Non-Analytic Derivatives — Finite Differencing Finite Differencing — Sparsity and Symmetry		Non-Analytic Derivatives — Finite Differencing Finite Differencing — Sparsity and Symmetry		
		Outline		
Numerical Optimization Lecture Notes #16 Calculating Derivatives — Finite Differencing		Non-Analytic Derivatives — Finite Differencing		
Peter Blomgren, <pre></pre>		 Taylor's Theorem ⇒ Finite Differencing Finite Difference Gradient Finite Difference Hessian 		
Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720		Finite Differencing — Sparsity and Symmetry		
http://terminus.sdsu.edu/				
Fall 2018	San Diego State University	San Digo State University		
Peter Blomgren, (blomgren.peter@gmail.com) Calculating Derivatives — Finite Differencing	— (1/23)	Peter Blomgren, (blomgren.peter@gmail.com) Calculating Derivatives — Finite Differencing (2/23)		
Non-Analytic Derivatives — Finite Differencing Finite Differencing — Sparsity and Symmetry Finite Difference Gradient Finite Difference Hessian		Non-Analytic Derivatives — Finite Differencing Taylor's Theorem ⇒ Finite Differencing Finite Differencing — Sparsity and Symmetry Finite Difference Gradient		
Derivatives Needed!!!		Finite Differences — The Return of Taylor's Theorem		

As we have seen (and will see), algorithms for nonlinear optimization (and nonlinear equations) require knowledge of derivatives:

Nonlinear Optimization	Nonlinear Equations		
Gradient, vector, 1st order	Jacobian, matrix, 1st order		
Hessian, matrix, 2nd order			

Often it is quite trivial to provide the code which computes those derivatives, but in some cases the analytic expressions for the derivatives are not available and/or not practical to evaluate.

In those cases we need some other way to compute or **approximate** the derivatives.

We can get an approximation of the gradient $\nabla f(\bar{\mathbf{x}})$ by evaluating the objective f at $(\mathbf{n} + \mathbf{1})$ points, using the

