Numerical Optimization
Lecture Notes #6
Line Search Methods: Step Length Selection

Peter Blomgren,
⟨blomgren.peter@gmail.com⟩

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Fall 2017
Outline

1. Line Search Methods
 • Recap
 • Step Length Selection

2. Step Length Selection
 • Interpolation
 • The Initial Step
 • Line Search Satisfying the Strong Wolfe Conditions

3. Homework #2
Quick Recap: Last Time

Rates of convergence for our different optimization strategies.

We showed that for a simple quadratic model
\[f(\bar{x}) = \frac{1}{2} \bar{x}^T Q \bar{x} - \bar{b}^T \bar{x} \] the steepest descent method is indeed linearly convergent.

The result generalizes to general nonlinear objective functions for which \(\nabla f(\bar{x}^*) = 0 \) and \(\nabla^2 f(\bar{x}^*) \) is positive definite.

We stated the result for Newton’s method which says that it is locally quadratically convergent.
Further, **Quasi-Newton methods**, where the search direction is $\bar{p}_k^{\text{QN}} = -B_k^{-1}\nabla f(\bar{x}_k)$, exhibit **super-linear convergence** as long as the matrix sequence $\{B_k\}$ converges to the Hessian $\nabla^2 f(\bar{x}^*)$ in the search direction \bar{p}_k:

$$\lim_{k \to \infty} \frac{\| (B_k - \nabla^2 f(\bar{x}^*))\bar{p}_k \|}{\| \bar{p}_k \|} = 0.$$

Coordinate Descent Methods: Slower than Steepest descent. Useful of coordinates are decoupled and/or computation of the gradient is not possible or too expensive. — We can potentially leverage multi-threaded computations.
Unconstrained Optimization — In the Line Search “Universe”

- Global Optimization Problem
- Local Strategies
- Line Search Algorithms
 - Search Direction
 - Step Length
 - Sufficient Descent Conditions
 - Convergence: Global
 - Convergence: Local Rate
Lookahead: This Time — A Closer Look at Step Length

We look at techniques for

Best: Finding a minimizer to the 1D-function

$$\Phi(\alpha) = f(\bar{x}_k + \alpha \bar{p}_k)$$

OK: Finding a step length α_k which satisfy a “sufficient decrease condition” such as the Wolfe conditions.

We already have one such algorithm —

Algorithm: Backtracking Line-search

[1] Set $\overline{\alpha} > 0$, $\rho \in (0, 1)$, $c \in (0, 1)$, set $\alpha = \overline{\alpha}$
[2] While $f(\bar{x}_k + \alpha \bar{p}_k) > f(\bar{x}_k) + c \alpha \bar{p}_k^T \nabla f(\bar{x}_k)$
[3] $\alpha = \rho \alpha$
[4] End-While
[5] Set $\alpha_k = \alpha$
Step Length Selection: Assumptions

We must assume that \bar{p}_k is a descent direction, i.e. that $\Phi'(0) < 0$ — thus all our steps will be in the positive direction.

When the objective f is quadratic $f(\bar{x}) = \frac{1}{2}\bar{x}^T Q\bar{x} + \bar{b}^T \bar{x} + c$, the optimal step can be found explicitly

$$\alpha_k = -\frac{\nabla f(\bar{x}_k)^T \bar{p}_k}{\bar{p}_k^T Q \bar{p}_k}.$$

For general nonlinear f we must use an iterative scheme to find the step length α_k.

How the line search is performed impacts the robustness and efficiency of the overall optimization method.
Step Length Selection: Classification

It is natural to classify line search methods based on how many derivatives they need:

0. Methods based on function values only tend to be inefficient, since they need to narrow the minimizer to a small interval.

1. Gradient information makes it easier to determine if a certain step is good — i.e. it satisfies a sufficient reduction condition.

>1. Methods requiring more than one derivate are quite rare; in order to compute the second derivative the full Hessian $\nabla^2 f(\bar{x}_k)$ is needed, this is usually too high a cost.
Step Length Selection: Our Focus

The best “bang-for-bucks” line search algorithms use the gradient information, hence those will be the focus of our discussion. A line search algorithm roughly breaks down into the following components:

[1] The initial step length α_0 is selected.

[2] An interval $[\alpha_{\text{min}}, \alpha_{\text{max}}]$ containing acceptable step lengths is identified — **Bracketing phase**.

[3] The final step length is selected from the acceptable set — **Selection phase**.

