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Nonlinear Least Squares Problems: Introduction 1 of 4

In least squares problems, the objective function f has a special
form

f (x̄) =
1

2

m
∑

j=1

rj(x̄)
2, x̄ ∈ R

n

we refer to each rj as a residual. We assume, for now, that m ≥ n
so that we have more residuals than dimensions (independent
variables). [Over-Determined]

The least squares formulation is useful for fitting model parameters
to data and has applications in a wide range of fields: chemistry,
physics, engineering, finance, economics, etc.

It answers the question “What model (in a certain class) best
fits the observed data?”
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Nonlinear Least Squares Problems: Introduction 2 of 4

The least-squares-objective has a special form, which makes it
easier to solve than general non-linear minimization problems:

We assemble the residual vector

r̄(x̄) = [r1(x̄), r2(x̄), . . . , rm(x̄)]
T .

Hence, the objective can be written as

f (x̄) =
1

2
r̄(x̄)T r̄(x̄) =

1

2
‖̄r(x̄)‖22.

We are going to express the derivatives of f (x̄) in terms of the
Jacobian of r̄(x̄), which is the m × n matrix of first partial
derivatives defined by

J(x̄) =

[

∂rj(x̄)

∂xi

]

j = 1, 2, . . . ,m
i = 1, 2, . . . , n
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Nonlinear Least Squares Problems: Introduction 3 of 4

With the Jacobian notation we can write

∇f (x̄) =
m
∑

j=1

rj (x̄)∇rj (x̄) = J(x̄)T r̄(x̄)

∇2f (x̄) =

m
∑

j=1

∇rj (x̄)∇rj (x̄)
T +

m
∑

j=1

rj (x̄)∇
2rj (x̄)

= J(x̄)T J(x̄) +
m
∑

j=1

rj (x̄)∇
2rj (x̄)

Usually J(x̄) can be computed explicitly without too much work. This
gives us a way to get the gradient ∇f (x̄). Further, this gives us the first
“half” of the Hessian ∇2f (x̄) for “free,” i.e. without computing any
second derivatives.

In many applications, the second part of the Hessian is small. When this
happens we can exploit this by approximating ∇2f (x̄) ≈ J(x̄)T J(x̄) so
that we have a good approximation of the Hessian, without
computing any second derivatives!!!
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Nonlinear Least Squares Problems: Introduction 4 of 4

All our previously defined minimization algorithms can be applied
to the least squares problem

min
x̄∈Rn

f (x̄) =
1

2
min
x̄∈Rn

‖̄r(x̄)‖22

In essence, we just take our old algorithms, and change them to
exploit the special structure of the gradient and Hessian.

Prior to hammering out all the gory details, lets take a closer look
at the origins of nonlinear least-squares problems.
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Least Squares Fitting: Background / Example #1 1 of 3

Example: We study the effect of a certain medication on a
patient. Blood is drawn at certain times {tj} after the patient
takes a dose — the concentration of the medication in the
patient’s blood-stream {yj} is measured.

We think that the following model is a good description of the
process

Φ(x̄; t) = x1 + x2t+ e−x3t

Here, x1, x2, and x3 are the parameters of the model (to be
determined), and t indicates time.

We seek to determine the parameters so that the discrepancy
between the concentrations predicted by the model {Φ(x̄; tj)}, and
the observed concentrations {yj} are minimized in the least
squares sense.
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Figure: An illustration of the discrepancy between the model (solid blue line), and the
measurements (red dots). The size of the deviation is indicated by the solid
red vertical lines.
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Least Squares Fitting: Background / Example #3 3 of 3

The least-squares error is measured by the objective

f (x̄) =
1

2

m
∑

j=1

[

yj − Φ(x̄; tj)

]2

Note that at this point {tj , yj , }mj=1 are known, and the values x̄ are
unknown.

By solving the least-squares-problem

x̄∗ = argmin
x̄∈Rn

f (x̄)

we find the model

Φ(x̄∗; tj) = x∗1 + x∗2t+ e−x∗3 t

which best fits the measurements.
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Least Squares Fitting: Background / Example #2

Figure: Neonatal cardiocyte.

Possible model for Ca2+ ion concentration in a cardiocyte during
the relaxation phase:

c(t) = A e−αt + B e−βt .

