					0
Quasi-Newton Methods	The Sa	les Pitch!	The BFGS Method: Introduction		1 of 3
Quasi-Newton Methods BFGS Variants	Introduction The BFGS Method		Quasi-Newton Methods BFGS Variants	Introduction The BFGS Method	
Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Quasi-Newton Methods — The BFGS Method	d — (1/26)	Peter Blomgren, {blomgren.peter@gmail.com}	Quasi-Newton Methods — The BFGS Method	— (2/26)
Fall	2018	SAN DIGO STATE UNIVERSITY			SAN DIEGO STATE UNIVERSITY
http://termi	nus.sdsu.edu/				
Department of Math Dynamical S Computational Scie San Diego S San Diego, C	ematics and Statistics systems Group nces Research Center cate University CA 92182-7720		 BFGS Variants Limited-memory BFGS 		
$\langle \texttt{blomgren.pet}$	erQgmail.com				
Peter B	lomgren,		IntroductionThe BFGS Method		
Lecture I Quasi-Newton Method	s — The BFGS Method		 Quasi-Newton Methods 		
Numerical (Optimization				
			Outline		
Quasi-Newton Methods BFGS Variants		Quasi-Newton Methods BFGS Variants			

Quasi-Newton methods require **only the gradient** (like steepest descent) of the objective to be computed at each iterate.

By successive measurements of the gradient, Quasi-Newton methods build a quadratic model of the objective function which is sufficiently good that **superlinear** convergence is achieved.

Quasi-Newton methods are much faster than steepest descent (and coordinate descent) methods.

Since second derivatives (the Hessian) are not required, quasi-Newton methods are **sometimes** more efficient (as measured by total work / "wall-clock computational time") than Newton methods, especially when Hessian evaluation is slow/expensive.

SAN DIEGO STA UNIVERSITY

- (3/26)

The BFGS method is named for its discoverers:

BROYDEN-FLETCHER-GOLDFARB-SHANNO, and is the most popular quasi-Newton method.

We first derive the DFP method (a close relative; named after DAVIDON-FLETCHER-POWELL) and then the BFGS method; and look at some properties and practical implementation details.

The derivation starts with the quadratic model

$$m_k(\mathbf{\bar{p}}) = f(\mathbf{\bar{x}}_k) + \nabla f(\mathbf{\bar{x}}_k)^T \mathbf{\bar{p}} + \frac{1}{2} \mathbf{\bar{p}}^T B_k \mathbf{\bar{p}}$$

at the current iterate $\bar{\mathbf{x}}_k$. B_k is a symmetric positive definite matrix (model Hessian) that will be **updated** in every iteration.