First we note that the **Armijo condition** can be written in terms of Φ as

$$\Phi(\alpha_k) \leq \Phi(0) + c_1 \alpha_k \Phi'(0),$$

where $c_1 \sim 10^{-4}$ in practice. This is stronger (but not much stronger) that requiring descent.

\Rightarrow Our new algorithms will be efficient in the sense that the gradient $\nabla f(\bar{x}_k)$ is computed **as few times as possible**.

If the initial step length α_0 satisfies the Armijo condition, then we accept α_0 as the step length and terminate the search.

— As we get close to the solution this will happen more and more often (for Newton and quasi-Newton methods with $\alpha_0 = 1$.)

Otherwise, we search for an acceptable step length in $[0, \alpha_0]$...
At this stage we have computed 3 pieces of information:

\[\Phi(0), \Phi'(0), \text{ and } \Phi(\alpha_0), \]

we use this information to build a quadratic model \(\Phi_q(\alpha) \):

\[
\Phi_q(\alpha) = \left[\frac{\Phi(\alpha_0) - \Phi(0) - \alpha_0 \Phi'(0)}{\alpha_0^2} \right] \alpha^2 + \Phi'(0)\alpha + \Phi(0).
\]

Note

\[\Phi_q(0) = \Phi(0), \quad \Phi_q(\alpha_0) = \Phi(\alpha_0), \quad \Phi'_q(0) = \Phi'(0). \]

We set \(\Phi'_q(\alpha) = 0 \) to find the minimum of the model — our next \(\alpha \) to try...

\[
\Phi'_q(\alpha) = 2\alpha \left[\frac{\Phi(\alpha_0) - \Phi(0) - \alpha_0 \Phi'(0)}{\alpha_0^2} \right] + \Phi'(0) = 0.
\]
Hence

\[\alpha_1 = -\frac{\alpha_0^2 \Phi'(0)}{2 [\Phi(\alpha_0) - \Phi(0) - \alpha_0 \Phi'(0)]}. \]

We now check the Armijo condition

\[\Phi(\alpha_1) \leq \Phi(0) + c_1 \alpha_1 \Phi'(0). \]

If it fails, then we create a cubic function

\[\Phi_c(\alpha) = a \alpha^3 + b \alpha^2 + \alpha \Phi'(0) + \Phi(0), \]

which interpolates \(\Phi(0), \Phi'(0), \Phi(\alpha_0), \) and \(\Phi(\alpha_1). \)

\[
\begin{bmatrix}
a \\
b
\end{bmatrix} = \frac{1}{\alpha_0^2 \alpha_1^2 (\alpha_1 - \alpha_0)} \begin{bmatrix}
\alpha_0^2 & -\alpha_1^2 \\
-\alpha_0^3 & \alpha_1^3
\end{bmatrix} \begin{bmatrix}
\Phi(\alpha_1) - \Phi(0) - \alpha_1 \Phi'(0) \\
\Phi(\alpha_0) - \Phi(0) - \alpha_0 \Phi'(0)
\end{bmatrix}
\]
The next iterate (α_2) is now the minimizer of $\Phi_c(\alpha)$ which lies in $[0, \alpha_1]$, it is given as one of the roots of the quadratic equation

$$\Phi'_c(\alpha) = 3a\alpha^2 + 2b\alpha + \Phi'(0) = 0,$$

it is...

$$\alpha_2 = \frac{-b + \sqrt{b^2 - 3a\Phi'(0)}}{3a}.$$

In the extremely rare cases that α_2 does not satisfy the Armijo condition $\Phi(\alpha_2) \leq \Phi(0) + c_1\alpha_2\Phi'(0)$, we create a new cubic model interpolating

$$\Phi(0), \Phi'(0), \Phi(\alpha_1), \text{ and } \Phi(\alpha_2)$$

i.e. $\Phi(0), \Phi'(0)$ and the two most recent α's.
At this point we must introduce the following safeguards to guarantee that we make sufficient progress:

\[
\text{If } |\alpha_{k+1} - \alpha_k| < \epsilon_1 \text{ or } |\alpha_{k+1}| < \epsilon_2 \\text{ then } \alpha_{k+1} = \alpha_k / 2.
\]

The algorithm described assumes that computing the derivative is significantly more expensive than computing function values.

However it is often, but not always, possible to compute the directional derivative (or a good estimate thereof) with minimal extra cost.

