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Derivatives Needed!!!

As we have seen (and will see), algorithms for nonlinear
optimization (and nonlinear equations) require knowledge of
derivatives:

Nonlinear Optimization Nonlinear Equations
Gradient, vector, 1st order Jacobian, matrix, 1st order
Hessian, matrix, 2nd order

Often it is quite trivial to provide the code which computes those
derivatives, but in some cases the analytic expressions for the
derivatives are not available and/or not practical to evaluate.

In those cases we need some other way to compute or
approximate the derivatives.
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Finite Differences — The Return of Taylor’s Theorem

We can get an approximation of the gradient ∇f (x̄) by evaluating the
objective f at (n+ 1) points, using the

Forward Difference Formula

∂f (x̄)

∂xi
≈ f (x̄+ ǫēi )− f (x̄)

ǫ
, i = 1, 2, . . . , n,

where ēi is the i th unit vector, and ǫ > 0 is small.

If f is twice continuously differentiable, then by Taylor’s Theorem

f (x̄+ p̄) = f (x̄) +∇f (x̄)T p̄+
1

2
p̄T∇2f (x̄+ tp̄)p̄, t ∈ (0, 1),

with p̄ = ǫēi , i.e.

f (x̄+ ǫēi ) = f (x̄)+ ǫ∇f (x̄)T ēi +
1

2
ǫ2ēTi ∇2f (x̄+ tǫēi )ēi , i = 1, 2, . . . , n.
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Forward Differences Building the Gradient

With a bit of re-arrangement we see

∇f (x̄)T ēi︸ ︷︷ ︸
∂f (x̄)
∂xi

=
f (x̄+ ǫēi )− f (x̄)

ǫ︸ ︷︷ ︸
Finite Difference Approximation

− 1

2
ǫ ēTi ∇2f (x̄+ tǫēi )ēi

︸ ︷︷ ︸
Approximation Error

If the Hessian ∇2f (x̄) is bounded, i.e. ‖∇2f (x̄)‖ ≤ Lc , then we have

∂f (x̄)

∂xi
≈ f (x̄+ ǫēi )− f (x̄)

ǫ
,

where the approximation error is bounded by

ǫLc
2

.

Since the error is proportional to ǫ, this is a first-order approximation.
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Smaller is Better... Until it isn’t 1 of 2

Ponder... The Silly ExampleTM —

1 g = @(x) sin(cos(x));

2 FD_f = @(f,x,h) (f(x+h)-f(x))/h;

3
4 syms x

5 dg_ = diff(g(x),x);

6 dg = matlabFunction(dg_);

7 clear x

8
9 h = 1;

10 x0 = pi/exp(1);

11 fprintf(’--------------------------\n’)

12 fprintf(’h (f(x+h)-f(x))/h\n’)

13 fprintf(’--------------------------\n’)

14 for k = 1:20

15 h = h / 10;

16 fprintf(’%6.2e %15.8e\n’,h, FD_f(g,x0 ,h))

17 end

18 fprintf(’--------------------------\n’)

19 fprintf(’Exact: %15.8e\n’,dg(x0))

20 fprintf(’--------------------------\n’)

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Calculating Derivatives — Finite Differencing — (6/23)

Non-Analytic Derivatives — Finite Differencing
Finite Differencing — Sparsity and Symmetry

Taylor’s Theorem ⇒ Finite Differencing
Finite Difference Gradient
Finite Difference Hessian

Smaller is Better... Until it isn’t 2 of 2

1 --------------------------

2 h (f(x+h)-f(x))/h

3 --------------------------

4 1.00e-01 -8.74662253e-01

5 1.00e-02 -8.45167500e-01

6 1.00e-03 -8.42038209e-01

7 1.00e-04 -8.41723614e-01

8 1.00e-05 -8.41692138e-01

9 1.00e-06 -8.41688990e-01

10 1.00e-07 -8.41688676e-01

11 1.00e-08 -8.41688641e-01

12 1.00e-09 -8.41688663e-01

13 1.00e-10 -8.41688386e-01

14 1.00e-11 -8.41687831e-01

15 1.00e-12 -8.41771097e-01

16 1.00e-13 -8.40993941e-01

17 1.00e-14 -8.43769499e-01

18 1.00e-15 -8.88178420e-01

19 1.00e-16 0.00000000e+00

20 1.00e-17 0.00000000e+00

21 1.00e-18 0.00000000e+00

22 1.00e-19 0.00000000e+00

23 1.00e-20 0.00000000e+00

24 --------------------------

25 Exact: -8.41688640e-01

26 --------------------------

⇐ Best approximation
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Selecting ǫ Machine Epsilon / Unit Roundoff 1 of 3

Clearly(?), the smaller the ǫ the smaller the error. How small can
we set ǫ in finite precision???

Let ǫmach denote value for machine epsilon, a.k.a. unit roundoff, it
is essentially the largest value for which

((1.0 + ǫmach)− 1.0) = 0, in finite precision

ǫmach ≈ 10−16 in double-precision arithmetic (IEEE 64-bit floating
point: “C” double, and Matlab internals on typical Intel-based
systems.)

