



Constrained Optimization Some Approaches KKT First Order Necessary Conditions Second Order Conditions Second Order Conditions	Constrained Optimization Some Approaches KKT First Order Necessary Conditions Second Order Conditions Second Order Conditions
The Lagrangian Function	KKT First Order Necessary Conditions
Our final building block before stating the first order conditions for optimality is the:	Theorem (KKT:FONC — First Order Necessary Conditions) Suppose that \vec{x}^* is a local solution to Problem 1, that the functions f and c_i are continuously differentiable, and that the LICQ holds at \vec{x}^* . Then there is a Lagrange multiplier vector $\vec{\lambda}^*$, with components $\lambda_i(\vec{x}^*)$,
Definition (The Lagrangian Function, $\mathcal{L}(\vec{x}, \vec{\lambda})$) $\mathcal{L}(\vec{x}, \vec{\lambda}) = f(\vec{x}) - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(\vec{x})$	$i \in \mathcal{E} \cup \mathcal{I}$, such that the following conditions are satisfied at $(\vec{x}^*, \vec{\lambda}^*)$: $\nabla_{\vec{x}} \mathcal{L}(\vec{x}, \vec{\lambda}) = 0,$ $c_i(\vec{x}^*) = 0, \forall i \in \mathcal{E}$ $c_i(\vec{x}^*) \ge 0, \forall i \in \mathcal{I}$
The Lagrange multipliers, λ_i , are used to "pull" the solution back to the feasible set.	$egin{aligned} \lambda_i^* \geq 0, & orall i \in \mathcal{I} \ \lambda_i^* c_i(ec{x}^*) = 0, & i \in \mathcal{I} \cup \mathcal{E}. \end{aligned}$
Sun Direction Peter Blomgren, (blomgren.peter@gmail.com) Lecture Notes #28 Constrained Optimization — (9/22)	The Karush–Kuhn–Tucker conditions. San Direct State Peter Blomgren, (blomgren.peter@gmail.com) Lecture Notes #28 Constrained Optimization — (10/22)
Constrained Optimization Some Approaches Second Order Conditions	Constrained Optimization Some Approaches Second Order Conditions
KKT First Order Necessary Conditions (compact form)	Strict Complementarity
Theorem (KKT:FONC — Compact Form) Suppose that \vec{x}^* is a local solution to Problem 1, that the functions f and c_i are continuously differentiable, and that the LICQ holds at \vec{x}^* . Then there is a Lagrange multiplier vector $\vec{\lambda}^*$, with components $\lambda_i(\vec{x}^*)$, $i \in \mathcal{E} \cup \mathcal{I}$, such that the following conditions are satisfied at $(\vec{x}^*, \vec{\lambda}^*)$: $0 = \nabla_{\vec{x}} \mathcal{L}(\vec{x}, \vec{\lambda}) = \nabla f(\vec{x}^*) - \sum_{i \in \mathcal{A}(\vec{x}^*)} \lambda_i^* \nabla c_i(\vec{x}^*).$	Definition (Strict Complementarity) Given a local solution \vec{x}^* of Problem 1, and a vector $\vec{\lambda}^*$ satisfying the KKT:FONC, we say that the strict complementarity condition holds if exactly one of λ_i^* or $c_i(\vec{x}^*)$ is zero for each index $i \in \mathcal{I}$. In other words, we have $\lambda_i^* > 0 \ \forall i \in \mathcal{I} \cap \mathcal{A}(\vec{x}^*)$. We sweep the proof of KKT:FONC under our infinitely stretchable rug. Not because it is not important (it is!), but we are somewhat short on time.
San Dirgo State University	Sun Dirgo Statt University

Constrained Optimization KKT First Order Necessary Conditions Some Approaches Second Order Conditions	Constrained Optimization Some Approaches Problems and Algorithms		
Second Order Sufficient Conditions	Some Approaches		
<section-header><text><text><equation-block><text><text></text></text></equation-block></text></text></section-header>	 Linear Programming — The Simplex Method f and c; linear functions Leonid Kantorovich, 1939 — Linear Programming. George Datzig, 1947 — The Simplex Method. John von Neumann, 1947 — Theory of Duality. The worst case complexity for The Simplex Method is exponential, but it is remarkably efficient in practice. 		
Peter Blomgren, (blomgren.peter@gmail.com) Lecture Notes #28 Constrained Optimization — (17/22) Constrained Optimization Deckloses and Alexistence	Peter Blomgren, (blomgren.peter@gmail.com) Lecture Notes #28 Constrained Optimization — (18/22) Constrained Optimization		
Constrained Optimization Some Approaches Problems and Algorithms	Constrained Optimization Some Approaches Problems and Algorithms		
Constrained Optimization Problems and Algorithms	Constrained Optimization Problems and Algorithms		

Constrained Optimization Some Approaches Problems and Algorithms	Constrained Optimization Some Approaches	Problems and Algorithms
Some Approaches	Index	
<section-header><list-item><list-item><list-item><list-item> Penalty / Augmented Lagrangian Methods Onstraints are represented by additions to the objective Quadratic Penalty Terms — add the square of the constraint discrepancies: intuitive, fairly simple to implement Non-smooth Penalty Terms — l₁ and l₀ penalty functions Tethod of Multipliers — estimated for the Lagrange multipliers are used. </list-item></list-item></list-item></list-item></section-header>	Peter Blomgren, (blomgren.peter@gmail.com)	Lecture Notes #28 Constrained Optimization — (22/22)