In those cases we build the cubic interpolant so that it interpolates

\[
\Phi(\alpha_k), \Phi'(\alpha_k), \Phi(\alpha_{k-1}), \text{ and } \Phi'(\alpha_{k-1})
\]

this is a Hermite Polynomial of degree 3 (see Math 541.)
The cubic Hermite polynomial satisfying

\[H_3(\alpha_{k-1}) = \Phi(\alpha_{k-1}), \quad H'_3(\alpha_{k-1}) = \Phi'(\alpha_{k-1}) \]
\[H_3(\alpha_k) = \Phi(\alpha_k), \quad H'_3(\alpha_k) = \Phi'(\alpha_k). \]

can be written explicitly as

\[
H_3(\alpha) = \left[1 + 2 \frac{\alpha - \alpha_{k-1}}{\alpha_k - \alpha_{k-1}} \right] \left[\frac{\alpha_k - \alpha}{\alpha_k - \alpha_{k-1}} \right]^2 \Phi(\alpha_{k-1}) \\
+ \left[1 + 2 \frac{\alpha_k - \alpha}{\alpha_k - \alpha_{k-1}} \right] \left[\frac{\alpha_k - \alpha}{\alpha_k - \alpha_{k-1}} \right]^2 \Phi(\alpha_k) \\
+ (\alpha - \alpha_{k-1}) \left[\frac{\alpha_k - \alpha}{\alpha_k - \alpha_{k-1}} \right]^2 \Phi'(\alpha_{k-1}) \\
+ (\alpha - \alpha_k) \left[\frac{\alpha_k - \alpha - \alpha_{k-1}}{\alpha_k - \alpha_{k-1}} \right]^2 \Phi'(\alpha_k).
\]

(Straight from Math 541)
The minimizer of $H_3(\alpha)$ in $[\alpha_{k-1}, \alpha_k]$ is either at one of the end points, or else in the interior (given by setting $H'_3(\alpha) = 0$).

The interior point is

$$
\alpha_{k+1} = \alpha_k - (\alpha_k - \alpha_{k-1}) \left[\frac{\Phi'(\alpha_k) + d_2 - d_1}{\Phi'(\alpha_k) - \Phi'(\alpha_{k-1}) + 2d_2} \right]
$$

where

$$
d_1 = \Phi'(\alpha_{k-1}) + \Phi'(\alpha_k) - 3 \left[\frac{\Phi(\alpha_{k-1}) - \Phi(\alpha_k)}{\alpha_{k-1} - \alpha_k} \right]
$$

$$
d_2 = \text{sign} (\alpha_k - \alpha_{k-1}) \sqrt{d_1^2 - \Phi'(\alpha_{k-1})\Phi'(\alpha_k)}
$$

Either α_{k+1} is accepted as the step length, or the search process continues...

Cubic interpolation gives **quadratic convergence** in the step length selection algorithm.
For Newton and quasi-Newton methods, the search vector \bar{p}_k contains an intrinsic sense of **scale** (being formed from the local descent, and curvature information), hence the initial trial step length should always be $\alpha_0 = 1$, otherwise we break the quadratic respective super-linear convergence properties.

For other search directions, such as **steepest descent** and **conjugate gradient** (to be described later) directions which do not have a sense of scale, other methods must be used to select a good first trial step:

Strategy #1: Assume that the rate of change in the current iteration will be the same as in the previous iteration, select α_0:

$$
\alpha_0[k] = \alpha[k-1] \frac{\bar{p}_{k-1}^T \nabla f(\bar{x}_{k-1})}{\bar{p}_k^T \nabla f(\bar{x}_k)}.
$$
Strategy #2: Use the minimizer of the quadratic interpolant to \(f(\bar{x}_{k-1}), f(\bar{x}_k), \) and \(\phi'(0) = \bar{p}_k^T \nabla f(\bar{x}_k) \) as the initial \(\alpha: \)

\[
\alpha_0^{[k]} = \frac{2[f(\bar{x}_k) - f(\bar{x}_{k-1})]}{\bar{p}_k^T \nabla f(\bar{x}_k)}
\]

If this strategy is used with a quadratically or super-linearly convergent algorithm, the choice of \(\alpha_0 \) must be modified slightly to preserve the convergence properties:

\[
\alpha_{0, \text{new}}^{[k]} = \min(1, 1.01 \alpha_0^{[k]})
\]

this ensures that the step length \(\alpha_0 = 1 \) will eventually always be tried.
Algorithm: LS/Strong Wolfe Conditions

