Outline

1. Line Search Methods
 - Recap
 - Step Length Selection

2. Step Length Selection
 - Interpolation
 - The Initial Step
 - Line Search Satisfying the Strong Wolfe Conditions

3. Homework #2
 - Homework #2 — Help & Hints
Quick Recap: Last Time

Rates of convergence for our different optimization strategies.

We showed that for a simple quadratic model
\[f(\bar{x}) = \frac{1}{2} \bar{x}^T Q \bar{x} - \bar{b}^T \bar{x} \]
the steepest descent method is indeed linearly convergent.

The result generalizes to general nonlinear objective functions for which \(\nabla f(\bar{x}^*) = 0 \) and \(\nabla^2 f(\bar{x}^*) \) is positive definite.

We stated the result for Newton’s method which says that it is locally quadratically convergent.
Further, **Quasi-Newton methods**, where the search direction is $\bar{p}_k^{QN} = -B_k^{-1}\nabla f(\bar{x}_k)$, exhibit **super-linear convergence** as long as the matrix sequence $\{B_k\}$ converges to the Hessian $\nabla^2 f(\bar{x}^*)$ in the search direction \bar{p}_k:

$$\lim_{k \to \infty} \frac{\|(B_k - \nabla^2 f(\bar{x}^*))\bar{p}_k\|}{\|\bar{p}_k\|} = 0.$$

Coordinate Descent Methods: Slower than Steepest descent. Useful if coordinates are decoupled and/or computation of the gradient is not possible or too expensive. — We can potentially leverage multi-threaded computations.
Unconstrained Optimization — In the Line Search “Universe”

- Global Optimization Problem
- Local Strategies
- Line Search Algorithms
 - Search Direction
 - Step Length
 - Sufficient Descent Conditions
 - Convergence: Global
 - Convergence: Local Rate
We look at techniques for

Best: Finding a minimizer to the 1D-function
\[\Phi(\alpha) = f(\bar{x}_k + \alpha \bar{p}_k) \]

OK: Finding a step length \(\alpha_k \) which satisfy a “sufficient decrease condition” such as the Wolfe conditions.

We already have one such algorithm —

Algorithm: Backtracking Line-search

1. Set \(\bar{\alpha} > 0, \rho \in (0, 1), c \in (0, 1) \), set \(\alpha = \bar{\alpha} \)
2. While \(f(\bar{x}_k + \alpha \bar{p}_k) > f(\bar{x}_k) + c\alpha \bar{p}_k^T \nabla f(\bar{x}_k) \)
3. \(\alpha = \rho \alpha \)
4. End-While
5. Set \(\alpha_k = \alpha \)
Step Length Selection: Assumptions

We must assume that \bar{p}_k is a descent direction, i.e. that $\Phi'(0) < 0$ — thus all our steps will be in the positive direction.

When the objective f is quadratic $f(\bar{x}) = \frac{1}{2} \bar{x}^T Q \bar{x} + \bar{b}^T \bar{x} + c$, the optimal step can be found explicitly

$$\alpha_k = -\frac{\nabla f(\bar{x}_k)^T \bar{p}_k}{\bar{p}_k^T Q \bar{p}_k}.$$

For general nonlinear f we must use an iterative scheme to find the step length α_k.

How the line search is performed impacts the robustness and efficiency of the overall optimization method.
Step Length Selection: Classification

It is natural to classify line search methods based on how many derivatives they need:

0 Methods based on function values only tend to be inefficient, since they need to narrow the minimizer to a small interval.

1 Gradient information makes it easier to determine if a certain step is good — i.e. it satisfies a sufficient reduction condition.

>1 Methods requiring more than one derivate are quite rare; in order to compute the second derivative the full Hessian $\nabla^2 f(\bar{x}_k)$ is needed, this is usually too high a cost.
Step Length Selection: Our Focus

The best “bang-for-bucks” line search algorithms use the gradient information, hence those will be the focus of our discussion. A line search algorithm roughly breaks down into the following components:

[1] The initial step length α_0 is selected.

[2] An interval $[\alpha_{min}, \alpha_{max}]$ containing acceptable step lengths is identified — **Bracketing phase**.

[3] The final step length is selected from the acceptable set — **Selection phase**.

First we note that the **Armijo condition** can be written in terms of Φ as

$$\Phi(\alpha_k) \leq \Phi(0) + c_1 \alpha_k \Phi'(0),$$

where $c_1 \sim 10^{-4}$ in practice. This is stronger (but not much stronger) than requiring descent.

⇒ Our new algorithms will be efficient in the sense that the gradient $\nabla f(\bar{x}_k)$ is computed **as few times as possible**.

If the initial step length α_0 satisfies the Armijo condition, then we accept α_0 as the step length and terminate the search.

— As we get close to the solution this will happen more and more often (for Newton and quasi-Newton methods with $\alpha_0 = 1$.)

