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Derivatives... Recap — Finite Differences
Automatic Differentiation

Derivatives Needed!!! — Continued

So far, we looked at using finite difference methods for
computing good numerical estimates for “missing” derivatives.

The finite difference approach comes at the price of —

(i) introducing some numerical error in the derivative
expressions

(ii) a need for extra evaluations of the function (objective)
and/or the gradient.

Finite difference approximations work very well, but if the
analytical expressions for the gradient and Hessian can be provided
it is the way to go!

Next, we look at Automatic Differentiation Techniques.
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Derivatives... Recap — Finite Differences
Automatic Differentiation

Automatic Differentiation Math/CS White Magic

“Automatic differentiation (AD) is a technique for augmenting computer
programs with derivative computations. It exploits the fact that every
computer program, no matter how complicated, executes a sequence of
elementary arithmetic operations such as additions or elementary
functions such as exp (). By applying the chain rule of derivative calculus
repeatedly to these operations, derivatives of arbitrary order can be
computed automatically, and accurate to working precision.”
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Derivatives... Recap — Finite Differences
Automatic Differentiation

Automatic Differentiation Math/CS White Magic

“Automatic differentiation (AD) is a technique for augmenting computer
programs with derivative computations. It exploits the fact that every
computer program, no matter how complicated, executes a sequence of
elementary arithmetic operations such as additions or elementary
functions such as exp (). By applying the chain rule of derivative calculus
repeatedly to these operations, derivatives of arbitrary order can be
computed automatically, and accurate to working precision.”

http://wiki.mcs.anl.gov/autodifs/ provides links and references to
usable tools [ADIC, ADIFOR, OpenAD/F, Rapsodia| for AD for
C/C++, Fortran 77, and Fortran 90. Page last updated: 4 March 2014
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Derivatives... Recap — Finite Differences
Automatic Differentiation

Automatic Differentiation Math/CS White Magic

“Automatic differentiation (AD) is a technique for augmenting computer
programs with derivative computations. It exploits the fact that every
computer program, no matter how complicated, executes a sequence of
elementary arithmetic operations such as additions or elementary
functions such as exp (). By applying the chain rule of derivative calculus
repeatedly to these operations, derivatives of arbitrary order can be
computed automatically, and accurate to working precision.”

http://wiki.mcs.anl.gov/autodifs/ provides links and references to
usable tools [ADIC, ADIFOR, OpenAD/F, Rapsodia| for AD for
C/C++, Fortran 77, and Fortran 90. Page last updated: 4 March 2014

We will here take a very brief look at AD. Even more references
and pointers can be found at nttp://www.AutoDiff.org/, including N
tools for MATLAB and python.
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Derivatives... Recap — Finite Differences
Automatic Differentiation

Micro-History of Automatic Differentiation

@ First publications: early 1950s

@ Most cited references
(1236) “AD Model Builder: using automatic differentiation for statistical inference of highly parameterized

complex nonlinear models”; Fournier, Skaug, Ancheta, lanelli, Magnusson, Maunder, Nielsen, and
Sibert; Optimization Methods and Software, 27(2), pp.233-249. 2012.

(992) “Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in
C/C++"; Griewank, Juedes, and Utke. ACM Transactions on Mathematical Software (TOMS),
22(2), pp.131-167. 1996.

(990) “Automatic Differentiation: Techniques and Applications” Louis B. Rall. 1981.

1st International Conference on AD: USA, 1991
IMA Special Workshop, Minneapolis, USA, 1997
First European AD Workshop: France, 2005

e ¢ ¢

@ AD2016 - 7th International Conference on Algorithmic Differentiation
September 2016, UK

21st EuroAD Workshop 19-20 November 2018, Germany

8th SIAM Workshop on Combinatorial Scientific Computing June 6-8, 2018,
Bergen, Norway

e ¢
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Derivatives... Recap — Finite Differences
Automatic Differentiation

The Chain Rule — Forgotten(?) Calculus

The Chain Rule in its full vector glory takes the form

The Chain Rule
If h:R™ = R, and y : R" — R™, then for X € R” we can write

Veh(3(R) = Y g;w,m.

