
Recap
Trust-Region Newton

Numerical Optimization
Lecture Notes #15

Practical Newton Methods — Trust-Region Newton Methods

Peter Blomgren,
〈blomgren.peter@gmail.com〉

Department of Mathematics and Statistics
Dynamical Systems Group

Computational Sciences Research Center

San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Fall 2018

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (1/21)

Recap
Trust-Region Newton

Outline

1 Recap
Hessian Modifications
Trust Region Algorithm

2 Trust-Region Newton
Newton-Dogleg
Newton-2D-Subspace-Minimization
Newton-Iterative “Nearly Exact” Solution
Trust-Region Newton-(P)CG

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (2/21)

Recap
Trust-Region Newton

Hessian Modifications
Trust Region Algorithm

Hessian Modifications

We discussed strategies for modifying the Hessian in order to make it
positive definite:

If we use the Frobenius matrix norm, the smallest change is of the type
“change negative eigenvalues to small positive ones:”

B = A+∆A, where ∆A = Q diag(τi)Q
T , τi =

{
0 λi ≥ δ
δ − λi λi < δ.

If, on the other hand, we use the Euclidean norm the smallest change is a
multiple of the identity matrix, i.e. “shift the eigenvalue spectrum, so
all eigenvalues are positive:”

B = A+∆A, where ∆A = τ I , τ = max(0, δ − λmin(A)).

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (3/21)

Recap
Trust-Region Newton

Hessian Modifications
Trust Region Algorithm

Recall: The Trust Region Algorithm

Algorithm: Trust Region

[1] Set k = 1, ∆̂ > 0, ∆0 ∈ (0, ∆̂), and η ∈ [0, 1
4
]

[2] While optimality condition not satisfied

[3] Get p̄k (approximate solution, Today’s Discussion)

[4] Evaluate ρk
[5] if ρk < 1

4

[6] ∆k+1 = 1
4
∆k

[7] else

[8] if ρk > 3
4

and ‖p̄k‖ = ∆k

[9] ∆k+1 = min(2∆k , ∆̂)
[10] else

[11] ∆k+1 = ∆k
[12] endif

[13] endif

[14] if ρk > η
[15] x̄k+1 = x̄k + p̄k
[16] else

[17] x̄k+1 = x̄k
[18] endif

[19] k = k + 1
[20] End-While

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (4/21)

Recap
Trust-Region Newton

Newton-Dogleg
Newton-2D-Subspace-Minimization
Newton-Iterative “Nearly Exact” Solution
Trust-Region Newton-(P)CG

Trust-Region Methods: Bk not Positive Definite is OK(?)

The Trust-region framework does not require that the model
Hessian is positive definite.

It is possible to use the exact Hessian Bk = ∇2f (x̄k) directly and
find the search direction p̄k by solving the trust-region subproblem

min
p̄∈Rn

f (x̄k) +∇f (x̄k)
T p̄+

1

2
p̄TBk p̄, ‖p̄‖ ≤ ∆k .

Some of the techniques we discussed, e.g. dogleg, require that
Bk is positive definite.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (5/21)

Recap
Trust-Region Newton

Newton-Dogleg
Newton-2D-Subspace-Minimization
Newton-Iterative “Nearly Exact” Solution
Trust-Region Newton-(P)CG

Review + Add Hessian Modifications and/or CG-solvers

We have seen quite few ideas floating around, lets review what we
have seen in the context of our methods:

(i) the dogleg method,
(ii) 2D-subspace minimization,
(iii) nearly exact solution, and
(iv) the CG method.

The goal is to improve the methods and remove as many
restrictions as possible.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (6/21)

Recap
Trust-Region Newton

Newton-Dogleg
Newton-2D-Subspace-Minimization
Newton-Iterative “Nearly Exact” Solution
Trust-Region Newton-(P)CG

Newton-Dogleg “Newton” ⇒ Bk = ∇2f (xk) 1 of 2

When Bk is positive definite the dogleg method — minimizing the model
over the dogleg path

˜̄p(τ) =

{
τ p̄Uk 0 ≤ τ ≤ 1
p̄Uk + (τ − 1)(p̄Bk − p̄Uk) 1 ≤ τ ≤ 2

where

p̄Bk = −B−1
k ∇f (x̄k)︸ ︷︷ ︸

The Full Step

, p̄Uk = − ∇f (x̄k)T∇f (x̄k)

∇f (x̄k)TBk∇f (x̄k)
∇f (x̄k)

︸ ︷︷ ︸
The unconstrained minimum of the quadratic model
along the steepest descent direction

gives good approximate solutions to the trust-region subproblems which
can be computed efficiently.