SAN DIEGO ST

Quasi-Newton Methods BFGS Variants	Introduction The BFGS Method		Quasi-Newton Methods BFGS Variants	Introduction The BFGS Method
The BFGS Method: Introduction	Standard Stuff	2 of 3	The BFGS Method: Introduction	3 of 3
Given this convex quadratic model, we explicitly as $\mathbf{ar{p}}_k = -B_k^-$	e can write down the minimizer $ar{\mathbf{F}}$ ${}^1 abla f(ar{\mathbf{x}}_k).$	ō _k	So far we have not really done an compared with the linesearch New an approximate Hessian $B_k eq abla^2$	withing new — the key difference vion method is that we are using $f(\mathbf{\bar{x}}_k)$.
We can compute the search direction factorization, or a (P)CG-iteration; or iterate: $\mathbf{\bar{x}}_{k+1} = \mathbf{\bar{x}}_k$	$\mathbf{\bar{p}}_k$ using <i>e.g.</i> the Cholesky nee we have $\mathbf{\bar{p}}_k$ we find the new $+ \alpha_k \mathbf{\bar{p}}_k$,		Instead to computing a complete will update $B_{k+1} = B_k +$	by new B_k in each iteration, we "something,"
where we require that the step length conditions:	α_k satisfies <i>e.g.</i> the Wolfe		using partial about the curvature model	at step $\#k$. Thus we get a new
$f(ar{\mathbf{x}}_k + lpha ar{\mathbf{p}}_k) \leq f(ar{\mathbf{x}}_k) - f(ar{\mathbf{x}}_k)$	$+ c_1 lpha oldsymbol{ar{p}}_k^T abla f(oldsymbol{ar{x}}), c_1 \in (0,1)$		$m_{k+1}(\mathbf{ar{p}}) = f(\mathbf{ar{x}}_{k+1}) + abla$	$f(\mathbf{\bar{x}}_{k+1})^{T}\mathbf{\bar{p}} + \frac{1}{2}\mathbf{\bar{p}}^{T}B_{k+1}\mathbf{\bar{p}}.$
$\bar{\mathbf{p}}_k^T \nabla f(\bar{\mathbf{x}}_k + \alpha \bar{\mathbf{p}}_k) \geq c_2 \bar{\mathbf{p}}_k^T \nabla$	$f(ar{\mathbf{x}}_k), \qquad c_2 \in (c_1,1).$	San Digo State University	Clearly, for this to make sense we the update.	must impose some conditions on
Peter Blomgren, {blomgren.peter@gmail.com}	Quasi-Newton Methods — The BFGS Method	— (5/26)	Peter Blomgren, {blomgren.peter@gmail.com}	Quasi-Newton Methods — The BFGS Method — (6/26)
Quasi-Newton Methods BFGS Variants	Introduction The BFGS Method		Quasi-Newton Methods BFGS Variants	Introduction The BFGS Method
The BFGS Method: Conditions on B_{μ}	x+1	1 of 3	The BFGS Method: Conditions on E	<i>B</i> _{<i>k</i>+1} 2 of 3
We impose two conditions on the	new model $m_{k+1}(\mathbf{ar{p}})$:	_	We clean up the notation by introdu	cing $(\bar{\mathbf{x}}_k, \text{ and } \bar{\mathbf{y}}_k)$:
[1,2] $m_{k+1}(m{ar{p}})$ must match function in $m{ar{x}}_k$ and $m{ar{x}}_{k+1}$	the gradient of the objective -1.		$egin{array}{rcl} ar{\mathbf{s}}_k &=& ar{\mathbf{x}}_{k+1} - ar{\mathbf{x}}_k \ ar{\mathbf{y}}_k &=& abla f(ar{\mathbf{x}}_{k+1}) - ar{\mathbf{x}}_k \end{array}$	$\equiv \alpha_k \mathbf{\bar{p}}_k$ - $\nabla f(\mathbf{\bar{x}}_k)$.
The second condition is satisfied b	y construction, since		We can now express the condition of	n B_{k+1} in terms of $\mathbf{\bar{s}}_k$ and $\mathbf{\bar{y}}_k$:
$ abla m_{k+1}(ar{f 0}) =$	$= \nabla f(\mathbf{\bar{x}}_{k+1}).$		Secant Equation	1
The first condition gives us			B _{k+1} s	$\mathbf{k} = \mathbf{\bar{y}}_{\mathbf{k}}$
$ abla m_{k+1}(-lpha_k \mathbf{ar{p}}_k) = abla f(\mathbf{ar{x}}_{k+1})$	$(1) - \alpha_k B_{k+1} \mathbf{\bar{p}}_k = \nabla f(\mathbf{\bar{x}}_k).$		By pre-multiplying the secant equati	on by $\mathbf{\bar{s}}_{k}^{T}$ we get the
With a little bit of re-arrangement	we get		Curvature Condition $\mathbf{\bar{s}}_{k}^{T}B_{k+1}\mathbf{\bar{s}}_{k} = \mathbf{\bar{s}}_{k}^{T}\mathbf{\bar{y}}_{k}$	$\Rightarrow \ \mathbf{\bar{s}}_{\mathbf{k}}^{T}\mathbf{\bar{y}}_{\mathbf{k}} > 0.$
$lpha_{\mathbf{k}}\mathbf{B}_{\mathbf{k}+1}\mathbf{ar{p}}_{\mathbf{k}}= abla\mathbf{f}(\mathbf{k})$	$\mathbf{\bar{x}_{k+1}}) - abla \mathbf{f}(\mathbf{\bar{x}_k}).$	SAN DIEGO STATE UNIVERSITY	>0	-vio Dicco Stat Universar

Quasi-Newton Methods — The BFGS Method — (7/26)

