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Quasi-Newton Methods The Sales Pitch!

Quasi-Newton methods require only the gradient (like steepest

descent) of the objective to be computed at each iterate.

By successive measurements of the gradient, Quasi-Newton
methods build a quadratic model of the objective function which is
sufficiently good that superlinear convergence is achieved.

Quasi-Newton methods are much faster than steepest descent (and
coordinate descent) methods.

Since second derivatives (the Hessian) are not required,
quasi-Newton methods are sometimes more efficient
(as measured by total work / “wall-clock computational time”) than
Newton methods, especially when Hessian evaluation
is slow/expensive.

∇2f (~x)
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The BFGS Method: Introduction 1 of 3

The BFGS method is named for its discoverers:
Broyden-Fletcher-Goldfarb-Shanno, and is the most popular
quasi-Newton method.

We first derive the DFP method (a close relative; named after
Davidon-Fletcher-Powell) and then the BFGS method; and
look at some properties and practical implementation details.

The derivation starts with the quadratic model

mk(p̄) = f (x̄k) +∇f (x̄k)T p̄+
1

2
p̄TBk p̄

at the current iterate x̄k . Bk is a symmetric positive definite
matrix (model Hessian) that will be updated in every iteration.
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The BFGS Method: Introduction Standard Stuff 2 of 3

Given this convex quadratic model, we can write down the minimizer p̄k
explicitly as

p̄k = −B−1
k ∇f (x̄k).

We can compute the search direction p̄k using e.g. the Cholesky
factorization, or a (P)CG-iteration; once we have p̄k we find the new
iterate:

x̄k+1 = x̄k + αk p̄k ,

where we require that the step length αk satisfies e.g. the Wolfe
conditions:

f (x̄k + αp̄k) ≤ f (x̄k) + c1αp̄Tk ∇f (x̄), c1 ∈ (0, 1)
p̄Tk ∇f (x̄k + αp̄k) ≥ c2p̄Tk ∇f (x̄k), c2 ∈ (c1, 1).
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The BFGS Method: Introduction 3 of 3

So far we have not really done anything new — the key difference
compared with the linesearch Newton method is that we are using
an approximate Hessian Bk 6= ∇2f (x̄k).

Instead to computing a completely new Bk in each iteration, we
will update

Bk+1 = Bk + “something,”

using partial about the curvature at step #k . Thus we get a new
model

mk+1(p̄) = f (x̄k+1) +∇f (x̄k+1)
T p̄+

1

2
p̄TBk+1p̄.

Clearly, for this to make sense we must impose some conditions on
the update.
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The BFGS Method: Conditions on Bk+1 1 of 3

We impose two conditions on the new model mk+1(p̄):

[1,2] mk+1(p̄) must match the gradient of the objective
function in x̄k and x̄k+1.

The second condition is satisfied by construction, since

∇mk+1(0̄) = ∇f (x̄k+1).

The first condition gives us

∇mk+1(−αk p̄k) = ∇f (x̄k+1)− αkBk+1p̄k = ∇f (x̄k).

With a little bit of re-arrangement we get

αkBk+1p̄k = ∇f(x̄k+1)−∇f(x̄k).
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The BFGS Method: Conditions on Bk+1 2 of 3

We clean up the notation by introducing (x̄k , and ȳk):

s̄k = x̄k+1 − x̄k ≡ αk p̄k
ȳk = ∇f (x̄k+1)−∇f (x̄k).

We can now express the condition on Bk+1 in terms of s̄k and ȳk :

Secant Equation

Bk+1s̄k = ȳk.

By pre-multiplying the secant equation by s̄Tk we get the

Curvature Condition

s̄Tk Bk+1s̄k︸ ︷︷ ︸
>0

= s̄Tk ȳk ⇒ s̄Tk ȳk > 0.
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The BFGS Method: Conditions on Bk+1 3 of 3

If we impose the Wolfe, or strong Wolfe condition on the line
search procedure, the curvature condition will always hold, since

∇f (x̄k+1)
T s̄k ≥ c2∇f (x̄k)T s̄k ,

by the (curvature) Wolfe condition, and therefore

ȳTk s̄k ≥ (c2 − 1)αk∇f (x̄k)T p̄k ,

where the right-hand-side is positive since c2 < 1 and p̄k is a
descent direction.

When the curvature condition is satisfied, the secant
equation always has at least one solution Bk+1.
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The BFGS Method: More Conditions on Bk+1 1 of 2

It turns out that there are infinitely many symmetric positive
definite matrices Bk+1 which satisfy the secant equation.