01. Set $\alpha_0 = 0$, choose $\alpha_1 > 0$, α_{max}, c_1, and c_2, $i = 1$
02. while(TRUE)
03. Compute $\Phi(\alpha_i)$
04. if $(\Phi(\alpha_i) > \Phi(0) + c_1 \alpha_i \Phi'(0))$
 or $(\Phi(\alpha_i) \geq \Phi(\alpha_{i-1})$ and $i > 1)$
05. $\alpha_* = \text{zoom}(\alpha_{i-1}, \alpha_i)$, and terminate search
06. Compute $\Phi'(\alpha_i)$
07. if $|\Phi'(\alpha_i)| \leq -c_2 \Phi'(0)$
08. $\alpha_* = \alpha_i$, and terminate search
09. if $\Phi'(\alpha_i) \geq 0$
10. $\alpha_* = \text{zoom}(\alpha_i, \alpha_{i-1})$, and terminate search
11. Choose $\alpha_{i+1} \in [\alpha_i, \alpha_{\text{max}}]$
12. $i = i + 1$
13. end
In the **first stage** of the algorithm, either an acceptable step length, or a range \([α_i, α_{i+1}]\) containing an acceptable step length is identified — none of the conditions 04, 07, 09 are satisfied so the step length is increased 11.

If in the first stage we identified a range, the **second stage** invokes a function \(\text{zoom}\) which will identify an acceptable step from the interval.

Notes: 04 establishes that \(α_i\) is too long a step, thus \(α_∗\) must be in the range \([α_{i-1}, α_i]\).

If 07 holds, then both the strong Wolfe conditions hold (since \(\text{not}(04)\) must also hold.

Finally, if 09 holds then the step is too large (since we are going uphill at this point.)
The zoom function takes two arguments: $\text{zoom}(\alpha_{\text{low}}, \alpha_{\text{high}})$ satisfying the following:

[1] The interval bounded by α_{low} and α_{high} contains step lengths which satisfy the strong Wolfe conditions.

[2] α_{low} is the α corresponding to the lower function value, i.e. $\Phi(\alpha_{\text{low}}) < \Phi(\alpha_{\text{high}})$.

[3] α_{low} and α_{high} satisfy: $\Phi'(\alpha_{\text{low}})(\alpha_{\text{high}} - \alpha_{\text{low}}) < 0$.

See the figure on slide 23.
Algorithm: zoom function

01. \textbf{while} (TRUE)
02. \hspace{1em} \textbf{Interpolate} to find α_j between α_{low} and α_{high}
03. \hspace{1em} Compute $\Phi(\alpha_j)$
04. \hspace{1em} if ($\Phi(\alpha_j) > \Phi(0) + c_1 \alpha_j \Phi'(0)$) or ($\Phi(\alpha_j) \geq \Phi(\alpha_{\text{low}})$)
05. \hspace{1em} $\alpha_{\text{high}} = \alpha_j$
06. \hspace{1em} else
07. \hspace{2em} Compute $\Phi'(\alpha_i)$
08. \hspace{2em} if $|\Phi'(\alpha_j)| \leq -c_2 \Phi'(0)$
09. \hspace{3em} $\alpha_* = \alpha_j$, and \textbf{return}(α_*)
10. \hspace{2em} if $\Phi'(\alpha_j)(\alpha_{\text{high}} - \alpha_{\text{low}}) \geq 0$
11. \hspace{3em} $\alpha_{\text{high}} = \alpha_{\text{low}}$
12. \hspace{3em} $\alpha_{\text{low}} = \alpha_j$
13. \hspace{1em} end
In practical applications ($c_1 = 10^{-4}$ and $c_2 = 0.9$), enforcing strong Wolfe conditions require a similar amount of work compared with the Wolfe conditions.

The advantage of the strong conditions is that by decreasing c_2 we can force the accepted step lengths to be closer to the local minima of $\Phi(\cdot)$, this is particularly helpful in applications of steepest descent or conjugate gradient methods.

Figure: A possible scenario for zoom — since $\alpha_{\text{low}} < \alpha_{\text{high}}$ we must have negative slope at α_{low}.
Figure: Illustrating the 04-condition; since we know we can push the objective down to $\Phi(\alpha_{\text{low}})$, we reject α_j even though it satisfies the Armijo condition.
Re-do Homework #1, replacing the backtracking line search with the algorithm discussed in this lecture.

Do not forget the safe-guards.

Note that (some of) the interpolation formulas are anchored at 0 on the left; but neither α_{low} nor α_{high} is guaranteed to be 0.

Compare the performance for both the Newton and Steepest Descent algorithms; is there a significant difference?
Index

line search
algorithm satisfying the strong Wolfe conditions, 19

roadmap
unconstrained optimization, 5

step length
interpolation safeguards, 14
interpolation strategies, 10