Peter Blomgren, {blomgren.peter@gmail.com}

Quasi-Newton Methods BFGS Variants	Introduction The BFGS Method		Quasi-Newton Me BFGS Va	thods Introduction riants The BFGS Method	
The BFGS Method: Conditions on E	B_{k+1}	3 of 3	The BFGS Method: More Cond	litions on B_{k+1}	1 of
If we impose the Wolfe, or strong Wolfe condition on the line search procedure, the curvature condition will always hold, since			It turns out that there are in definite matrices B_{k+1} which	finitely many symmetric positive a satisfy the secant equation.	
	T		Degrees of Freedom	Conditions Imposed	
$ abla f(ar{\mathbf{x}}_{k+1}) \ \mathbf{\bar{s}}_k \ge$	$\geq c_2 \nabla f(\mathbf{\bar{x}}_k)' \mathbf{\bar{s}}_k,$		n(n+1)/2 — Symmetric	n — The Secant Equation n — Principal minors positive	(PD)
by the (curvature) Wolfe condition	on, and therefore				(10)
$\mathbf{ar{y}}_k^{ op} \mathbf{ar{s}}_k \geq (c_2 - 1)$	$)\alpha_k \nabla f(\mathbf{\bar{x}}_k)^T \mathbf{\bar{p}}_k,$		To determine B_{k+1} uniquely — we will select the B_{k+1} th	we must impose additional conc nat is closest to B_k in some sens	litions e:
where the right-hand-side is posit descent direction.	ive since $c_2 < 1$ and $\mathbf{ar{p}}_k$ is a		Matrix-Minimization-Problem	n	1
When the curvature condition is satisfied, the secant equation always has at least one solution B_{k+1} .			$B_{k+1} = rg\min_B \ B - B_k\ _{ ext{some-norm}}$		
			subject to	$B = B^T, \ B\mathbf{\bar{s}}_k = \mathbf{\bar{y}}_k.$	
		SAN DIEGO STATE UNIVERSITY			San Diego S Universi
Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Quasi-Newton Methods — The BFGS Method	— (9/26)	Peter Blomgren, {blomgren.peter@gmail	. com \rangle Quasi-Newton Methods — The BFGS Me	thod — (10/26
Quasi-Newton Methods BFGS Variants	Introduction The BFGS Method		Quasi-Newton Me BFGS Va	thods Introduction riants The BFGS Method	
The BFGS Method: More Conditions on B_{k+1} 2 of 2		2 of 2	Square Roots of SPD Matrices	[SUP	PLEMENTA!

Each choice of matrix norm in this matrix-minimization-problem (MMP) gives rise to a different quasi-Newton method.

The weighted Frobenius norm

$$||A||_{W} = ||W^{1/2}AW^{1/2}||_{F} = ||C||_{F} = \sqrt{\sum_{i=0}^{n} \sum_{j=0}^{n} c_{ij}^{2}}$$

allows easy solution of the MMP, and gives rise to a scale-invariant optimization method.

The matrix W is chosen to be the inverse G_k^{-1} of the **average** Hessian

$$G_k = \int_0^1
abla^2 f(\mathbf{ar{x}}_k + au lpha_k \mathbf{ar{p}}_k) \, d au$$

• A positive semi-definite matrix, M has a unique positive semi-definite square root, $R = M^{1/2}$.

• When $M = X\Lambda X^{-1} \stackrel{\text{SPD}}{=} Q\Lambda Q^T$, let $R = QSQ^T$, and

$$R^{2} = (QSQ^{T})^{2} = QSQ^{T}QSQ^{T} = QSSQ^{T} = QS^{2}Q^{T} = M,$$

showing that

$$S = \Lambda^{1/2}$$
, and therefore $R = Q \Lambda^{1/2} Q^T$

• \exists other approaches.