ǫmach is a measure of how well (or badly) we can represent any
number in finite precision, and in extension a measure of the (best
case) quality of every computation.
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Selecting ǫ 2 of 3

If Lf is a bound on the value of f (x̄), i.e. |f (x̄)| ≤ Lf , then in finite
precision we have

‖computed(f (x̄))− f (x̄)‖ ≤ ǫmachLf

‖computed(f (x̄+ ǫēi ))− f (x̄+ ǫēi )‖ ≤ ǫmachLf .

Now, if we recall our finite difference approximation

∂f (x̄)

∂xi
≈ f (x̄+ ǫēi )− f (x̄)

ǫ
+ error(ǫ),

we find that the total error is

error(ǫ) ∼ 2ǫmachLf
ǫ︸ ︷︷ ︸

Floating Point Error

+
ǫLc
2︸︷︷︸

Approximation Error

.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Calculating Derivatives — Finite Differencing — (9/23)

Non-Analytic Derivatives — Finite Differencing
Finite Differencing — Sparsity and Symmetry

Taylor’s Theorem ⇒ Finite Differencing
Finite Difference Gradient
Finite Difference Hessian

Selecting ǫ 3 of 3

Now,

d

dǫ
error(ǫ) ∼ −2ǫmachLf

ǫ2
+

Lc
2

= 0 ⇒ ǫ2 =
4ǫmachLf

Lc
,

gives us the optimal value for epsilon. Since Lf and Lc are
unknown in general, most software packages tend to select

ǫ∗ =
√
ǫmach,

which is close to optimal in most cases.

Hence, the error in the approximated gradient is

error(ǫ∗) ∼ 2Lf
√
ǫmach +

Lc
2

√
ǫmach ∼ O (

√
ǫmach) .
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Central Differences O
(
h2
)
Accuracy 1 of 2

At twice the cost, we can get about 2.67 extra digits of precision in the
finite difference approximation, by using central differences.

More Taylor expansions...

f (x̄+ ǫēi ) = f (x̄) + ǫ ∂f
∂xi

+ 1
2ǫ

2 ∂2f
∂x2

i
+O(ǫ3)

f (x̄− ǫēi ) = f (x̄)− ǫ ∂f
∂xi

+ 1
2ǫ

2 ∂2f
∂x2

i
+O(ǫ3)

f (x̄+ ǫēi )− f (x̄− ǫēi ) = 2ǫ ∂f
∂xi

+ ǫ3

3
∂3f
∂x3

i
+O(ǫ5).

We get

Central Difference Formula, with Error Term

∂f (x̄)

∂xi
=

f (x̄+ ǫēi )− f (x̄− ǫēi )

2ǫ
+

ǫ2

6

∂3f

∂x3i
+O(ǫ4).
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Central Differences O
(
h2
)
Accuracy 2 of 2

Now, if we have a bound on the third derivative(s)

∣∣∣∣
∂3f

∂x3i

∣∣∣∣ ≤ LJ ,

we can derive an optimal ǫ:

error(ǫ) ∼ ǫmachLf
ǫ

+
ǫ2LJ
6

.

d

dǫ
error(ǫ) ∼ −ǫmachLf

ǫ2
+

ǫLJ
3

= 0.

⇒ ǫ∗ ∼ 3

√
3ǫmachLf

LJ
∼ 3

√
ǫmach ⇒ error ∼ O

(
ǫ
2/3
mach

)
.
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Smaller is Better... Until it isn’t — Redux 1 of 2

The Silly Example, now with central differences:

1 g = @(x) sin(cos(x));

2 CD_f = @(f,x,h) (f(x+h)-f(x-h))/(2*h);

3
4 syms x

5 dg_ = diff(g(x),x);

6 dg = matlabFunction(dg_);

7 clear x

8
9 h = 1;

10 x0 = pi/exp(1);

11 fprintf(’-----------------------------\n’)

12 fprintf(’h (f(x+h)-f(x-h))/2h\n’)

13 fprintf(’-----------------------------\n’)

14 for k = 1:20

15 h = h / 10;

16 fprintf(’%6.2e %18.11e\n’,h, CD_f(g,x0 ,h))

17 end

18 fprintf(’-----------------------------\n’)

19 fprintf(’Exact: %18.11e\n’,dg(x0))

20 fprintf(’-----------------------------\n’)
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Smaller is Better... Until it isn’t — Redux 2 of 2

