already using the Hessian modification in the "Euclidian" form $E_k = \lambda I$, good for "small problems."

2 of 4

Peter Blomgren, (blomgren.peter@gmail.com)

Trust-Region Newton Methods

— (10/21)

Recap Trust-Region Newton Newton-Dogleg
Newton-2D-Subspace-Minimization
Newton-Iterative "Nearly Exact" Solution
Trust-Region Newton-(P)CG

Trust-Region Newton-CG

Algorithm: CG-Steihaug

Steihaug's Method

ne direction to the boundary of the trus

In the case of *negative curvature* we follow the direction to the boundary of the trust region; we get **Steihaug's Method**

```
Given \epsilon > 0; set \bar{\mathbf{p}}_0 = 0, \bar{\mathbf{r}}_0 = \nabla f(\bar{\mathbf{x}}_k), \bar{\mathbf{d}}_0 = -\bar{\mathbf{r}}_0 if ( \|\bar{\mathbf{r}}_0\| < \epsilon ) return(\bar{\mathbf{p}}_0) while (TRUE ) if ( \bar{\mathbf{d}}_j^T B \bar{\mathbf{d}}_j \leq 0 ) % Negative Curvature Find \tau \geq 0 such that \bar{\mathbf{p}} = \bar{\mathbf{p}}_j + \tau \bar{\mathbf{d}}_j satisfies \|\bar{\mathbf{p}}\| = \Delta return(\bar{\mathbf{p}}) endif \alpha_j = \bar{\mathbf{r}}_j^T \bar{\mathbf{r}}_j / \bar{\mathbf{d}}_j^T B \bar{\mathbf{d}}_j, \bar{\mathbf{p}}_{j+1} = \bar{\mathbf{p}}_j + \alpha_j \bar{\mathbf{d}}_j if ( \|\bar{\mathbf{p}}_{j+1}\| \geq \Delta ) % Step outside trust region Find \tau \geq 0 such that \bar{\mathbf{p}} = \bar{\mathbf{p}}_j + \tau \bar{\mathbf{d}}_j satisfies \|\bar{\mathbf{p}}\| = \Delta return(\bar{\mathbf{p}}) endif \bar{\mathbf{r}}_{j+1} = \bar{\mathbf{r}}_j + \alpha_j B \bar{\mathbf{d}}_j if ( \|\bar{\mathbf{r}}_{j+1}\| \leq \epsilon \|\bar{\mathbf{r}}_0\| ) return(\bar{\mathbf{p}}_{j+1}) \beta_{j+1} = \bar{\mathbf{r}}_{j+1}^T \bar{\mathbf{r}}_{j+1} / \bar{\mathbf{r}}_j^T \bar{\mathbf{r}}_j, \bar{\mathbf{d}}_{j+1} = -\bar{\mathbf{r}}_{j+1} + \beta_{j+1} \bar{\mathbf{d}}_j end-while
```

Trust-Region Newton-CG

3 of 4

When we get close to the optimum, the trust-region constraint becomes **inactive** (the model becomes a good approximation of the objective, and the radius of the trust-region grows).

At this juncture, we need to pay particular attention to how the ϵ in CG-Steihaug is selected. It should be given by the forcing sequence $\{\eta_k\}$ which gives us quadratic convergence, i.e. $\epsilon \sim \|\nabla f(\bar{\mathbf{x}}_k)\|$.

Good properties of TR-Newton-CG: **Globally convergent**, the first step in the $-\nabla f(\bar{\mathbf{x}}_k)$ direction identifies the Cauchy point, the subsequent steps improve on $\bar{\mathbf{p}}^c$. **No matrix factorizations** are necessary.

Advantages over LS-Newton-CG: Step lengths are **controlled** by the trust region. Directions of negative curvature are **explored**.

Peter Blomgren, (blomgren.peter@gmail.com)

Trust-Region Newton Methods

— (13/21)

Recap Trust-Region Newton Newton-Dogleg Newton-2D-Subspace-Minimization Newton-Iterative "Nearly Exact" Solution Trust-Region Newton-(P)CG

Trust-Region Newton-PCG(M)

1 of 5

As we have seen in other (very similar) settings, adding preconditioning to the CG-solver can cut the number of iterations quite drastically.