However, when Bk is not positive definite we cannot safely compute
p̄Bk , further the denominator ∇f (x̄k)TBk∇f (x̄k) could be zero...

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (7/21)

Recap
Trust-Region Newton

Newton-Dogleg
Newton-2D-Subspace-Minimization
Newton-Iterative “Nearly Exact” Solution
Trust-Region Newton-(P)CG

Newton-Dogleg Convexification 2 of 2

In order to make the dogleg method work for non-positive definite Bks we
can use the Hessian modification from last time to replace

Bk → (Bk + Ek)︸ ︷︷ ︸
Pos.Def

and use this matrix in the dogleg solution.

There is a price to pay. When the matrix Bk is modified, the importance
of different directions are potentially changed in different ways, and the
1D-path (approximating the optimal path) is moved in nD-space. This
may negatively impact the benefits of the trust-region approach.

Modifications of the type Ek = τ I behave somewhat more predictably
than modifications of the type Ek = diag(τ1, τ2, . . . , τn).

Usage of the dogleg method for non-convex problems is somewhat dicey,
and even though it may work it is not the preferred method.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (8/21)

Recap
Trust-Region Newton

Newton-Dogleg
Newton-2D-Subspace-Minimization
Newton-Iterative “Nearly Exact” Solution
Trust-Region Newton-(P)CG

Newton-2D-Subspace-Minimization

In much the same way we modified the dogleg method, we can adapt the
2D-subspace minimization subproblem to work in the case of indefinite Bk

min
p̄∈Rn

f (x̄k) +∇f (x̄k)
T p̄+

1

2
p̄TBk p̄, ‖p̄‖ ≤ ∆k , p̄ ∈ span(∇f (x̄k), p̄

B)

can be applied when Bk is positive definite, and with a modified
B̃k = (Bk + Ek) which is positive definite in the case when Bk is not
positive definite:

min
p̄∈Rn

f (x̄k) +∇f (x̄k)
T p̄+

1

2
p̄T B̃k p̄, ‖p̄‖ ≤ ∆k , p̄ ∈ span(∇f (x̄k), p̄

B̃)

The 2D-subspace method is only marginally more “expensive” (per
iteration) than the dogleg approach; it is however more robust with
respect to Hessian modification.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (9/21)

Recap
Trust-Region Newton

Newton-Dogleg
Newton-2D-Subspace-Minimization
Newton-Iterative “Nearly Exact” Solution
Trust-Region Newton-(P)CG

Iterative “Nearly Exact” Solution of the Trust-Region Subproblem

Recall the characterization of the exact solution, from lecture #9:

Theorem

The vector p̄∗ is a global solution of the trust-region problem

min
‖p̄‖≤∆k

f (x̄k) + p̄T∇f (x̄k) +
1

2
p̄TBk p̄

if and only if p̄∗ is feasible and there is a scalar λ ≥ 0 such that the
following conditions are satisfied:

1. (Bk + λI)p̄∗ = −∇f (x̄k)
2. λ(∆k − ‖p̄∗‖) = 0
3. (Bk + λI) is positive semi-definite

This approach is already using the Hessian modification in the
“Euclidian” form Ek = λI , good for “small problems.”

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (10/21)

Recap
Trust-Region Newton

Newton-Dogleg
Newton-2D-Subspace-Minimization
Newton-Iterative “Nearly Exact” Solution
Trust-Region Newton-(P)CG

Trust-Region Newton-CG 1 of 4

The trust-region subproblem

min
p̄∈Rn

f (x̄k) +∇f (x̄k)
T p̄+

1

2
p̄TBk p̄, ‖p̄‖ ≤ ∆k ,

can be solved using the [Preconditioned] Conjugate Gradient ([P]CG)
method, with two additional termination criteria (one of which we have
seen already).

For each subproblem we must solve

Bk p̄k = −∇f (x̄k).

We apply CG with the following stopping criteria
(standard) The system has been solved to desired accuracy.

(previous) Negative curvature encountered.