Otherwise, we search for an acceptable step length in $[0, \alpha_0]$...
At this stage we have computed 3 pieces of information:

\[\Phi(0), \Phi'(0), \text{ and } \Phi(\alpha_0), \]

we can use this information to build a quadratic model \(\Phi_q(\alpha) \):

\[
\Phi_q(\alpha) = \left[\frac{\Phi(\alpha_0) - \Phi(0) - \alpha_0 \Phi'(0)}{\alpha_0^2} \right] \alpha^2 + \Phi'(0)\alpha + \Phi(0).
\]

Note

\[\Phi_q(0) = \Phi(0), \quad \Phi_q(\alpha_0) = \Phi(\alpha_0), \quad \Phi'_q(0) = \Phi'(0). \]

We set \(\Phi'_q(\alpha) = 0 \) to find the minimum of the model — our next \(\alpha \) to try...

\[
\Phi'_q(\alpha) = 2\alpha \left[\frac{\Phi(\alpha_0) - \Phi(0) - \alpha_0 \Phi'(0)}{\alpha_0^2} \right] + \Phi'(0) = 0.
\]
Hence

\[\alpha_1 = -\frac{\alpha_0^2 \Phi'(0)}{2 [\Phi(\alpha_0) - \Phi(0) - \alpha_0 \Phi'(0)]}. \]

We now check the Armijo condition

\[\Phi(\alpha_1) \leq \Phi(0) + c_1 \alpha_1 \Phi'(0). \]

If it fails, then we create a cubic function

\[\Phi_c(\alpha) = a \alpha^3 + b \alpha^2 + \alpha \Phi'(0) + \Phi(0), \]

which interpolates

\[\Phi(0), \Phi'(0), \Phi(\alpha_0), \text{ and } \Phi(\alpha_1). \]

\[\begin{bmatrix} a \\ b \end{bmatrix} = \frac{1}{\alpha_0^2 \alpha_1^2 (\alpha_1 - \alpha_0)} \begin{bmatrix} \alpha_0^2 & -\alpha_1^2 \\ -\alpha_0^3 & \alpha_1^3 \end{bmatrix} \begin{bmatrix} \Phi(\alpha_1) - \Phi(0) - \alpha_1 \Phi'(0) \\ \Phi(\alpha_0) - \Phi(0) - \alpha_0 \Phi'(0) \end{bmatrix}. \]
The next iterate (α_2) is now the minimizer of $\Phi_c(\alpha)$ which lies in $[0, \alpha_1]$, it is given as one of the roots of the quadratic equation

$$\Phi'_c(\alpha) = 3a\alpha^2 + 2b\alpha + \Phi'(0) = 0,$$

it is...

$$\alpha_2 = \frac{-b + \sqrt{b^2 - 3a\Phi'(0)}}{3a}.$$

In the extremely rare cases that α_2 does not satisfy the Armijo condition

$$\Phi(\alpha_2) \leq \Phi(0) + c_1\alpha_2\Phi'(0),$$

we create a new cubic model interpolating

$$\Phi(0), \Phi'(0), \Phi(\alpha_1), \text{ and } \Phi(\alpha_2)$$

i.e. $\Phi(0)$, $\Phi'(0)$ and the two most recent α's.
At this point we must introduce the following safeguards to guarantee that we make sufficient progress:

\[
\text{If } |\alpha_{k+1} - \alpha_k| < \epsilon_1 \text{ or } |\alpha_{k+1}| < \epsilon_2 \text{ then } \alpha_{k+1} = \alpha_k / 2.
\]

The algorithm described assumes that computing the derivative is significantly more expensive than computing function values.

However it is often, but not always, possible to compute the directional derivative (or a good estimate thereof) with minimal extra cost.

In those cases we build the cubic interpolant so that it interpolates

\[
\Phi(\alpha_k), \Phi'(\alpha_k), \Phi(\alpha_{k-1}), \text{ and } \Phi'(\alpha_{k-1})
\]

this is a Hermite Polynomial of degree 3 (see Math 541 [R.I.P.].)
The cubic Hermite polynomial satisfying

\[H_3(\alpha_{k-1}) = \Phi(\alpha_{k-1}), \quad H'_3(\alpha_{k-1}) = \Phi'(\alpha_{k-1}) \]
\[H_3(\alpha_k) = \Phi(\alpha_k), \quad H'_3(\alpha_k) = \Phi'(\alpha_k). \]

can be written explicitly as

\[
H_3(\alpha) = 1 + \frac{\alpha - \alpha_{k-1}}{\alpha_k - \alpha_{k-1}} \left[\frac{\alpha_k - \alpha}{\alpha_k - \alpha_{k-1}} \right]^2 \Phi(\alpha_{k-1}) \\
+ \left[1 + 2 \frac{\alpha_k - \alpha}{\alpha_k - \alpha_{k-1}} \right] \left[\frac{\alpha - \alpha_k}{\alpha_k - \alpha_{k-1}} \right]^2 \Phi(\alpha_k) \\
+ (\alpha - \alpha_{k-1}) \left[\frac{\alpha_k - \alpha}{\alpha_k - \alpha_{k-1}} \right]^2 \Phi'(\alpha_{k-1}) \\
+ (\alpha - \alpha_k) \left[\frac{\alpha - \alpha_{k-1}}{\alpha_k - \alpha_{k-1}} \right]^2 \Phi'(\alpha_k).
\]