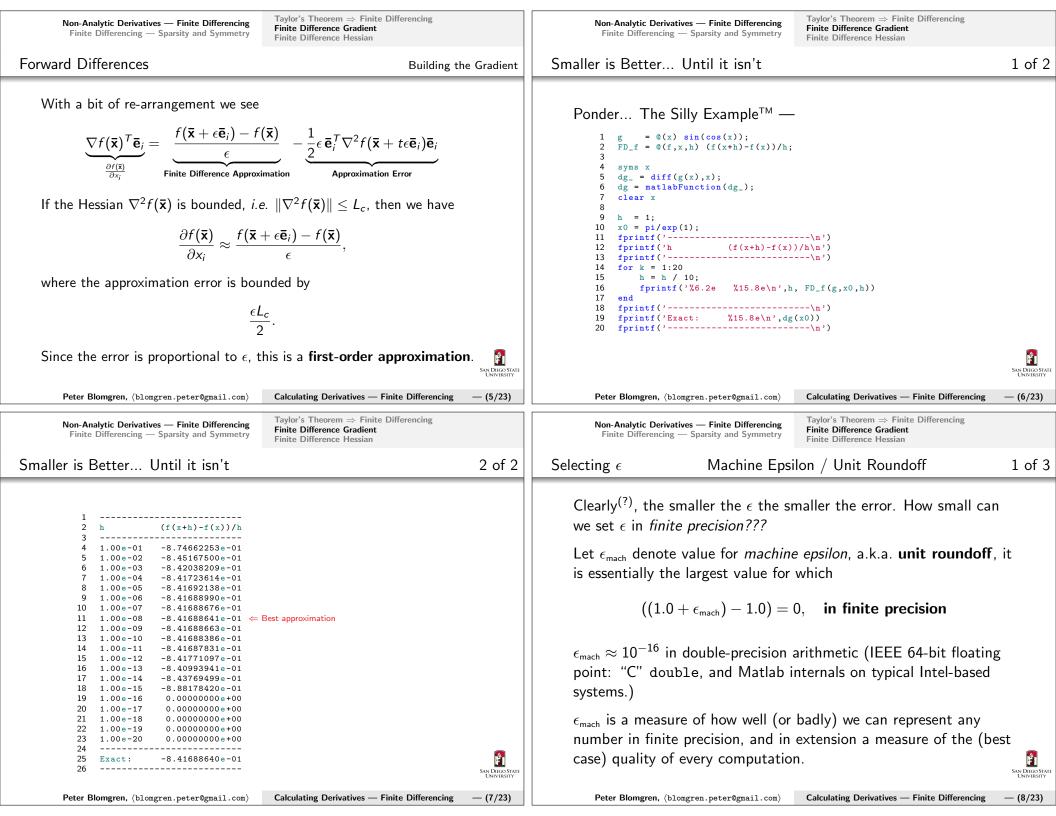
Forward Difference Formula

$$rac{\partial f(\mathbf{ar{x}})}{\partial x_i} pprox rac{f(\mathbf{ar{x}} + \epsilon \mathbf{ar{e}}_i) - f(\mathbf{ar{x}})}{\epsilon}, \quad i = 1, 2, \dots, n,$$

where $\mathbf{\bar{e}}_i$ is the *i* th unit vector, and $\epsilon > 0$ is small.

If f is twice continuously differentiable, then by **Taylor's Theorem**

$$f(\mathbf{\bar{x}}+\mathbf{\bar{p}})=f(\mathbf{\bar{x}})+
abla f(\mathbf{\bar{x}})^T\mathbf{\bar{p}}+rac{1}{2}\mathbf{\bar{p}}^T
abla^2 f(\mathbf{\bar{x}}+t\mathbf{\bar{p}})\mathbf{\bar{p}},\quad t\in(0,1),$$


with $\mathbf{\bar{p}} = \epsilon \mathbf{\bar{e}}_i$, *i.e.*

SAN DIEGO STATI UNIVERSITY

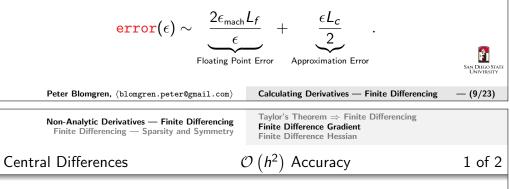
- (3/23)

$$f(\mathbf{\bar{x}} + \epsilon \mathbf{\bar{e}}_i) = f(\mathbf{\bar{x}}) + \epsilon \nabla f(\mathbf{\bar{x}})^T \mathbf{\bar{e}}_i + \frac{1}{2} \epsilon^2 \mathbf{\bar{e}}_i^T \nabla^2 f(\mathbf{\bar{x}} + t \epsilon \mathbf{\bar{e}}_i) \mathbf{\bar{e}}_i, \quad i = 1, 2, \dots, n.$$

- (4/23)

Non-Analytic Derivatives — Finite Differencing Finite Differencing — Sparsity and Symmetry Taylor's Theorem \Rightarrow Finite Differencing Finite Difference Gradient Finite Difference Hessian

Selecting ϵ


If L_f is a bound on the value of $f(\bar{\mathbf{x}})$, *i.e.* $|f(\bar{\mathbf{x}})| \leq L_f$, then in finite precision we have

$$\begin{aligned} \|\texttt{computed}(f(\bar{\mathbf{x}})) - f(\bar{\mathbf{x}})\| &\leq \epsilon_{\mathsf{mach}} L_f \\ \|\texttt{computed}(f(\bar{\mathbf{x}} + \epsilon \bar{\mathbf{e}}_i)) - f(\bar{\mathbf{x}} + \epsilon \bar{\mathbf{e}}_i)\| &\leq \epsilon_{\mathsf{mach}} L_f. \end{aligned}$$

Now, if we recall our finite difference approximation

$$\frac{\partial f(\bar{\mathbf{x}})}{\partial x_i} \approx \frac{f(\bar{\mathbf{x}} + \epsilon \bar{\mathbf{e}}_i) - f(\bar{\mathbf{x}})}{\epsilon} + \frac{\operatorname{error}(\epsilon)}{\epsilon},$$

we find that the total error is

At twice the cost, we can get about 2.67 extra digits of precision in the finite difference approximation, by using **central differences**.

More Taylor expansions...