Alternative Ideas: “Exponential Peeling.”
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Least Squares Fitting: Background

The previous example (#1) is an instance of what is known as a
fixed-regressor model in statistics. It assumes that the times {tj}
at which we draw blood are known to high accuracy, while the
observations {yj} contain “random” errors due to equipment
limitations and/or human error.

The least-squares objective is by far not the only way to measuring
the discrepancy, we could use

m
∑

j=1

[

yj − Φ(x̄; tj )

]16

, or

m
∑

j=1

∣

∣

∣

∣

yj − Φ(x̄; tj )

∣

∣

∣

∣

, or max
j=1,2,...,m

∣

∣

∣

∣

yj − Φ(x̄; tj )

∣

∣

∣

∣

However, the sum-of-squares measure is

(i) easier to work with
(ii) (usually) the correct choice for statistical reasons...
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Close your eyes if you are a real statistician!

Let ǫj denote the discrepancy at measurement #j , i.e.

ǫj = yj − Φ(x̄; tj)

In many cases it is reasonable to assume that the ǫj are independent
and identically distributed (“iid”), with a variance σ2 and probability
density function gσ(·).

This assumption will often be true, e.g. when the model
accurately reflects the actual process, and when the errors do
not contain a “systematic” component.

Under this assumption, the likelihood of a particular set of observations
{yj} given that the actual parameter vector is x̄ is given by:

p(ȳ; x̄, σ) =
m
∏

j=1

gσ(ǫj)
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Close your eyes if you are a real statistician!

Since the observations {yj} are known, the most likely value of x̄ is
obtained by maximizing p(ȳ; x̄, σ) with respect to x̄. The resulting value
x̄∗ is called the maximum likelihood estimate of the parameters.

When the discrepancies are assumed to be normally distributed, we have

gσ(ǭ) =
1√
2πσ2

exp

(

− ǫ2

2σ2

)

so that

p(ȳ; x̄, σ) = [2πσ2]−m/2
exp



−1

2

m
∑

j=1

[yj − Φ(x̄; tj)]
2

σ2





It is clear that p(ȳ; x̄, σ) is maximized when the sum-of-squares
∑m

j=1[yj − Φ(x̄; tj)]
2 is minimized.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Nonlinear Least Squares Problems — (13/29)



Nonlinear Least Squares Problems
Special Case: Linear Least Squares

Introduction
Example / Background

Least Squares Fitting: Background — Statistics (Handwaving) 3 of 3

Close your eyes if you are a real statistician!

Summary (Statistical motivation)

When the discrepancies are assumed to be independent, identically
distributed with a normal distribution function, the maximum
likelihood estimate is obtained by minimizing the sum of the
squares.

These assumptions on {ǫj} are very common, but do not describe
the only situation for which the minimizer of the sum-of-squares
makes statistical sense.

Disclaimer: With apologies to all real statisticians out there...

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Nonlinear Least Squares Problems — (14/29)



Nonlinear Least Squares Problems
Special Case: Linear Least Squares

Quick Review / Crash Course

Special Case: Linear Least Squares 1 of 12

When each function rj(x̄) is linear, the Jacobian J is constant, and
we have

f (x̄) =
1

2
‖J x̄+ r̄0‖22, r̄0 = r̄(0).

the gradient and Hessian are also simple expressions

∇f (x̄) = JT (J x̄+ r̄0), ∇2f (x̄) = JT J.

The objective is convex; solving for the stationary point
∇f (x̄∗) = 0 gives the system of equations

JT J x̄∗ = −JT r̄0,

this system of equations is known as the normal equations.
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The linear least squares problem is of interest since many models used in
practice Φ(x̄; t) are linear.

The linear least squares problem is really a question of numerical linear
algebra (Math 543, and Math 541), but given its importance it is worth
taking a quick look at three algorithms for finding the solution.

We assume:

• m ≥ n. (Over-Determined: More measurements than parameters)

• J has full column rank.

The Cholesky factorization RTR = JT J (where R is n × n upper
triangular, and J is m× n) is guaranteed to exist when these assumptions
are true.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Nonlinear Least Squares Problems — (16/29)



Nonlinear Least Squares Problems
Special Case: Linear Least Squares

Quick Review / Crash Course

Special Case: Linear Least Squares 3 of 12

Approach #1: Direct solution of the Normal Equations.

