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The Nonlinear Least Squares Problem

Problem: Nonlinear Least Squares

x̄∗ = arg min
x̄∈Rn

[f (x̄)] = arg min
x̄∈Rn




1

2

m∑

j=1

rj(x̄)
2



 , m ≥ n,

where the residuals rj(x̄) are of the form rj(x̄) = yj − Φ(x̄; tj). Here, yj
are the measurements taken at the locations/times tj , and Φ(x̄; tj) is
our model.

The Jacobian J(x̄) =

[
∂rj(x̄)

∂xi

]

j = 1, 2, . . . ,m
i = 1, 2, . . . , n

The Gradient ∇f (x̄) =
m∑

j=1

rj(x̄)∇rj(x̄) = J(x̄)T r̄(x̄)

The Hessian ∇2f (x̄) = J(x̄)T J(x̄) +

m∑

j=1

rj(x̄)∇2rj(x̄)
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The Nonlinear Least Squares Problem: Algorithms

We now turn our attention to the solution of the nonlinear least
squares problem.

Of course, we could just use our unconstrained nonlinear
minimization methods as-is. However, as always we would like to
implement the most efficient algorithms possible. In order to
achieve this, we should take the special structure of the gradient
and Hessian into consideration.

The first algorithm carries the name of two of the giants of
mathematics — Gauss1 and Newton2!

1 — Johann Carl Friedrich Gauss (30 Apr 1777 – 23 Feb 1855).
2 — Sir Isaac Newton (4 Jan 1643 – 31 Mar 1727).
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The Gauss-Newton Method

The Gauss-Newton method can be viewed as a modification of Newton’s
method with line search.

Instead of generating the Newton search directions p̄N
k as solutions of the

linear systems
[
∇2f (x̄k)

]
p̄N
k = −∇f (x̄k),

we use the particular form of the Hessian, and exclude the second order
term from it. Thus we get the Gauss-Newton search directions p̄GN

k as the
solutions of the linear systems

[
J(x̄k)

T J(x̄k)
]
p̄GN
k = −J(x̄k)

T r̄(x̄k).

This simple modification has many advantages over the standard
Newton’s method.
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The Gauss-Newton Method: Advantages 1 of 2

1. The approximation

∇2f (x̄k) ≈ J(x̄k)
T J(x̄k)

saves the work of computing the m individual Hessians ∇2rj(x̄). If we
compute the Jacobian J(x̄k) in the process if evaluating the gradi-
ent∇f (x̄) = J(x̄k)

T r̄(x̄k), then this approximation is essentially “free.”
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The Gauss-Newton Method: Advantages 1 of 2

1. The approximation

∇2f (x̄k) ≈ J(x̄k)
T J(x̄k)

saves the work of computing the m individual Hessians ∇2rj(x̄). If we
compute the Jacobian J(x̄k) in the process if evaluating the gradi-
ent∇f (x̄) = J(x̄k)

T r̄(x̄k), then this approximation is essentially “free.”

2. In many situations the term J(x̄k)
T J(x̄k) dominates

∑m

j=1 rj(x̄)∇2rj(x̄),
so that the Gauss-Newton method gives performance similar to that
of Newton’s method, even when the latter term is neglected. This
happens when rj(x̄) are small (the small residual case), or when
rj(x̄) are nearly linear, so that ‖∇2rj(x̄)‖ is small. In practice, many
least-squares problems fall into the first category, and rapid local
convergence of Gauss-Newton is observed.
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The Gauss-Newton Method: Advantages 2 of 2

3. When J(x̄k) has full rank and ∇f (x̄k) 6= 0̄, the Gauss-Newton direction
p̄GN
k is a descent direction, and works for line-search. We have

[p̄GN
k ]T∇f (x̄) = [p̄GN

k ]T J(x̄k)
T r̄k = −[p̄GN

k ]T J(x̄k)
T J(x̄k)p̄

GN
k

= −‖J(x̄k)p̄GN
k ‖22 ≤ 0

where the final inequality is strict unless we are in a stationary point.
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The Gauss-Newton Method: Advantages 2 of 2

3. When J(x̄k) has full rank and ∇f (x̄k) 6= 0̄, the Gauss-Newton direction
p̄GN
k is a descent direction, and works for line-search. We have

[p̄GN
k ]T∇f (x̄) = [p̄GN

k ]T J(x̄k)
T r̄k = −[p̄GN

k ]T J(x̄k)
T J(x̄k)p̄

GN
k

= −‖J(x̄k)p̄GN
k ‖22 ≤ 0

where the final inequality is strict unless we are in a stationary point.