SAN DIEGO STAT

SAN DIEGO S

The DFP Method

With this weighting matrix and norm, the unique solution of the MMP is

$$B_{k+1} = \left(I - \gamma_k \bar{\mathbf{y}}_k \bar{\mathbf{s}}_k^T \right) B_k \left(I - \gamma_k \bar{\mathbf{s}}_k \bar{\mathbf{y}}_k^T \right) + \gamma_k \bar{\mathbf{y}}_k \bar{\mathbf{y}}_k^T, \quad \gamma_k = \frac{1}{\bar{\mathbf{y}}_k^T \bar{\mathbf{s}}_k}$$

Note that γ_k is a scalar, and $\mathbf{\bar{y}}_k \mathbf{\bar{s}}_k^T$, $\mathbf{\bar{s}}_k \mathbf{\bar{y}}_k^T$, and $\mathbf{\bar{y}}_k \mathbf{\bar{y}}_k^T$ are rank-one matrices.

This is the original Davidon-Fletcher-Powell (DFP) method suggested by W.C. Davidon in 1959.

The original paper describing this revolutionary idea — the first quasi-Newton method — was not accepted for publication. It later appeared in **1991** in the first issue the the SIAM Journal on Optimization.

Fletcher and Powell demonstrated that this algorithm was much faster and more reliable than existing methods (at the time). This revolutionized the field of non-linear optimization.

 Peter Blomgren, (blomgren.peter@gmail.com)
 Quasi-Newton Methods — The BFGS Method — (13/26)

 Quasi-Newton Methods BFGS Variants
 Introduction The BFGS Method

The DFP Method: Cleaning Up

With a little bit of linear algebra we end up with

$$H_{k+1} = H_k - \underbrace{\frac{H_k \bar{\mathbf{y}}_k \bar{\mathbf{y}}_k^T H_k}{\bar{\mathbf{y}}^T H_k \bar{\mathbf{y}}_k}}_{\text{Update #1}} + \underbrace{\frac{\bar{\mathbf{s}}_k \bar{\mathbf{s}}_k^T}{\bar{\mathbf{y}}_k^T \bar{\mathbf{s}}_k}}_{\text{Update #2}}$$

Both the update terms are rank-one matrices; so that H_k undergoes a rank-2 modification in each iteration.

This is the **fundamental idea of quasi-Newton updating:** instead of recomputing the matrix (-inverse) from scratch each time around, we apply a simple modification which combines the more recently observed information about the objective with existing knowledge embedded in the current Hessian approximation.

Ê

SAN DIEGO

The DFP Method: Cleaning Up

The inverse of B_k is useful for the implementation of the method, since it allows the search direction $\mathbf{\bar{p}}_k$ to be computed using a simple matrix-vector product. We let

$$H_k = B_k^{-1}$$

and use

Sherman-Morrison-Woodbury formula

If $A \in \mathbb{R}^{n \times n}$ is non-singular and $\mathbf{\bar{a}}, \mathbf{\bar{b}} \in \mathbb{R}^{n}$, and if

$$B = A + \mathbf{\bar{a}}\mathbf{\bar{b}}^T$$

then

Ê

SAN DIEGO STAT

2 of 2

Êı

SAN DIEGO STA UNIVERSITY $B^{-1} = A^{-1} - \frac{A^{-1} \overline{\mathbf{a}} \overline{\mathbf{b}}^T A^{-1}}{1 + \overline{\mathbf{b}}^T A^{-1} \overline{\mathbf{a}}}$

Peter Blomgren, $\langle blomgren.peter@gmail.com \rangle$	Quasi-Newton Methods — The BFGS Method $-$ (14/26)

```
Quasi-Newton Methods
BFGS Variants The BFGS Method
```

The DFP method is quite effective, but once the quasi-Newton idea was accepted by the optimization community is was quickly superseded by the BFGS method.

BFGS updating is derived by instead of imposing conditions on the Hessian approximations B_k , we impose conditions directly on the inverses H_k .

The updated approximation must be symmetric positive definite, and must satisfy the **secant equation** in the form

$$\mathbf{H}_{\mathbf{k}+1}\mathbf{\bar{y}}_{\mathbf{k}} = \mathbf{\bar{s}}_{\mathbf{k}}, \qquad \text{compare:} \qquad B_{k+1}\mathbf{\bar{s}}_{k} = \mathbf{\bar{y}}_{k}.$$

We get a slightly different matrix minimization problem...