It would seem like a good (and natural) idea to add preconditioning to the Trust-Region Newton-CG scheme.

We have to be a little careful... For the standard CG-Steihaug, the following is true

Theorem

The sequence of vectors generated by CG-Steihaug satisfies

$$0 = \|\bar{\mathbf{p}}_0\|_2 < \|\bar{\mathbf{p}}_1\|_2 < \dots < \|\bar{\mathbf{p}}_i\|_2 < \|\bar{\mathbf{p}}_{i+1}\|_2 < \dots \|\bar{\mathbf{p}}\|_2 \le \Delta$$

This does not hold for preconditioned PCG(M)-Steihaug. This means that the sequence can leave the trust region, and then come back!

Trust-Region Newton-CG

4 of 4

Room for Improvement: Any direction of negative curvature is accepted — the accepted direction can give an insignificant reduction in the model.

There is an extension of CG known as **Lanczos method**, and it is possible to build a TR-Newton-Lanczos algorithm which does not terminate when encountering the *first* direction of curvature, but continues to search for a direction of *sufficient negative curvature*.

TR-Newton-Lanczos is more robust, but comes at a cost of a more expensive solution of the subproblem.

We leave the discussion of the *Lanczos algorithm* to Math 643 (to be offered in \sim Spring 2049).

 $\textbf{Peter Blomgren,} \; \langle \texttt{blomgren.peter@gmail.com} \rangle$

Trust-Region Newton Methods

— (14/21)

Recap Trust-Region Newton Newton-Dogleg Newton-2D-Subspace-Minimization Newton-Iterative "Nearly Exact" Solution Trust-Region Newton-(P)CG

Trust-Region Newton-PCG(M)

2 of 5

It is possible to define a weighed norm in which the PCG(M) iterates grow monotonically — this weighted norm depends on the preconditioner.

If we express the preconditioning of B_k in terms of a non-singular matrix D, which guarantees that the eigenvalues of $D^{-T}B_kD^{-1}$ have a favorable distribution, when the subproblem takes the form

$$\min_{\bar{\mathbf{p}} \in \mathbb{R}^n} f(\bar{\mathbf{x}}_k) + \nabla f(\bar{\mathbf{x}}_k)^T \bar{\mathbf{p}} + \frac{1}{2} \bar{\mathbf{p}}^T B_k \bar{\mathbf{p}}, \quad \|\mathbf{D}\bar{\mathbf{p}}\| \leq \Delta_k$$

if we formally make the change of variables $\hat{\mathbf{p}} = D\bar{\mathbf{p}}$, and set $\hat{\mathbf{g}}_k = D^{-T} \nabla f(\bar{\mathbf{x}}_k)$, $\hat{B}_k = D^{-T} B_k D^{-1}$, the subproblem transform into

$$\min_{\bar{\mathbf{p}} \in \mathbb{R}^n} f(\bar{\mathbf{x}}_k) + \widehat{\mathbf{g}}_k^T \widehat{\mathbf{p}} + \frac{1}{2} \widehat{\mathbf{p}}^T \widehat{B}_k \widehat{\mathbf{p}}, \quad \|\widehat{\mathbf{p}}\| \leq \Delta_k$$

to which we can apply CG-Steihaug.

Trust-Region Newton-PCG(M)

3 of 5

As usual, we never make this change of variables explicitly. Instead the CG-Steihaug algorithm is modified so that the wherever we have a multiplication by D^{-1} or D^{-T} we solve the appropriate linear system.

Note, if $D^{-T}B_kD^{-1}=I$ the preconditioning is perfect. Usually

$$D^{-T}B_kD^{-1}=I+E$$

and if we multiply by D^T from the left and D from the right we see

$$B_k = \underbrace{D^T D}_{M} + \underbrace{D^T E D}_{R}$$

So that $M \approx B_k$, and R captures the "inexactness" of the preconditioning.