4. The Gauss-Newton equations are very similar to the normal equations
for the linear least squares problem. p̄GN

k is the solution of the linear
least squares problem

p̄GN
k = arg min

p̄∈Rn
‖J(x̄k)p̄+ r̄(x̄k)‖22

Therefore, we can use our knowledge of solutions to the linear least
squares problem to find the Gauss-Newton search direction.
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The Gauss-Newton–Linear-Least-Squares Connection

The connection to the linear least squares problem shows another
motivation for the Gauss-Newton step.

Instead of building a quadratic model of the objective f (x̄), we
form a linear model of the vector function

r̄(x̄+ p̄) ≈ r̄(x̄) + J(x̄)p̄

The step p̄GN is obtained by using this model in the expression
f (x̄) = 1

2 ‖̄r(x̄)‖22, and minimizing over p̄.
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Searching in the Gauss-Newton Direction Convergence

Once we have the Gauss-Newton direction, we perform a line-search thus
identifying a step αk which satisfies the Wolfe / Strong Wolfe /
Goldstein conditions.

The theory from our discussion on line-search can be applied to
guarantee global convergence of the Gauss-Newton method. For the
proof, we need the following

Assumption

The singular values of the Jacobians J(x̄) are bounded away from zero,
i.e.

‖J(x̄)z̄‖2 ≥ γ‖z̄‖2, γ > 0

for all x̄ in a neighborhood of the level set

L(x̄0) = {x̄ ∈ R
n : f (x̄) ≤ f (x̄0)}

where x̄0 is the starting point.
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Gauss-Newton: Convergence Theorem

Theorem

Suppose that each residual function rj(x̄) is Lipschitz continuously

differentiable in a neighborhood of N of the level set

L(x̄0) = {x̄ ∈ R
n : f (x̄) ≤ f (x̄0)},

and that the Jacobians satisfy the uniform full-rank condition

‖J(x̄)z̄‖2 ≥ γ‖z̄‖2, γ > 0.

Then, if the iterates {x̄k} are generated by the Gauss-Newton

method with step lengths αk that satisfy the Wolfe conditions, we

have

lim
k→∞

J(x̄k)
T r̄k = 0.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Nonlinear LSQ — Algorithms — (10/23)



Nonlinear Least Squares
Nonlinear Least Squares...

The Problem Formulation, and Basics...
The Gauss-Newton Method

Gauss-Newton: Breaking the Convergence Theorem

If the Jacobian is rank deficient, i.e.

‖J(x̄)z̄‖2 6≥ γ‖z̄‖2, γ > 0,

then the coefficient matrix J(x̄k)
T J(x̄k) is singular. However, the system

J(x̄k)
T J(x̄k)p̄

GN
k = −J(x̄k)

T∇f (x̄k) still has a least-squares solution since

it is equivalent to the minimization problem

p̄GN
k = arg min

p̄∈Rn
‖J(x̄k)p̄+ r̄(x̄k)‖22.

In this case, there are infinitely many solutions of the form

x̄∗ =
∑

i :σi 6=0

ūTi r̄0
σi

+
∑

i :σi=0

τi v̄i .

The convergence result falls since the search direction may become
perpendicular to ∇f (x̄k) (thus the Zoutendijk condition
∑∞

k=0 cos
2 θk‖∇f (x̄k)‖2 < ∞ does not show convergence).
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Gauss-Newton: Local Convergence Rate 1 of 2

The convergence rate of Gauss-Newton depends on how much the term
J(x̄k)

T J(x̄k) dominates the neglected term in the Hessian.

Near x̄∗, the step αk = 1 will be accepted, and we have

x̄k + p̄GN
k

︸ ︷︷ ︸

x̄k+1

−x̄∗ = x̄k − x̄∗ −
[
J(x̄k)

T J(x̄k)
]−1 ∇f (x̄k)

=
[
J(x̄k)

T J(x̄k)
]−1 [

J(x̄k)
T J(x̄k)(x̄k − x̄∗) +∇f (x̄∗)−∇f (x̄k)

]
.
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Gauss-Newton: Local Convergence Rate 1 of 2

The convergence rate of Gauss-Newton depends on how much the term
J(x̄k)

T J(x̄k) dominates the neglected term in the Hessian.