Automatic differentiation is essentially applying the chain rule at
the code level. — There are two modes of AD, the forward and
the reverse mode. We follow the example from Nocedal-Wright.
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

Automatic Differentiation — Example

Example Problem

We consider a function f : R3 — R

f(X) = (xixasin(x3) + €2) /x3

This function can be evaluated in several different ways.

The computational environment will apply certain restictions

(aiming for efficiency), e.g. “the multiplication of x;x, must take
place before the exponentiation €1*2,” We illustrate one possibility
with a (partially ordered) computational graph and several
intermediate variables. B
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

Automatic Differentiation — Example

Some graph theoretical language:

@ node#i is the parent of node#j (and hence node#j the child
of node#1i) if there is a directed arc from / to j.

@ A node can be evaluated when all its parents are known, so

the computation flows left-to-right (see next slide). This is
known as a forward sweep.
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

Automatic Differentiation — Example

O i O
\

Figure: The computational graph associates with the function

f(X) = (x1x2sin(x3) + €1°2) /x3

We have introduced the intermediate variables x4 = x1 *x2, x5 =sin(x3), xg = €%,
X7 = X4 * X5, Xg = Xe+ x7, and xg = xg/x3. -
Note: In AD, the software not the user identifies (either explicitly or implicitly) the

SAN DIEGO STATE
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

AD — Example / Forward Mode

In forward mode, a directional derivative, in the direction
p € R", of each intermediate value x; is evaluated and carried
forward simultaneously with the evaluation of x; itself.

The directional derivative for p € R"” associated with x;

def T= Ox; .
pX: = [VXI] pP= a5 Pj, Vi
Z . B
In our example n=3, i =1,2,...,9, and our goal is to evaluate

DﬁXg = Vf()_() T

Note: X1 = p1, Dsxo = p2, and Dpx3 = p3. p is known as a
seed vector. Sy o
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

AD — Example / Forward Mode

As soon as the value of x; is : \
known at a node, we can find . exp

Dpxi using the chain rule. E.g. @#
when x7 = X3 * x5 is known, we

have O OnOn05-O

0 0
Vx7 = ﬁVx;; + ﬁVX5 = x5Vx4 + x4Vx5
8X4 8X5

Hence, the directional derivative Dpx7 = x5Dpxs + x4Dpxs5 can be
evaluated.

The accumulation of the directional derivative follows the forward .
sweep, and at the end we have Dsxg = Dsf = V£(X)p.
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

AD — Example / Forward Mode

The key to practical implementation of forward-mode automatic
differentiation is the concurrent evaluation of x; and Dpx;.

To obtain the complete gradient vector, the procedure is carried
out simultaneously for n seed vectors p = {€j, €, ..., €, }.

The computational cost can be significant, for instance a single
division operation w/y induces approximately 2n multiplications
and n additions in the gradient calculation.
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

AD — Example / Forward Mode

An exact bound on the increase in computation (especially for a
complicated expression) is hard to obtain [WORST-CASE Bounds
are not very useful here], since we have to take into account the
cost of storing and retrieving the extra quantities Ds,x;.

AD/FM can be implemented in terms of a pre-compiler which
transforms function evaluation code into augmented code that
evaluates derivatives as well. Alternatively operator-overloading
(in e.g. C++) can be used to transparently extend data structures
and operations to perform the necessary bookkeeping and
computations.
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

AD — Example / Reverse Mode

In reverse mode AD, the function value f is first computed in a
forward sweep, then in a second reverse sweep the derivatives of
f with respect to each variable x; (independent and intermediate)
are recovered.

We associate an adjoint variable X; with each node in the
computational graph. In these adjoint variables we accumulate the
partial derivative information df /0x; during the reverse sweep.
They are initialized xX; =X, = --- =X,_1 =0, and X, = 1.

The reverse sweep is built on the chain rule:

- of of 0x;
Xi= Ox; 4 0x; Ox;
J child of i
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

AD — Example / Reverse Mode

When a term in the sum becomes known, we accumulate it in X;

Once X; has received contributions from all its children, it is
finalized and can communicate its value to its parent(s).

During the reverse sweep we work directly with numerical values,
not with formulas or computer code describing the variables x;
and/or the partial derivatives Of /0x;.