Degrees of Freedom Conditions Imposed
n(n + 1)/2 — Symmetric n — The Secant Equation

n — Principal minors positive (PD)

To determine Bk+1 uniquely we must impose additional conditions
— we will select the Bk+1 that is closest to Bk in some sense:

Matrix-Minimization-Problem

Bk+1 = argmin
B
‖B − Bk‖some-norm

subject to B = BT , B s̄k = ȳk .
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The BFGS Method: More Conditions on Bk+1 2 of 2

Each choice of matrix norm in this matrix-minimization-problem
(MMP) gives rise to a different quasi-Newton method.

The weighted Frobenius norm

‖A‖W = ‖W 1/2AW 1/2‖F = ‖C‖F =

√√√√
n∑

i=0

n∑

j=0

c2ij

allows easy solution of the MMP, and gives rise to a scale-invariant
optimization method.

The matrix W is chosen to be the inverse G−1
k of the average

Hessian

Gk =

∫ 1

0
∇2f (x̄k + ταk p̄k) dτ.
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Square Roots of SPD Matrices [Supplemental]

A positive semi-definite matrix, M has a unique positive
semi-definite square root, R = M1/2.

When M = XΛX−1 SPD
= QΛQT , let R = QSQT , and

R2 = (QSQT )2 = QSQTQSQT = QSSQT = QS2QT = M,

showing that

S = Λ1/2, and therefore R = QΛ1/2QT

∃ other approaches.
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The DFP Method

With this weighting matrix and norm, the unique solution of the MMP is

Bk+1 =
(
I − γk ȳk s̄

T
k

)
Bk

(
I − γk s̄k ȳ

T
k

)
+ γk ȳk ȳ

T
k , γk =

1

ȳTk s̄k
.

Note that γk is a scalar, and ȳk s̄Tk , s̄k ȳ
T
k , and ȳk ȳTk are rank-one

matrices.

This is the original Davidon-Fletcher-Powell (DFP) method suggested by
W.C. Davidon in 1959.

The original paper describing this revolutionary idea — the first quasi-Newton method
— was not accepted for publication. It later appeared in 1991 in the first issue the the
SIAM Journal on Optimization.

Fletcher and Powell demonstrated that this algorithm was much faster and more
reliable than existing methods (at the time). This revolutionized the field of non-linear
optimization.
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The DFP Method: Cleaning Up 1 of 2

The inverse of Bk is useful for the implementation of the method,
since it allows the search direction p̄k to be computed using a
simple matrix-vector product. We let

Hk = B−1
k

and use

Sherman-Morrison-Woodbury formula

If A ∈ Rn×n is non-singular and ā, b̄ ∈ Rn, and if

B = A+ āb̄T

then

B−1 = A−1 − A−1āb̄TA−1

1 + b̄TA−1ā
.
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The DFP Method: Cleaning Up 2 of 2

With a little bit of linear algebra we end up with

Hk+1 = Hk −
Hk ȳk ȳTk Hk

ȳTHk ȳk︸ ︷︷ ︸
Update#1

+
s̄k s̄Tk
ȳTk s̄k︸ ︷︷ ︸

Update#2

.

Both the update terms are rank-one matrices; so that Hk undergoes a
rank-2 modification in each iteration.

This is the fundamental idea of quasi-Newton updating: instead of
recomputing the matrix (-inverse) from scratch each time around, we
apply a simple modification which combines the more recently observed
information about the objective with existing knowledge embedded in the
current Hessian approximation.
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Improving on DFP — The BFGS Method

The DFP method is quite effective, but once the quasi-Newton
idea was accepted by the optimization community is was quickly
superseded by the BFGS method.

BFGS updating is derived by instead of imposing conditions on the
Hessian approximations Bk , we impose conditions directly on the
inverses Hk .

The updated approximation must be symmetric positive definite,
and must satisfy the secant equation in the form

Hk+1ȳk = s̄k, compare: Bk+1s̄k = ȳk .

We get a slightly different matrix minimization problem...
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The BFGS Matrix Minimization Problem

Matrix-Minimization-Problem (BFGS)

Hk+1 = argmin
H
‖H − Hk‖some-norm

subject to H = HT , H ȳk = s̄k

If we again choose the weighted Frobenius norm (with the same
weight), then we get the unique update

Hk+1 =
(
I − ρk s̄k ȳ

T
k

)
Hk

(
I − ρk ȳk s̄

T
k

)
+ ρk s̄k s̄

T
k , ρk =

1

ȳTk s̄k
,

which translated back to the Hessian approximation yields

Bk+1 = Bk −
Bks̄ks̄

T
kBk

s̄TkBks̄k
+

ȳkȳ
T
k

ȳTk s̄k
.
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BFGS vs. DFP Updates

BFGS Update —

Hk+1 =
(
I − ρk s̄k ȳ

T
k

)
Hk

(
I − ρk ȳk s̄

T
k

)
+ ρk s̄k s̄

T
k , ρk =

1

ȳTk s̄k
,

Bk+1 = Bk −
Bk s̄k s̄Tk Bk

s̄Tk Bk s̄k
+

ȳk ȳTk
ȳTk s̄k

.