Near x̄∗, the step αk = 1 will be accepted, and we have

x̄k + p̄GN
k

︸ ︷︷ ︸

x̄k+1

−x̄∗ = x̄k − x̄∗ −
[
J(x̄k)

T J(x̄k)
]−1 ∇f (x̄k)

=
[
J(x̄k)

T J(x̄k)
]−1 [

J(x̄k)
T J(x̄k)(x̄k − x̄∗) +∇f (x̄∗)−∇f (x̄k)

]
.

If we let Hr (x̄) =
∑m

j=1 rj(x̄)∇2rj(x̄) represent the neglected term in the
Hessian, we can show (using Taylor’s Theorem) that

‖x̄k+1 − x̄∗‖ ≤
∥
∥
∥

[
J(x̄∗)T J(x̄∗)

]−1
Hr (x̄

∗)
∥
∥
∥ · ‖x̄k − x̄∗‖+O

(

‖x̄k − x̄∗‖2
)
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Gauss-Newton: Local Convergence Rate 2 of 2

We have the result

‖x̄k+1 − x̄∗‖ ≤
∥
∥
∥
∥

[

J(x̄∗)T J(x̄∗)
]
−1

Hr (x̄
∗)

∥
∥
∥
∥

︸ ︷︷ ︸

s(x̄∗)

· ‖x̄k − x̄∗‖+O
(

‖x̄k − x̄∗‖2
)

• Unless s(x̄∗) < 1, we cannot expect Gauss-Newton to converge
at all.

• In the small-residual case, it is usually true that s(x̄∗) ≪ 1, and
we have very rapid convergence1 of the Gauss-Newton method.

• When Hr (x̄
∗) = 0, the rate of convergence is quadratic.

1 Note that the convergence rate is actually linear, but we do not “feel”
the linear term until ‖x̄k − x̄∗‖ < s(x̄∗). If s(x̄∗) is small enough (smaller
than the required tolerance on x̄N ≈ x̄∗), then this will not slow down
the method.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Nonlinear LSQ — Algorithms — (13/23)



Nonlinear Least Squares
Nonlinear Least Squares...

The Levenberg-Marquardt Method

The Levenberg-Marquardt Method: Introduction

Levenberg and Marquardt are slightly less famous than Gauss and
Newton (at least to non-optimizers?!)

The Levenberg-Marquardt method is the trust-region equivalent of the
Gauss-Newton method.

The Levenberg-Marquardt method avoids one of the weaknesses of the
Gauss-Newton method, the (global convergence) behavior when the
Jacobian J(x̄) is rank-deficient (or nearly rank-deficient) [see slide 11].

Since the second-order Hessian component is still ignored, the local
convergence properties of the LM- and GN-methods are similar.

The original description of the LM-method (first published in 1944) did
not make the connection with the trust-region concept.

The connection was made by Moré in 1978.
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The Levenberg-Marquardt Method

For a spherical trust region, the subproblem to be solved at
iteration #k is

p̄LM
k = arg min

p̄∈Rn

1

2
‖J(x̄k)p̄+ r̄k‖22, subject to ‖p̄‖ ≤ ∆k .

This corresponds to the model function

mk(p̄) =
1

2
‖̄rk‖2 + p̄T J(x̄k)

T r̄k +
1

2
p̄T J(x̄k)

T J(x̄k)p̄,

where we can identify the Hessian approximation as

Bk = J(x̄k)
T J(x̄k).
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Levenberg-Marquardt vs. Gauss-Newton

If the Gauss-Newton step p̄GN
k lies inside the trust region, i.e.

‖p̄GN
k ‖ ≤ ∆k , then p̄LM

k = p̄GN
k .

Otherwise, there is a λ > 0 such that ‖p̄LM
k ‖ = ∆k and

[
J(x̄k)

T J(x̄k) + λI
]
p̄LM
k = −J(x̄k)

T r̄k .