Peter Blomgren, (blomgren.peter@gmail.com)

Trust-Region Newton Methods

— (17/21)

Recap Trust-Region Newton Newton-Dogleg Newton-2D-Subspace-Minimization Newton-Iterative "Nearly Exact" Solution Trust-Region Newton-(P)CG

Trust-Region Newton-PCG(M)

5 of 5

Algorithm: Modified Incomplete Cholesky Factorization, LDL^{T} -form

```
Given \delta > 0, \beta > 0

for j = 1:n

c_{jj} = a_{jj} - \sum_{s=1}^{j-1} d_s l_{js}^2
\theta_j = \max_{j < i \le n} |c_{ij}|
\mathbf{d_j} = \max_{j < i \le n} \left( \begin{vmatrix} \mathbf{c_{jj}} \end{vmatrix}, \delta, \begin{bmatrix} \frac{\theta_j}{\beta} \end{vmatrix}^2 \right)
for \mathbf{i} = (\mathbf{j}+1):n
\mathbf{if}(\ a_{ij} \neq 0\ ) \text{ % Only allow } l_{ij} \neq 0 \text{ if } a_{ij} \neq 0
c_{ij} = a_{ij} - \sum_{s=1}^{j-1} d_s l_{is} l_{js}
l_{ij} = c_{ij} / d_j
else
l_{ij} = c_{ij} = 0
endif
endfor(\mathbf{i})
```


Trust-Region Newton-PCG(M)

We can get a good general-purpose preconditioner by using a variant of the Cholesky factorization, $LL^T = B_k$.

We have discussed two ideas in connection with the Cholesky factorization — last time, we talked about how to **modify** it to get an approximate factorization of an indefinite matrix, *i.e.*

$$[L, L^T] = \begin{cases} \text{choldecomp}(B_k) &= \text{cholesky}(B_k + \text{diag}(\tau_1, \tau_2, \dots, \tau_n)) \\ \text{modelhess}(B_k) &= \text{cholesky}(B_k + \lambda I) \end{cases}$$

We have also (in general terms) talked about the **incomplete Cholesky factorization**, which preserves the sparsity pattern of B_k by not allowing fill-ins.

Putting the two together we get something like the algorithm on the next slide... (do not implement this one!)

4 of 5

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

Trust-Region Newton Methods

— (18/21)

Recap Trust-Region Newton Newton-Dogleg Newton-2D-Subspace-Minimization Newton-Iterative "Nearly Exact" Solution Trust-Region Newton-(P)CG

Comments

We have looked at **Newton methods** (with quadratic convergence, if and only if we implement and solve all the subproblems in the right way) for both the linesearch and trust-region approach, and have developed quite a powerful framework of algorithms that are suitable and quite stable for large problems.

Are we done??? — Not quite!

We several topics left on the menu, including:

- Estimation of derivatives how to proceed if the gradient and/or the Hessian is not available in analytic form.
- 2. **Quasi-Newton methods** how to proceed if the Hessian is not available (too expensive).
- 3. Application to **Nonlinear Least Squares** problems.
- 4. Application to **Nonlinear Equations**. If we can minimize, we can also solve $\bar{\mathbf{F}}(\bar{\mathbf{x}}) = \bar{\mathbf{0}}$.

Trust-Region Newton

Newton-Dogleg Newton-2D-Subspace-Minimization Newton-Iterative "Nearly Exact" Solution Trust-Region Newton-(P)CG

Index

Reference(s):

- Steihaug, Trond. The conjugate gradient method and trust regions in large scale optimization. SIAM Journal on Numerical Analysis 20, no.3 (1983): 626-637.
- Nicholas IM Gould, Stefano Lucidi, Massimo Roma, and Philippe L. Toint. Solving the trust-region subproblem using the Lanczos method. SIAM Journal on Optimization 9, no. 2 (1999): 504–525.

Peter Blomgren, (blomgren.peter@gmail.com)

Trust-Region Newton Methods