Quasi-Newton Methods Introduction **BEGS** Variants The BFGS Method

The BFGS Method: Summary

The cost per iteration is

- $\mathcal{O}(n^2)$ arithmetic operations
- function evaluation
- gradient evaluation

The convergence rate is

Super-linear •

Newton's method converges quadratically, but the cost per iteration is higher — it requires the solution of a linear system. In addition Newton's method requires the calculation of second derivatives whereas the BFGS method does not.

		SAN DIEGO STATE UNIVERSITY	Tew steps.	San Direo State University
Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Quasi-Newton Methods — The BFGS Method	— (21/26)	Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Quasi-Newton Methods — The BFGS Method — (22/26)
Quasi-Newton Methods BFGS Variants	Introduction The BFGS Method		Quasi-Newton Methods BFGS Variants	Limited-memory BFGS
The BFGS Method: Stability and Self-Correction	on	2 of 2	L-BFGS	

The self-correcting properties stand and fall with the quality of the line search! — The Wolfe conditions ensure that the model captures appropriate curvature information.

The DFP method is less effective at self-correcting bad Hessian approximations.

Practical Implementation Details:

- The linesearch should always test $\alpha = 1$ first, because this step length will eventually be accepted, thus creating super-linear convergence.
- The linesearch can be somewhat "sloppy:" $c_1 = 10^{-4}$ and $c_2 = 0.9$ are commonly used values in the Wolfe conditions.
- The initial matrix H_0 should not be too large, if $H_0 = \beta I$, then the first step is $\mathbf{\bar{p}}_0 = -\beta \nabla f(\mathbf{\bar{x}}_0)$ which may be too long if β is large, often H_0 is rescaled before the update H_1 is computed:

$$H_0 \leftarrow \frac{\mathbf{\bar{y}}_k^T \mathbf{\bar{s}}_k}{\mathbf{\bar{y}}_k^T \mathbf{\bar{y}}_k}$$

Quasi-Newton Methods Introduction **BFGS** Variants The BFGS Method

The BFGS Method: Stability and Self-Correction

If at some point $\rho_k = 1/\bar{\mathbf{y}}_k^T \bar{\mathbf{s}}_k$ becomes large, *i.e.* $\bar{\mathbf{y}}_k^T \bar{\mathbf{s}}_k \sim 0$, then from the update formula

$$H_{k+1} = \left(I - \rho_k \bar{\mathbf{s}}_k \bar{\mathbf{y}}_k^T\right) H_k \left(I - \rho_k \bar{\mathbf{y}}_k \bar{\mathbf{s}}_k^T\right) + \rho_k \bar{\mathbf{s}}_k \bar{\mathbf{s}}_k^T$$

we see that H_{k+1} becomes large.

If for this, or some other, reason H_k becomes a poor approximation of $[\nabla^2 f(\bar{\mathbf{x}}_k)]^{-1}$ for some k, is there any hope of correcting it?

It has been shown that the BFGS method has self-correcting **properties**. — If H_k incorrectly estimates the curvature of the objective function, and if this estimate slows down the iteration, then the Hessian approximation will tend to correct itself within a few stens

${\tt peter@gmail.com}$	Quasi-Newton Methods — The BFGS Method $-(21/26)$	Peter Blomgren, {blomgren.p	eter@gmail.com>	Quasi-Newton Methods — The BFGS Method — (22/26)
i-Newton Methods BFGS Variants	Introduction The BFGS Method	Quasi-	Newton Methods BFGS Variants	Limited-memory BFGS
nd Self-Correctio	n 2 of 2	L-BFGS		

Forming the $n \times n$ dense matrix H_k can be quite expensive for large problems. L-BFGS stores a limited history of the BFGS update vectors $\mathbf{\bar{s}}_k$ and $\mathbf{\bar{y}}_k$ (which are size *n*), and use these to "implicitly" form the matrix operations.

In standard BFGS, the current H_k contains updates all the way back to initial step $\{\mathbf{\bar{s}}_j, \mathbf{\bar{y}}_j\}_{j=0}^{k-1}$, whereas L-BFGS only uses a limited number of "recent" updates; so that the action of \tilde{H}_k is formed by application of $\{\mathbf{\bar{s}}_{j}, \mathbf{\bar{y}}_{j}\}_{j=\max(0,k-m)}^{k-1}$.