(new) Size of the approximate solution exceeds the trust-region radius.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (11/21)

Recap
Trust-Region Newton

Newton-Dogleg
Newton-2D-Subspace-Minimization
Newton-Iterative “Nearly Exact” Solution
Trust-Region Newton-(P)CG

Trust-Region Newton-CG Steihaug’s Method 2 of 4

In the case of negative curvature we follow the direction to the boundary of the trust
region; we get Steihaug’s Method

Algorithm: CG-Steihaug

Given ǫ > 0; set p̄0 = 0, r̄0 = ∇f (x̄k), d̄0 = −r̄0
if(‖̄r0‖ < ǫ) return(p̄0)
while(TRUE)

if(d̄Tj Bd̄j ≤ 0) % Negative Curvature

Find τ ≥ 0 such that p̄ = p̄j + τ d̄j satisfies ‖p̄‖ = ∆
return(p̄)

endif
αj = r̄Tj r̄j/d̄

T
j Bd̄j, p̄j+1 = p̄j + αj d̄j

if(‖p̄j+1‖ ≥ ∆) % Step outside trust region

Find τ ≥ 0 such that p̄ = p̄j + τ d̄j satisfies ‖p̄‖ = ∆
return(p̄)

endif
r̄j+1 = r̄j + αjBd̄j
if(‖̄rj+1‖ ≤ ǫ‖̄r0‖) return(p̄j+1)

βj+1 = r̄Tj+1 r̄j+1/̄r
T
j r̄j, d̄j+1 = −r̄j+1 + βj+1d̄j

end-while

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (12/21)

Recap
Trust-Region Newton

Newton-Dogleg
Newton-2D-Subspace-Minimization
Newton-Iterative “Nearly Exact” Solution
Trust-Region Newton-(P)CG

Trust-Region Newton-CG 3 of 4

When we get close to the optimum, the trust-region constraint becomes
inactive (the model becomes a good approximation of the objective, and
the radius of the trust-region grows).

At this juncture, we need to pay particular attention to how the ǫ in
CG-Steihaug is selected. It should be given by the forcing sequence {ηk}
which gives us quadratic convergence, i.e. ǫ ∼ ‖∇f (x̄k)‖.

Good properties of TR-Newton-CG: Globally convergent, the first step
in the −∇f (x̄k) direction identifies the Cauchy point, the subsequent
steps improve on p̄c . No matrix factorizations are necessary.

Advantages over LS-Newton-CG: Step lengths are controlled by the
trust region. Directions of negative curvature are explored.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (13/21)

Recap
Trust-Region Newton

Newton-Dogleg
Newton-2D-Subspace-Minimization
Newton-Iterative “Nearly Exact” Solution
Trust-Region Newton-(P)CG

Trust-Region Newton-CG 4 of 4

Room for Improvement: Any direction of negative curvature is
accepted — the accepted direction can give an insignificant
reduction in the model.

There is an extension of CG known as Lanczos method, and it is
possible to build a TR-Newton-Lanczos algorithm which does not
terminate when encountering the first direction of curvature, but
continues to search for a direction of sufficient negative curvature.

TR-Newton-Lanczos is more robust, but comes at a cost of a more
expensive solution of the subproblem.

We leave the discussion of the Lanczos algorithm to Math 643 (to
be offered in ∼Spring 2049).

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (14/21)

Recap
Trust-Region Newton

Newton-Dogleg
Newton-2D-Subspace-Minimization
Newton-Iterative “Nearly Exact” Solution
Trust-Region Newton-(P)CG

Trust-Region Newton-PCG(M) 1 of 5

As we have seen in other (very similar) settings, adding preconditioning
to the CG-solver can cut the number of iterations quite drastically.

It would seem like a good (and natural) idea to add preconditioning to
the Trust-Region Newton-CG scheme.

We have to be a little careful... For the standard CG-Steihaug, the
following is true

Theorem

The sequence of vectors generated by CG -Steihaug satisfies

0 = ‖p̄0‖2 < ‖p̄1‖2 < · · · < ‖p̄j‖2 < ‖p̄j+1‖2 < . . . ‖p̄‖2 ≤ ∆

This does not hold for preconditioned PCG(M)-Steihaug. This means that
the sequence can leave the trust region, and then come back!

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (15/21)

Recap
Trust-Region Newton

Newton-Dogleg
Newton-2D-Subspace-Minimization
Newton-Iterative “Nearly Exact” Solution
Trust-Region Newton-(P)CG

Trust-Region Newton-PCG(M) 2 of 5

It is possible to define a weighed norm in which the PCG(M) iterates grow
monotonically — this weighted norm depends on the preconditioner.