ċ

$$\begin{aligned} f(\mathbf{\bar{x}} + \epsilon \mathbf{\bar{e}}_i) &= f(\mathbf{\bar{x}}) + \epsilon \frac{\partial f}{\partial x_i} + \frac{1}{2} \epsilon^2 \frac{\partial^2 f}{\partial x_i^2} + \mathcal{O}(\epsilon^3) \\ f(\mathbf{\bar{x}} - \epsilon \mathbf{\bar{e}}_i) &= f(\mathbf{\bar{x}}) - \epsilon \frac{\partial f}{\partial x_i} + \frac{1}{2} \epsilon^2 \frac{\partial^2 f}{\partial x_i^2} + \mathcal{O}(\epsilon^3) \\ \hline f(\mathbf{\bar{x}} + \epsilon \mathbf{\bar{e}}_i) - f(\mathbf{\bar{x}} - \epsilon \mathbf{\bar{e}}_i) &= 2\epsilon \frac{\partial f}{\partial x_i} + \frac{\epsilon^3}{3} \frac{\partial^3 f}{\partial x_i^3} + \mathcal{O}(\epsilon^5). \end{aligned}$$

We get

Central Difference Formula, with Error Term

Peter Blomgren, (blomgren.peter@gmail.com)

$$rac{\partial f(ar{\mathbf{x}})}{\partial x_i} = rac{f(ar{\mathbf{x}} + \epsilon ar{\mathbf{e}}_i) - f(ar{\mathbf{x}} - \epsilon ar{\mathbf{e}}_i)}{2\epsilon} + rac{\epsilon^2}{6} rac{\partial^3 f}{\partial x_i^3} + \mathcal{O}(\epsilon^4)$$

Calculating Derivatives — Finite Differencing

Non-Analytic Derivatives — Finite Differencing Finite Differencing — Sparsity and Symmetry Taylor's Theorem \Rightarrow Finite Differencing Finite Difference Gradient Finite Difference Hessian

Selecting ϵ

2 of 3

SAN DIEGO S UNIVERSIT

-(11/23)

$$\frac{d}{d\epsilon} \texttt{error}(\epsilon) \sim -\frac{2\epsilon_{\texttt{mach}} L_f}{\epsilon^2} + \frac{L_c}{2} = 0 \quad \Rightarrow \quad \epsilon^2 = \frac{4\epsilon_{\texttt{mach}} L_f}{L_c}$$

gives us the optimal value for epsilon. Since L_f and L_c are unknown in general, most software packages tend to select

$$\epsilon^* = \sqrt{\epsilon_{\rm mach}},$$

which is close to optimal in most cases.

Hence, the error in the approximated gradient is

$$\operatorname{error}(\epsilon^*) \sim 2L_f \sqrt{\epsilon_{\mathsf{mach}}} + \frac{L_c}{2} \sqrt{\epsilon_{\mathsf{mach}}} \sim \mathcal{O}\left(\sqrt{\epsilon_{\mathsf{mach}}}\right).$$

 Peter Blomgren, (blomgren.peter@gmail.com)
 Calculating Derivatives — Finite Differencing — (10/23)

Non-Analytic Derivatives — Finite Differencing Finite Differencing — Sparsity and Symmetry

Central Differences

Finite Difference Gradient Finite Difference Hessian

 $\mathcal{O}(h^2)$ Accuracy

Taylor's Theorem \Rightarrow Finite Differencing

2 of 2

3 of 3

Now, if we have a bound on the third derivative(s)

$$\left|\frac{\partial^3 f}{\partial x_i^3}\right| \le L_J,$$

we can derive an optimal ϵ :

$$\operatorname{error}(\epsilon) \sim \frac{\epsilon_{\operatorname{mach}} L_f}{\epsilon} + \frac{\epsilon^2 L_J}{6}.$$
$$\frac{d}{d\epsilon} \operatorname{error}(\epsilon) \sim -\frac{\epsilon_{\operatorname{mach}} L_f}{\epsilon^2} + \frac{\epsilon L_J}{3} = 0.$$
$$\Rightarrow \epsilon^* \sim \sqrt[3]{\frac{3\epsilon_{\operatorname{mach}} L_f}{L_J}} \sim \sqrt[3]{\epsilon_{\operatorname{mach}}} \quad \Rightarrow \quad \operatorname{error} \sim \mathcal{O}\left(\epsilon_{\operatorname{mach}}^{2/3}\right).$$

Peter Blomgren, {blomgren.peter@gmail.com} Calculating Derivatives — Finite Differencing — (12/23)