This can be interpreted as the normal equations for the linear least
squares problem

p̄k = arg min
p̄∈Rn

1

2

∥
∥
∥
∥

[
J(x̄k)√

λI

]

p̄+

[
r̄k
0

]∥
∥
∥
∥

2

.

As in the Gauss-Newton case, this equivalence yields a way of solving the
subproblem without computing the matrix-matrix product J(x̄k)

T J(x̄k)
and its Cholesky factorization.
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The Levenberg-Marquardt Method: Implementation 1/3

In order to find the value of λ which gives ‖p̄LM
k ‖ = ∆k , we can apply the

root-finding algorithm from Lecture#9 (Nearly Exact Solutions to the Subproblem).

However, due to the special structure Bk = J(x̄k)
T J(x̄k), the

approximate Hessian is always positive semi-definite, hence the Cholesky
factorization cannot break down for any λ(j) > 0.

The structure of Bk can further be exploited to get the Cholesky
factorization

RT
λ
Rλ = JT J + λI ,

by means of the QR-factorization

[
Rλ

0

]

= QT
λ

[
J√
λI

]

,

{
Qλ orthogonal
Rλ upper triangular
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The Levenberg-Marquardt Method: Implementation 2/3

We defer the discussion of the most efficient way of implementing
the QR-factorization to another forum (like Math 543).

Least-squares problems are ofter poorly scaled. The separation of
scales between different parameters can easily be several orders of
magnitude, e.g. x1 ∼ 1014xn.

This is a scenario where the use of scale factors, and ellipsoidal
trust-regions ‖Dp̄‖ ≤ ∆k , where the diagonal matrix
D = diag(d1, d2, . . . , dn) captures the scales of the various
parameters [see Lecture#10] (Trust-Region Methods: Global Convergence and

Enhancements).
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The Levenberg-Marquardt Method: Implementation 3/3

In the scaled case, the trust-region subproblem, and the two
characterizations of the solution become:

p̄LM
k = arg min

p̄∈Rn

1

2
‖J(x̄k)p̄+ r̄k‖22, subject to ‖Dkp̄‖ ≤ ∆k ,

[
J(x̄k)

T J(x̄k) + λD2
k

]
p̄LM
k = −J(x̄k )̄rk ,

p̄k = arg min
p̄∈Rn

1

2

∥
∥
∥
∥

[
J(x̄k)√
λDk

]

p̄+

[
r̄k
0

]∥
∥
∥
∥

2

.

The convergence properties are preserved even though Dk is allowed to
change from iteration-to-iteration, within certain bounds.

If D2
k = extract diagonal(JTk Jk), then the algorithm is invariant under

diagonal scaling of x̄.
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Large-Residual Problems 1 of 3

In all the previous discussion we have assumed, explicitly or
implicitly, that the approximation

∇2f (x̄) ≈ J(x̄)T J(x̄),

works well. However, when the neglected second order part of the
Hessian

m∑

j=1

rj(x̄)∇2rj(x̄),

is large, the approximation does not produce good results.

The question looms large: What should be done in this case?
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Large-Residual Problems 2 of 3

Solution #1: Head-in-the-sand

In statistical applications the importance of such problems are
(sometimes) downplayed. The argument is that if the residuals
are large at the solution, then the model is not good enough.

However, often large residuals are caused by outliers — caused by
anomalous readings. Solving the least-squares problem may help us
identify the outliers. These can then be treated in an appropriate
way...

Both the Gauss-Newton and Levenberg-Marquardt methods
perform poorly in the large-residual case. The local convergence is
linear and thus slower than general-purpose algorithms for
unconstrained optimization.
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Large-Residual Problems 3 of 3

Solution #2: Hybrid Methods — Type #1

In a hybrid method, we start with Gauss-Newton or Levenberg-
Marquardt (which have much lower cost/iteration compared to
general-purpose methods), and if it turns out that the residuals at
the solution are large we switch to a quasi-Newton or Newton method.

Solution #3: Hybrid Methods — Type #2

It is also possible to combine Gauss-Newton and quasi-Newton
ideas to maintain approximations to the second order part of the
Hessian. I.e. we maintain a sequence Sk ≈ ∑m

j=1 rj(x̄k)∇2rj(x̄k)
(think BFGS-style), and then use the overall Hessian approximation
Bk = JTk Jk + Sk in a trust-region or line-search calculation.

This can get “somewhat” complex...
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Index
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