• Compute the coefficient matrix JT J and the right-hand-side
−JT r̄0.

• Compute the Cholesky factorization RTR = cholesky(JT J) of
the symmetric matrix JT J.

• Perform a forward and backward substitution with the Cholesky
factors to recover the solution x̄∗.

This approach has one significant disadvantage. — The condition
number of JT J

cond(JT J) =
|λ|max(J

T J)

|λ|min(JT J)
= cond(J)2 =

[

σmax(J)

σmin(J)

]2

is the square of the condition number of J.
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The relative error of the computed solution is (usually) proportional to
the condition number, the fact that cond(JT J) = cond(J)2 is very bad
news indeed when J is ill-conditioned.

Note: JT J is essentially a Hilbert matrix.

In the worst case scenario, the Cholesky factorization may break down
due to roundoff errors when when J is ill-conditioned!

Approach #2: QR-factorization of J — JΠ = QR , where Q is
orthonormal, and R upper triangular

Since the Euclidean norm is invariant under orthogonal transformations,
we have

‖J x̄+ r̄0‖2 = ‖U(J x̄+ r̄0)‖2

for any m ×m orthogonal matrix U.
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Suppose we perform (Math 543) a QR-factorization with column
pivoting on the matrix J to obtain

JΠ = Q

[

R
0

]

=

[

Q1 Q2

] [

R
0

]

= Q1R1

where

Π is an n × n permutation matrix (⇒ orthogonal)
Q is m ×m orthogonal
Q1 is the first n columns of Q.
Q2 is the remaining (m − n) columns of Q.
R is n × n upper triangular
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This gives us

‖J x̄+ r̄0‖22 =

∥

∥

∥

∥

[

QT
1

QT
2

]

(

J ΠΠT x̄+ r̄0
)

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

[

R
0

]

(

ΠT x̄
)

+

[

QT
1 r̄0

QT
2 r̄0

]∥

∥

∥

∥

2

2

= ‖R
(

ΠTx̄
)

+QT
1 r̄0‖22 + ‖QT

2 r̄0‖22

The second part is unaffected by x̄, but setting the first term to zero
minimizes ‖J x̄+ r̄0‖22, i.e. we find

x̄∗ = −ΠR−1QT
1 r̄0

In practice, R z̄ = −QT
1 r̄0 is solved by backward substitution, and then

x̄∗ = Π z̄.
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The QR-based approach does not square the condition number of J. The
relative error of the solution will be proportional to a value in the range
[cond(J), cond(J)2], usually ≪cond(J)2, rather than cond(J)2 for the
direct solution of the normal equations.

In most situations, the QR-based approach is the way to go.

However, if/when we require maximal robustness and/or want to extract
more information about the sensitivity of the solution to errors in J or r̄0
we can bring out the big hammer —

Approach #3: Singular Value Decomposition (SVD) of J.

The SVD [mathematics] is known by many names: the Proper Orthog-
onal Decomposition (POD), the Karhunen-Loève (KL-) Decomposition
[signal analysis], Principal Component Analysis (PCA) [statistics],
Empirical Orthogonal Functions, etc...
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Hits on scholar.google.com.

Search Term 1/2004 11/2007 11/2009 11/2010
Principal.Component.Analysis 46,500 178,000 436,000 603,000
Singular.Value.Decomposition 19,800 71,200 103,000 135,000
Karhunen.Loeve 638 11,900 16,800 20,200
Canonical.Correlation.Analysis 2,420 10,400 14,100 19,600
Empirical.Orthogonal.(Function|Functions) 2,940 10,100 12,400 15,400
Proper.Orthogonal.Decomposition 977 3,490 5,160 7,820

11/2011 11/2012 11/2013 11/2014
Principal.Component.Analysis 672,000 874,000 1,140,000 1,340,000
Singular.Value.Decomposition 158,000 178,000 219,000 256,000
Karhunen.Loeve 21,700 23,700 27,300 29,300
Canonical.Correlation.Analysis 22,600 25,100 29,200 32,600
Empirical.Orthogonal.(Function|Functions) 16,800 19,600 22,800 25,700
Proper.Orthogonal.Decomposition 7,850 9,340 12,500 15,200

Table: The many names, faces, and close relatives of the Singular Value Decomposition...
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Hits on scholar.google.com.