1 -----------------------------

2 h (f(x+h)-f(x-h))/2h

3 -----------------------------

4 1.00e-01 -8.39837686660e-01

5 1.00e-02 -8.41670105864e-01

6 1.00e-03 -8.41688455140e-01

7 1.00e-04 -8.41688638635e-01

8 1.00e-05 -8.41688640477e-01

9 1.00e-06 -8.41688640424e-01

10 1.00e-07 -8.41688641007e-01

11 1.00e-08 -8.41688635456e-01

12 1.00e-09 -8.41688690967e-01

13 1.00e-10 -8.41688663211e-01

14 1.00e-11 -8.41690606102e-01

15 1.00e-12 -8.41771097271e-01

16 1.00e-13 -8.40993941154e-01

17 1.00e-14 -8.43769498715e-01

18 1.00e-15 -9.15933995316e-01

19 1.00e-16 0.00000000000e+00

20 1.00e-17 0.00000000000e+00

21 1.00e-18 0.00000000000e+00

22 1.00e-19 0.00000000000e+00

23 1.00e-20 0.00000000000e+00

24 -----------------------------

25 Exact: -8.41688640488e-01

26 -----------------------------

⇐ Best approximation
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Approximating the Hessian The Easy Case 1 of 5

The easy case: Analytic Gradient given

If the analytic gradient is known, then we can get an
approximation of the Hessian by applying forward or central
differencing to each element of the gradient vector in turn.

When the second derivatives exist and are Lipschitz continuous,
Taylor’s theorem says

∇f (x̄+ p̄) = ∇f (x̄) +∇2f (x̄)p̄+O(‖p̄‖2).

Again, we let p̄ = ǫēi , i = 1, 2, . . . , n and get

∇2f (x̄)ēi ≈
∇f (x̄+ ǫēi )−∇f (x̄)

ǫ
+O(ǫ), or

∇2f (x̄)ēi ≈
∇f (x̄+ ǫēi )−∇f (x̄− ǫēi )

2ǫ
+O(ǫ2).
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Approximating the Hessian Symmetrize 2 of 5

It is worth noting that this is a column-at-a-time process, which
does not — due to numerical roundoff and approximation errors —
necessarily give a symmetric Hessian.

It is often necessary to symmetrize the result

H sym
num =

1

2

[
Hnum + HT

num

]
.
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Approximating the Hessian Special Case 3 of 5

Special Case: In Newton-CG methods we do not require full
knowledge of the Hessian. Each iteration requires the
Hessian-vector product ∇2f (x̄)p̄, where p̄ is the given search
direction, this expression can be approximated

∇2f (x̄)p̄ ≈ ∇f(x̄+ ǫp̄)−∇f (x̄[−ǫp̄])

[2]ǫ
+O(ǫ[2])

This approximation is very cheap — only one [two] extra gradient
evaluation[s] is [are] needed.
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Approximating the Hessian Hard (Realistic) Case 4 of 5

The harder case: Analytic Gradient not given

When the analytic gradient is not given we must use a finite
difference formula using only function values to approximate the
Hessian.

The first order forward difference approximation is given by

∂2f (x̄)

∂xi∂xj
≈ f (x̄+ ǫēi + ǫēj)− f (x̄+ ǫēi )− f (x̄+ ǫēj) + f (x̄)

ǫ2

−1

−1+1

+1

i

j
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Approximating the Hessian 5 of 5

At a price of ∼ n2 additional function evaluations (an increase of
33%) we can use the second order central difference
approximation

∂2f (x̄)

∂xi∂xj
≈ f (x̄+ ǫēi + ǫēj )− f (x̄+ ǫēi − ǫēj )− f (x̄− ǫēi + ǫēj ) + f (x̄− ǫēi − ǫēj )

4ǫ2

i

j

−1

+1 −1

+1

Figure: The second order 4-point central difference approximation stencil for
∂2f (x̄)
∂xi∂xj

at the central point in the stencil — note that the value in that point is not part
of the evaluation!
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Sparsity and Symmetry 1 of 3

Now that we are paying ∼ 4 function evaluations per entry in the
Hessian matrix, it is worth taking sparsity and symmetry into
account.

Ponder the extended Rosenbrock function:
/* C/C++ code, why not? */
double function rosenbrock( int n, double *x )
{
xxdouble f = 0.0;
xxintxxxxi;
xxfor( i=0; i<n/2; i++ )
xxxxxf += ( 10 * ( x[2*i+1] - x[2*i]*x[2*i] ) *
xxxxxxxxxxxxxxxxx( x[2*i+1] - x[2*i]*x[2*i] ) ) +
xxxxxxxxxx( 1 - x[2*i] ) * ( 1 - x[2*i] ) ;
xxreturn(f);
}

Clearly, there is no “interaction” between coordinate-directions ēi
and ēj , where |i − j | > 1.
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Sparsity and Symmetry 2 of 3

The fill-pattern of the Hessian of the extended Rosenbrock
function consists of 2×2-diagonal blocks:

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 16

There are a lot of zero-entries in this Hessian. If somehow we have
knowledge of the sparsity pattern, then we can exploit this by not
computing/touching the zeros.
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Sparsity and Symmetry 3 of 3

By using the fact that the Hessian is symmetric, we can save about
half of the work,

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 36

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 28

Figure: The entries to the left Hij , j ≤ i must be computed, but using symmetry
we can fill in the missing ones Hij = Hji , j > i .
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central difference formula, 11
forward difference formula, 4
machine epsilon, 8
unit roundoff, 8
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