۴ı SAN DIEGO ST

Quasi-Newton Methods BFGS Variants	mited-memory BFGS	Quasi-Newton Methods BFGS Variants	Limited-memory BFGS
L-BFGS	"Two Loop Recursion"	Index	
Given a local initial positive definite v = $\nabla f(\mathbf{\bar{x}}_k)$ a $\alpha_j = \rho_j \mathbf{\bar{s}}_j^T \mathbf{\bar{v}}, \mathbf{\bar{v}} = \mathbf{\bar{v}} - \alpha_j \mathbf{\bar{y}}_j, j = \mathbf{\bar{v}}_j \mathbf{\bar{x}}_j, \mathbf{\bar{v}}_j = \mathbf{\bar{v}}_j \mathbf{\bar{y}}_j^T \mathbf{\bar{w}}, \mathbf{\bar{w}} = \mathbf{\bar{w}} + \mathbf{\bar{s}}_j (\alpha_j - \mathbf{\bar{v}}_j) \mathbf{\bar{v}}_j^T \mathbf{\bar{w}}, \mathbf{\bar{w}} = \mathbf{\bar{w}} + \mathbf{\bar{s}}_j (\alpha_j - \mathbf{\bar{v}}_j) \mathbf{\bar{v}}_j \mathbf{\bar{v}}_j, \mathbf{\bar{w}} = \mathbf{\bar{w}}_j + \mathbf{\bar{s}}_j (\alpha_j - \mathbf{\bar{v}}_j) \mathbf{\bar{v}}_j \mathbf{\bar{v}}_j, \mathbf{\bar{w}} = \mathbf{\bar{w}}_j + \mathbf{\bar{s}}_j (\alpha_j - \mathbf{\bar{v}}_j) \mathbf{\bar{v}}_j, \mathbf{\bar{w}} = \mathbf{\bar{w}}_j + \mathbf{\bar{s}}_j (\alpha_j - \mathbf{\bar{v}}_j) \mathbf{\bar{v}}_j, \mathbf{\bar{w}} = \mathbf{\bar{w}}_j + \mathbf{\bar{s}}_j (\alpha_j - \mathbf{\bar{v}}_j) \mathbf{\bar{v}}_j, \mathbf{\bar{w}} = \mathbf{\bar{w}}_j + \mathbf{\bar{w}}_j \mathbf{\bar{v}}_j, \mathbf{\bar{w}} = \mathbf{\bar{w}}_j + \mathbf{\bar{w}}_j \mathbf{\bar{v}}_j, \mathbf{\bar{w}} = \mathbf{\bar{w}}_j \mathbf{\bar{w}}_j, \mathbf{\bar{w}} = \mathbf{\bar{w}}_j \mathbf{\bar{w}}_j \mathbf{\bar{w}}_j, \mathbf{\bar{w}} = \mathbf{\bar{w}}_j \mathbf{\bar{w}}_j, \mathbf{\bar{w}} =$	model for the Hessian, \tilde{H}_k : = $k - 1,, k - m$. β_j , $j = k - m,, k - 1$ $f(\bar{\mathbf{x}}_k)$). Polution of non linear finite element herical Methods in Engineering 14 (11): wton Matrices with Limited Storage." 773782.	algorithm BFGS method, 20 matrix-minimization-problem BGFS, 17 DFP, 10 Sherman-Morrison-Woodbury formula, 14 Reference(s): D1991 Davidon, William C. "Variable metric method for a (1991): 1-17. MS1979 Matthies, H.; Strang, G. (1979). "The solution of Journal for Numerical Methods in Engineering 14 N1980 Nocedal, J. (1980). "Updating Quasi-Newton Mat Computation 35 (151): 773782. doi:10.1090/S002	minimization." SIAM Journal on Optimization 1, no. 1 fron linear finite element equations." International (11): 16131626. doi:10.1002/nme.1620141104 trices with Limited Storage." Mathematics of 55-5718-1980-0572855-7
Peter Blomgren, (blomgren.peter@gmail.com) Qu	uasi-Newton Methods — The BFGS Method $-(25/26)$	Peter Blomgren, <pre> blomgren.peter@gmail.com</pre>	Quasi-Newton Methods — The BFGS Method $-(26/26)$