Search Term 11/2011 11/2012 11/2013 11/2014
Principal.Component.Analysis 672,000 874,000 1,140,000 1,340,000
Singular.Value.Decomposition 158,000 178,000 219,000 256,000
Karhunen.Loeve 21,700 23,700 27,300 29,300
Canonical.Correlation.Analysis 22,600 25,100 29,200 32,600
Empirical.Orthogonal.(Function|Functions) 16,800 19,600 22,800 25,700
Proper.Orthogonal.Decomposition 7,850 9,340 12,500 15,200

11/2016 11/2017 11/2018 11/20nn
Principal.Component.Analysis 1,800,000 1,940,000 2,170,000
Singular.Value.Decomposition 337,000 407,000 441,000
Karhunen.Loeve 33,400 38,000 41,900
Canonical.Correlation.Analysis 42,200 49,500 54,200
Empirical.Orthogonal.(Function|Functions) 32,400 38,000 40,700
Proper.Orthogonal.Decomposition 18,800 22,400 24,600

Table: The many names, faces, and close relatives of the Singular Value Decomposition...
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The SVD of J is given by (Math 543)

J = U

[

S
0

]

V T =

[

U1 U2

] [

S
0

]

V T = U1SV
T

where

U is m ×m orthogonal
U1 contains the first n columns of U
U2 contains the remaining (m − n) columns of U
V is n × n orthogonal
S is n × n diagonal, with elements σ1 ≥ σ2 ≥ · · · ≥ σn > 0.

Note that JT J = VS2V T , so that the columns of V are
eigenvectors of JT J with eigenvalues σ2

j .
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Now,

‖J x̄+ r̄0‖22 =

∥

∥

∥

∥

[

S
0

]

(V T x̄) +

[

UT
1

UT
2

]

r̄0

∥

∥

∥

∥

2

2

= ‖S(VTx̄) +UT
1 r̄0‖22 + ‖UT

2 r̄0‖2

Again, we find the optimum by setting the first contribution to
zero, i.e.

x̄∗ = VS−1UT
1 r̄0 =

n
∑

i=1

ūTi r̄0
σi

v̄i ,

where ūi and v̄i are the ith columns of U and V , respectively.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Nonlinear Least Squares Problems — (25/29)



Nonlinear Least Squares Problems
Special Case: Linear Least Squares

Quick Review / Crash Course

Special Case: Linear Least Squares 10 of 12

The expression for the optimum,

x̄∗ =
n

∑

i=1

ūTi r̄0
σi

v̄i

gives us information about the sensitivity of x̄∗. When σi is small,
x̄∗ is particularly sensitive to perturbations that affect ūTi r̄0.

This information is useful when σn/σ1 ≪ 1 (J nearly
rank-deficient).
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Summary: Three Methods for JT J x̄∗ = −JT r̄0.

All three approaches are useful under the right circumstances

• Cholesky-based algorithm is particularly useful when m ≫ n,
in this case it is practical to store JT J, but not J. When
J is rank-deficient or ill-conditioned diagonal pivoting must
be implemented to limit the propagation of round-off errors.
(This approach to be used sparingly)

• In the QR-approach with column pivoting, ill-conditioning
usually causes the elements in the lower right-hand corner of
the matrix R to be much smaller than the other elements. The
strategy produces a solution to a nearby problem in which J
is slightly perturbed. (This is the preferred every-day approach)
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• The SVD-approach is the most robust and reliable for ill-
conditioned problems. When J is actually rank deficient, some
of the singular values σi are exactly zero. Any vector of the form

x̄∗ =
∑

i :∗σi 6=0)

ūTi r̄0
σi

+
∑

i :(σi=0)

τi v̄i

(for any values τi ) is a minimizer of the least-squares problem.
Usually the minimum-norm (τi = 0) solution is desirable.
(When J is rank-deficient, this is the only approach of the three
that works)

With these results in our tool-box, we are ready to attack the
solution of the non-linear least squares problem next time.
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