DFP Update —

Bk+1 =
(
I − γk ȳk s̄

T
k

)
Bk

(
I − γk s̄k ȳ

T
k

)
+ γk ȳk ȳ

T
k , γk =

1

ȳTk s̄k
.

Hk+1 = Hk −
Hk ȳk ȳTk Hk

ȳTHk ȳk
+

s̄k s̄Tk
ȳTk s̄k

.
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The BFGS Method: Starting — H0 = ???

The initial value for the iteration can be selected in different ways

• A finite difference approximation at x̄0.

• H0 = I , the identity matrix.

• H0 = diag(s1, s2, . . . , sn), where s̄ captures the scaling of the
variables (if known).
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The BFGS Method: Algorithm

Algorithm: The BFGS Method

Given starting point x̄0, convergence tolerance ǫ > 0, and initial
inverse Hessian approximation H0:
k = 0

while( ‖∇f (x̄k)‖ > ǫ )

p̄k = −Hk∇f (x̄k)
x̄k+1 = linesearch(p̄k , . . . )
s̄k = x̄k+1 − x̄k
ȳk = ∇f (x̄k+1)−∇f (x̄k)
ρk = 1

ȳTk s̄k

Hk+1 =
(
I − ρk s̄k ȳ

T
k

)
Hk

(
I − ρk ȳk s̄

T
k

)
+ ρk s̄k s̄

T
k

k = k + 1

end-while
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The BFGS Method: Summary

The cost per iteration is

• O(n2) arithmetic operations

• function evaluation

• gradient evaluation

The convergence rate is

• Super-linear

Newton’s method converges quadratically, but the cost per
iteration is higher — it requires the solution of a linear system. In
addition Newton’s method requires the calculation of second
derivatives whereas the BFGS method does not.
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The BFGS Method: Stability and Self-Correction 1 of 2

If at some point ρk = 1/ȳTk s̄k becomes large, i.e. ȳTk s̄k ∼ 0, then
from the update formula

Hk+1 =
(
I − ρk s̄k ȳ

T
k

)
Hk

(
I − ρk ȳk s̄

T
k

)
+ ρk s̄k s̄

T
k

we see that Hk+1 becomes large.

If for this, or some other, reason Hk becomes a poor approximation
of

[
∇2f (x̄k)

]−1
for some k , is there any hope of correcting it?

It has been shown that the BFGS method has self-correcting
properties. — If Hk incorrectly estimates the curvature of the
objective function, and if this estimate slows down the iteration,
then the Hessian approximation will tend to correct itself within a
few steps.
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The BFGS Method: Stability and Self-Correction 2 of 2

The self-correcting properties stand and fall with the quality of the line
search! — The Wolfe conditions ensure that the model captures
appropriate curvature information.

The DFP method is less effective at self-correcting bad Hessian
approximations.

Practical Implementation Details:

• The linesearch should always test α = 1 first, because this step length
will eventually be accepted, thus creating super-linear convergence.

• The linesearch can be somewhat “sloppy:” c1 = 10−4 and c2 = 0.9
are commonly used values in the Wolfe conditions.

• The initial matrix H0 should not be too large, if H0 = βI , then the first
step is p̄0 = −β∇f (x̄0) which may be too long if β is large, often H0

is rescaled before the update H1 is computed:

H0 ←
ȳTk s̄k
ȳTk ȳk

I .
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L-BFGS

Forming the n × n dense matrix Hk can be quite expensive for
large problems. L-BFGS stores a limited history of the BFGS
update vectors s̄k and ȳk (which are size n), and use these to
“implicitly” form the matrix operations.

In standard BFGS, the current Hk contains updates all the way
back to initial step {s̄j , ȳj}k−1

j=0 , whereas L-BFGS only uses a

limited number of “recent” updates; so that the action of H̃k is
formed by application of {s̄j , ȳj}k−1

j=max(0,k−m).
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L-BFGS ”Two Loop Recursion”

Given a local initial positive definite model for the Hessian, H̃k :

1 v̄ = ∇f (x̄k)
2 αj = ρj s̄

T
j v̄, v̄ = v̄ − αj ȳj , j = k − 1, . . . , k −m.

3 w̄ = H̃k v̄

4 βj = ρj ȳ
T
j w̄, w̄ = w̄ + s̄j(αj − βj), j = k −m, . . . , k − 1

5 Now, use p̄k = −w̄ (≈ −Hk∇f (x̄k)).
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