Let's work through the example...
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

AD — Example / Reverse Mode 10 of 14

Figure: Forward sweep, the computational graph at level 0.
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AD — Example / Reverse Mode 10 of 14

Figure: Forward sweep, the computational graph at level 1.
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

AD — Example / Reverse Mode 10 of 14

Figure: Forward sweep, the computational graph at level 2.
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

AD — Example / Reverse Mode 10 of 14

Figure: Forward sweep, the computational graph at level 3.
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

AD — Example / Reverse Mode 10 of 14

()2 ; \. ’

Figure: Forward sweep, the computational graph at level 4, — Sweep complete.
After the forward sweep is complete we initialize the adjoint variables, in particular
X9 = 1, and node#9 is finalized (it has no children). Sap DGO stare
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

11 of 14

AD — Example / Reverse Mode

The reverse sweep

%1 =0, % =0, % =0, % =0, X5 =0, X =0, Xy =0, X3 =0, Xg = 1

Node#9 is the child of nodes #3 and . ex
#8, we update the associated adjoint vari- @ @i \

ables, finalizing node#8. (x9 = xg/x3)

_ Of Oxg 24+ e —8-—4€ Of Oxg 1 2
X3 += — — — = 5 g += — — _— = =
Oxg Ox3 (7/2)2 2 Oxg Oxg w2 w
{i1:0,X270,X3:78;2452,74:0,75:0,7620,%:0 }
_ 2
Xg = =, xg =1 ‘,,,
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Extended Example

Automatic Differentiation Comments, Extensions, and Limitations

12 of 14

AD — Example / Reverse Mode

2
% =0, % =0 %= "5 % =0 %=0%=0, % =0
xB:%,igzl

and #7, finalizing both. (xg = x + x7).

We now update the parents of #8 — #6 @; i\

_ of Oxg  _ 2 _ Of Oxg  _
X6+‘77=X8-1=7, X7 4= — — =Xg-1=—
Oxg Oxp T Oxg Ox7 T
_ _ —8 — 4¢? _ _
%1 =0, % =0, X3 = ————, X% =0, % =0
™ 2
X =—, X =—,%X=—, %=1
™ ™ T
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Extended Example

Automatic Differentiation Comments, Extensions, and Limitations

AD — Example / Reverse Mode

13 of 14

Next, we use #6 and #7, to fi- \

nalize #4 and #5. (x6 = €<, ®ﬁ®<\

X7 = Xa * X5).

_ Of Oxg  Of Oxy 5 2e2 42
Xg+4= — — + ——— =X e +X7- 1 = —
8X68X4 8X7(9X4 ™
8f aX7 _ 4
Xg += — — =X7-2 = —
8X78X5
_ _ _ -8 —4e
X1 =0, X =0, X3 >
s
22 +2 4 2 2 2
4= —— »5:;VX67;7X7:;7X37;»X971
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

14 of 14

AD — Example / Reverse Mode

to complete the reverse sweep.

We now have the final pieces @ ) @
Xa = X1 % X2, X5 = sin(x3)). < \
R[OS OR ST

OF 0% _ g (= cos(n/2)) = 0

aX5 8X3
_ of Oxq  _ 2e2 42 Of Oxg  _ 4e2 4+ 4
Xp+= — — =X 1l= —,| Xp+= — — =X3-2 =
Oxg4 Ox> T Ox4 Ox1 T
4e? + 4 22 4 2 _ —8 — 4e?
X] = ) , X3 = 3
™ T
2242 4 2 2 2
4 = , X5 = —, Xg= —, X7= —, Xg = —, Xg =1
v ™ ™ s ™
SAN DIEGO STATE
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

Reverse Mode Automatic Differentiation: Comments

Main appeal of AD/RM: low computational complexity for
scalar functions. Extra arithmetic is at most 4-5 times the “pure’
function evaluation.

Main drawback of AD/RM: the entire computational graph
must be stored for the reverse sweep. Implementation and access
patterns are quite straight-forward, but storage can be a problem:

— If each node can be stored in 20 bytes, then a function
that requires one second of evaluation on a 100 megaflop
computer may generate a graph which requires 2 Gb of storage!