If we express the preconditioning of Bk in terms of a non-singular matrix
D, which guarantees that the eigenvalues of D−TBkD

−1 have a
favorable distribution, when the subproblem takes the form

min
p̄∈Rn

f (x̄k) +∇f (x̄k)
T p̄+

1

2
p̄TBk p̄, ‖Dp̄‖ ≤ ∆k

if we formally make the change of variables p̂ = Dp̄, and set
ĝk = D−T∇f (x̄k), B̂k = D−TBkD

−1 , the subproblem transform into

min
p̄∈Rn

f (x̄k) + ĝT
k p̂+

1

2
p̂T B̂k p̂, ‖p̂‖ ≤ ∆k

to which we can apply CG-Steihaug.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (16/21)

Recap
Trust-Region Newton

Newton-Dogleg
Newton-2D-Subspace-Minimization
Newton-Iterative “Nearly Exact” Solution
Trust-Region Newton-(P)CG

Trust-Region Newton-PCG(M) 3 of 5

As usual, we never make this change of variables explicitly. Instead the
CG-Steihaug algorithm is modified so that the wherever we have a
multiplication by D−1 or D−T we solve the appropriate linear system.

Note, if D−TBkD
−1 = I the preconditioning is perfect. Usually

D−TBkD
−1 = I + E

and if we multiply by DT from the left and D from the right we see

Bk = DTD︸ ︷︷ ︸
M

+DTED︸ ︷︷ ︸
R

So that M ≈ Bk , and R captures the “inexactness” of the
preconditioning.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (17/21)

Recap
Trust-Region Newton

Newton-Dogleg
Newton-2D-Subspace-Minimization
Newton-Iterative “Nearly Exact” Solution
Trust-Region Newton-(P)CG

Trust-Region Newton-PCG(M) 4 of 5

We can get a good general-purpose preconditioner by using a variant of
the Cholesky factorization, LLT = Bk .

We have discussed two ideas in connection with the Cholesky
factorization — last time, we talked about how to modify it to get an
approximate factorization of an indefinite matrix, i.e.

[L, LT] =

{
choldecomp(Bk) = cholesky(Bk + diag(τ1, τ2, . . . , τn))
modelhess(Bk) = cholesky(Bk + λI)

We have also (in general terms) talked about the incomplete Cholesky
factorization, which preserves the sparsity pattern of Bk by not allowing
fill-ins.

Putting the two together we get something like the algorithm on the next
slide... (do not implement this one!)

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (18/21)

Recap
Trust-Region Newton

Newton-Dogleg
Newton-2D-Subspace-Minimization
Newton-Iterative “Nearly Exact” Solution
Trust-Region Newton-(P)CG

Trust-Region Newton-PCG(M) 5 of 5

Algorithm: Modified Incomplete Cholesky Factorization,
LDLT -form
Given δ > 0, β > 0
for j = 1:n

cjj = ajj −
∑j−1

s=1 ds l
2
js

θj = maxj<i≤n |cij |
dj = max

(
|cjj|, δ,

[
θj
β

]2)

for i = (j+1):n

if(aij 6= 0) % Only allow lij 6= 0 if aij 6= 0

cij = aij −
∑j−1

s=1 ds lis ljs
lij = cij/dj

else

lij = cij = 0
endif

endfor(i)

endfor(j)

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (19/21)

Recap
Trust-Region Newton

Newton-Dogleg
Newton-2D-Subspace-Minimization
Newton-Iterative “Nearly Exact” Solution
Trust-Region Newton-(P)CG

Comments

We have looked at Newton methods (with quadratic convergence, if
and only if we implement and solve all the subproblems in the right way)
for both the linesearch and trust-region approach, and have developed
quite a powerful framework of algorithms that are suitable and quite
stable for large problems.

Are we done??? — Not quite!

We several topics left on the menu, including:

1. Estimation of derivatives — how to proceed if the gradient and/or
the Hessian is not available in analytic form.

2. Quasi-Newton methods — how to proceed if the Hessian is not
available (too expensive).

3. Application to Nonlinear Least Squares problems.

4. Application to Nonlinear Equations. — If we can minimize, we can
also solve F̄(x̄) = 0̄.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (20/21)

Recap
Trust-Region Newton

Newton-Dogleg
Newton-2D-Subspace-Minimization
Newton-Iterative “Nearly Exact” Solution
Trust-Region Newton-(P)CG

Index

Reference(s):

Steihaug, Trond. The conjugate gradient method and trust regions in large scale optimization. SIAM
Journal on Numerical Analysis 20, no.3 (1983): 626–637.

Nicholas IM Gould, Stefano Lucidi, Massimo Roma, and Philippe L. Toint. Solving the trust-region
subproblem using the Lanczos method. SIAM Journal on Optimization 9, no. 2 (1999): 504–525.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Newton Methods — (21/21)