Non-Analytic Derivatives — Finite Differencing Finite Differencing — Sparsity and Symmetry Finite Difference Hessian		Non-Analytic Derivatives — Finite Differencing Taylor's Theorem ⇒ Finite Differencing Finite Differencing — Sparsity and Symmetry Finite Difference Gradient Finite Difference Hessian Finite Difference Hessian	
Smaller is Better Until it isn't — Redux	1 of 2	Smaller is Better Until it isn't — Redux	2 of 2
<pre>The Silly Example, now with central differences:</pre>	Sing Direct Starte UNIVERSITY	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sing Direct State UNIVERSITY
Peter Blomgren, (blomgren.peter@gmail.com) Calculating Derivatives — Finite Differencin	ng — (13/23)	Peter Blomgren, (blomgren.peter@gmail.com) Calculating Derivatives — Finite Differencing	— (14/23)
Non-Analytic Derivatives — Finite Differencing Taylor's Theorem ⇒ Finite Differencing Finite Differencing — Sparsity and Symmetry Finite Difference Gradient		Non-Analytic Derivatives — Finite Differencing Taylor's Theorem ⇒ Finite Differencing Finite Differencing — Sparsity and Symmetry Taylor's Theorem ⇒ Finite Differencing	
Approximating the Hessian The Easy Case	1 of 5	Approximating the Hessian Symmetrize	2 of 5

SAN DIEGO STAT

— (15/23)

The easy case: Analytic Gradient given

If the analytic gradient is known, then we can get an approximation of the Hessian by applying forward or central differencing to each element of the gradient vector in turn.

When the second derivatives exist and are Lipschitz continuous, **Taylor's theorem** says

$$\nabla f(\mathbf{\bar{x}} + \mathbf{\bar{p}}) = \nabla f(\mathbf{\bar{x}}) + \nabla^2 f(\mathbf{\bar{x}})\mathbf{\bar{p}} + \mathcal{O}(\|\mathbf{\bar{p}}\|^2).$$

Again, we let $\mathbf{\bar{p}} = \epsilon \mathbf{\bar{e}}_i$, $i = 1, 2, \dots, n$ and get

Peter Blomgren, (blomgren.peter@gmail.com)

$$abla^2 f(\mathbf{ar{x}}) \mathbf{ar{e}}_i \approx rac{
abla f(\mathbf{ar{x}} + \epsilon \mathbf{ar{e}}_i) -
abla f(\mathbf{ar{x}})}{\epsilon} + \mathcal{O}(\epsilon), \quad or$$

 $abla^2 f(\mathbf{ar{x}}) \mathbf{ar{e}}_i \approx rac{
abla f(\mathbf{ar{x}} + \epsilon \mathbf{ar{e}}_i) -
abla f(\mathbf{ar{x}} - \epsilon \mathbf{ar{e}}_i)}{2\epsilon} + \mathcal{O}(\epsilon^2).$

Calculating Derivatives — Finite Differencing

It is worth noting that this is a column-at-a-time process, which does not — due to numerical roundoff and approximation errors — necessarily give a symmetric Hessian.

It is often necessary to symmetrize the result

$$H_{\mathsf{num}}^{\mathsf{sym}} = rac{1}{2} \left[H_{\mathsf{num}} + H_{\mathsf{num}}^{\mathcal{T}}
ight]$$