— The storage requirement can be reduced at the cost of extra
arithmetics by partial forward and reverse sweeps; re-evaluating
portions instead of storing the whole graph. This is known as
checkpointing.
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

Extending AD to Vector Functions

The idea of automatic differentiation is quite easily extended to
vector valued functions,

F:R" = R",

so that the Jacobian matrix of first derivatives

can be formed using automatic differentiation.

All we need is additional bookkeeping for the m components of F.
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

Extending AD to the Hessian (2"¢ Derivatives) Fwd. Mode

The technique can also be adapted to evaluate the Hessian. In
forward mode we need 2 seed vectors p and @, and we define

DﬁaX,' = [._)T [VZX,'] (_.]

these 2nd derivative quantities are propagated (using the chain
rule) just like the 1st derivatives were propagated in our previous
example.

At the end of the sweep the terminal node contains the value of

Dpgxn = p’ [V2X,'] g=p’ [V2f()_()] q

Each pair (p,q) = (&/, €;) gives the Hjj entry of the Hessian matrix.
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

Forward-Mode Hessian

Due to symmetry we only need to compute the j </ entries Hj;,
and it is quite clear how to exploit sparsity.

The increase in the number of arithmetic computations compared
with evaluation of f alone is a multiplicative factor

~ [14 n+ N (V>F)]

where N,(V?f) is the number of entries of the Hessian we decide
to compute.

In Newton-CG algorithms we only need the effect of the
Hessian-vector product V2£(X)¥, in this case we simply fix the
second seed vector ¢ =¥ and compute the remaining n entries

8/ [V(x)]F= [v2f(>'<)F]j, Jj=12,...,n

using the forward sweep.
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

Reverse-Mode Hessian

It is also possible to implement evaluation of the Hessian, V2f(X), or the
Hessian-vector product, V2f(X)F, in reverse mode.

In the latter case, first both f(X) and V£(X)'F are propagated during the
forward sweep and the values accumulated in (x;, Dx;).

Then we apply the reverse sweep to the computed V£(X)'F, At the
completion of the reverse sweep we have

0%/ [VEE) T = [V*F()F] i=12,..n

in the nodes corresponding to the independent variables.

The increase in work over evaluation of f alone is a multiplicative factor
not greater than

~ 12N (V?f(%))
where N (V?2f(X)) = #of (right-)seed vectors used in computation.
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

Limitation of Automatic Differentiation

1. f(x) depends on the numerical solution of a PDE

In this case f(X) may contain truncation errors due to the scheme
used to solve the PDE. Even though the truncation errors are
small |7(X)| < €, we cannot control the derivative (gradient)
7/(X), hence errors in AD-computed f’(X) can potentially be
large.

2. Perverse code
Due to branching (if-statements, etc.) a function evaluation may
be equivalent to the following valid but nasty piece of code:
if (x == 1.0) then { f = 0.0; } else { f = x - 1.0; }
Automatic differentiation would most likely give us (1) = 0,
which does not seem like a Good Idea™.
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Extended Example
Automatic Differentiation Comments, Extensions, and Limitations

Bottom Line

e Automatic differentiation provide a set of powerful tools/ideas.

e AD can enhance optimization algorithms, and can be applied
successfully in many applications involving highly complex
functions.

e AD facilitates interpretations of the computed optimal solutions,
allowing the user to extract more information from the result.

e AD does not absolve the user altogether from the respon-
sibility of thinking about derivative calculations, and cor-
rectly interpreting and validating the results.
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Index and References

automatic differentiation
forward mode example, 12
history, 7
reverse mode, 16

chain rule
vector form, 8

Reference(s):

@ Fournier, David A., Hans J. Skaug, Johnoel Ancheta, James lanelli, Arni Magnusson, Mark N. Maunder,
Anders Nielsen, and John Sibert. AD Model Builder: using automatic differentiation for statistical
inference of highly parameterized complex nonlinear models. Optimization Methods and Software 27, no. 2
(2012): 233-249.

@ Griewank, Andreas, David Juedes, and Jean Utke. Algorithm 755: ADOL-C: a package for the automatic
differentiation of algorithms written in C/C++. ACM Transactions on Mathematical Software (TOMS) 22,
no. 2 (1996): 131-167.

@ Rall, Louis B. Automatic differentiation: Techniques and applications. (1981).
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