SAN DIEGO S

Non-Analytic Derivatives — Finite Differencing Finite Differencing — Sparsity and Symmetry	Taylor's Theorem ⇒ Finite Differencing Finite Difference Gradient Finite Difference Hessian		Non-Analytic Derivatives — Finite Differencing Finite Differencing — Sparsity and Symmetry	Taylor's Theorem ⇒ Finite Differencing Finite Difference Gradient Finite Difference Hessian	
Approximating the Hessian	Special Case	3 of 5	Approximating the Hessian	Hard (Realistic) Case	4 of 5
Special Case: In Newton-CG merknowledge of the Hessian. Each is Hessian-vector product $\nabla^2 f(\mathbf{\bar{x}})\mathbf{\bar{p}}$, direction, this expression can be a $\nabla^2 f(\mathbf{\bar{x}})\mathbf{\bar{p}} \approx \frac{\nabla \mathbf{f}(\mathbf{\bar{x}} + \epsilon \mathbf{\bar{p}})}{[}$ This approximation is very cheap evaluation [s] is [are] needed.	teration requires the where $\mathbf{\bar{p}}$ is the given search approximated $\frac{-\nabla f(\mathbf{\bar{x}}[-\epsilon \mathbf{\bar{p}}])}{[2]\epsilon} + \mathcal{O}(\epsilon^{[2]})$		The harder case: Analytic Grad When the analytic gradient is not difference formula using only func- Hessian. The first order forward difference $\frac{\partial^2 f(\bar{\mathbf{x}})}{\partial x_i \partial x_j} \approx \frac{f(\bar{\mathbf{x}} + \epsilon \bar{\mathbf{e}}_i + \epsilon \bar{\mathbf{e}}_j) - \epsilon}{\int_{\mathbf{x}_i}^{\mathbf{y}_i} \epsilon^{-1}}$	t given we must use a finite ction values to approximate the ce approximation is given by	
		SAN DIEGO STATE UNIVERSITY			SAN DIEGO STATE UNIVERSITY
Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Calculating Derivatives — Finite Differencing	— (17/23)	Peter Blomgren, {blomgren.peter@gmail.com}	Calculating Derivatives — Finite Differencing —	- (18/23)
Non-Analytic Derivatives — Finite Differencing Finite Differencing — Sparsity and Symmetry	Taylor's Theorem ⇒ Finite Differencing Finite Difference Gradient Finite Difference Hessian		Non-Analytic Derivatives — Finite Differencing Finite Differencing — Sparsity and Symmetry		
Approximating the Hessian		5 of 5	Sparsity and Symmetry		1 of 3
At a price of $\sim n^2$ additional functions 33%) we can use the second order approximation $\frac{\partial^2 f(\bar{\mathbf{x}})}{\partial x_i \partial x_j} \approx \frac{f(\bar{\mathbf{x}} + \epsilon \bar{\mathbf{e}}_i + \epsilon \bar{\mathbf{e}}_j) - f(\bar{\mathbf{x}} + \epsilon \bar{\mathbf{e}}_i - \epsilon \bar{\mathbf{e}}_i - \epsilon \bar{\mathbf{e}}_i)}{\bullet^{-1}}$	er central difference $\frac{\epsilon \bar{\mathbf{e}}_{j}) - f(\bar{\mathbf{x}} - \epsilon \bar{\mathbf{e}}_{i} + \epsilon \bar{\mathbf{e}}_{j}) + f(\bar{\mathbf{x}} - \epsilon \bar{\mathbf{e}}_{i} - \epsilon \bar{\mathbf{e}}$	<i>ϵ</i> ē _j)	Now that we are paying ~ 4 funct Hessian matrix, it is worth taking account. Ponder the extended Rosenbrock /* C/C++ code, why not? */ double function_rosenbrock(int n, { double f = 0.0; int i; for(i=0; i <n)<br="" 2;="" i++="">f t= (10 * (x[2*i+1] - x[2*:</n>	<pre>sparsity and symmetry into function: double *x) i]*x[2*i]) * i]*x[2*i])) + [2*i]) ;</pre>	
Figure: The second order 4-point central			Clearly, there is no "interaction" I	between coordinate-directions $\mathbf{\bar{e}}_i$	
at the central point in the stencil — no of the evaluation!	te that the value in that point is not p	part San Diego State University	and $\mathbf{ar{e}}_j$, where $ i-j >1$.		San Diego State University
Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Calculating Derivatives — Finite Differencing	— (19/23)	Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Calculating Derivatives — Finite Differencing —	- (20/23)

Non-Analytic Derivatives — Finite Differencing Finite Differencing — Sparsity and Symmetry		Non-Analytic Derivatives — Finite Differencing Finite Differencing — Sparsity and Symmetry	
Sparsity and Symmetry	2 of 3	Sparsity and Symmetry	3 of 3
The fill-pattern of the Hessian of the extended Rosenbrock function consists of 2×2 -diagonal blocks: $\int_{0}^{0} \int_{0}^{0} \int_{0}^{0$		By using the fact that the Hessian is symmetric, we can save about half of the work, $\int_{0}^{0} \int_{0}^{0} \int_{0}^{0$	
Peter Blomgren, <pre> blomgren.peter@gmail.com</pre> Calculating	Derivatives — Finite Differencing — (21/23)	Peter Blomgren, <pre> blomgren.peter@gmail.com</pre>	Calculating Derivatives — Finite Differencing — (22/23)
Index central difference formula, 11 forward difference formula, 4 machine epsilon, 8 unit roundoff, 8			
Peter Blomgren, <pre> blomgren.peter@gmail.com</pre> Calculating	SAN DIRCO STATE UNIVERSITY Derivatives — Finite Differencing — (23/23)		