(Straight from Math 541 [R.I.P.])...
The minimizer of $H_3(\alpha)$ in $[\alpha_{k-1}, \alpha_k]$ is either at one of the end points, or else in the interior (given by setting $H_3'(\alpha) = 0$). The interior point is

$$\alpha_{k+1} = \alpha_k - (\alpha_k - \alpha_{k-1}) \left[\frac{\Phi'(\alpha_k) + d_2 - d_1}{\Phi'(\alpha_k) - \Phi'(\alpha_{k-1}) + 2d_2} \right]$$

where

$$d_1 = \Phi'(\alpha_{k-1}) + \Phi'(\alpha_k) - 3 \left[\frac{\Phi(\alpha_{k-1}) - \Phi(\alpha_k)}{\alpha_{k-1} - \alpha_k} \right]$$

$$d_2 = \text{sign} (\alpha_k - \alpha_{k-1}) \sqrt{d_1^2 - \Phi'(\alpha_{k-1})\Phi'(\alpha_k)}$$

Either α_{k+1} is accepted as the step length, or the search process continues...

Cubic interpolation gives \textbf{quadratic convergence} in the step length selection algorithm.

Peter Blomgren, (blomgren.peter@gmail.com)
For Newton and quasi-Newton methods, the search vector \bar{p}_k contains an intrinsic sense of scale (being formed from the local descent, and curvature information), hence the initial trial step length should always be $\alpha_0 = 1$, otherwise we break the quadratic respective super-linear convergence properties.

For other search directions, such as steepest descent and conjugate gradient (to be described later) directions which do not have a sense of scale, other methods must be used to select a good first trial step:

Strategy #1: Assume that the rate of change in the current iteration will be the same as in the previous iteration, select α_0:

$$
\alpha_0^{[k]} = \alpha^{[k-1]} \frac{\bar{p}_{k-1}^T \nabla f(\bar{x}_{k-1})}{\bar{p}_{k}^T \nabla f(\bar{x}_{k})}.
$$
Strategy #2: Use the minimizer of the quadratic interpolant to \(f(\bar{x}_{k-1}) \), \(f(\bar{x}_k) \), and \(\phi'(0) = \bar{p}_k^T \nabla f(\bar{x}_k) \) as the initial \(\alpha \):

\[
\alpha_0^{[k]} = \frac{2[f(\bar{x}_k) - f(\bar{x}_{k-1})]}{\bar{p}_k^T \nabla f(\bar{x}_k)}
\]

If this strategy is used with a quadratically or super-linearly convergent algorithm, the choice of \(\alpha_0 \) must be modified slightly to preserve the convergence properties:

\[
\alpha_{0,\text{new}}^{[k]} = \min(1, 1.01 \alpha_0^{[k]})
\]

this ensures that the step length \(\alpha_0 = 1 \) will eventually always be tried.
Algorithm: LS/Strong Wolfe Conditions

01. Set $\alpha_0 = 0$, choose $\alpha_1 > 0$, α_{max}, c_1, and c_2, $i = 1$
02. while(TRUE)
03.
04. Compute $\Phi(\alpha_i)$
05. if $(\Phi(\alpha_i) > \Phi(0) + c_1 \alpha_i \Phi'(0))$ or $(\Phi(\alpha_i) \geq \Phi(\alpha_{i-1})$ and $i > 1$)
06. $\alpha_* = \text{zoom}(\alpha_{i-1}, \alpha_i)$, and terminate search
07. end::if–04
08. Compute $\Phi'(\alpha_i)$
09. if $|\Phi'(\alpha_i)| \leq -c_2 \Phi'(0)$
10. $\alpha_* = \alpha_i$, and terminate search
11. end::if–07
12. if $\Phi'(\alpha_i) \geq 0$
13. $\alpha_* = \text{zoom}(\alpha_i, \alpha_{i-1})$, and terminate search
14. end::if–09
15. Choose $\alpha_{i+1} \in [\alpha_i, \alpha_{\text{max}}]$
16. $i = i + 1$
17. end::while
In the **first stage** of the algorithm, either an acceptable step length, or a range \([\alpha_i, \alpha_{i+1}]\) containing an acceptable step length is identified — none of the conditions 04, 07, 09 are satisfied so the step length is increased 11.

If in the first stage we identified a range, the **second stage** invokes a function `zoom` which will identify an acceptable step from the interval.

Note: 04 establishes that \(\alpha_i\) is too long a step, thus \(\alpha_*\) must be in the range \([\alpha_{i-1}, \alpha_i]\).

Note: if 07 holds, then both the strong Wolfe conditions hold (since \(\text{not}(04)\) must also hold.)

Note: Finally, if 09 holds then the step is too large (since we are going uphill at this point.)
The zoom function takes two arguments: \(\text{zoom}(\alpha_{\text{low}}, \alpha_{\text{high}}) \) satisfying the following:

[1] The interval bounded by \(\alpha_{\text{low}} \) and \(\alpha_{\text{high}} \) contains step lengths which satisfy the strong Wolfe conditions.

[2] \(\alpha_{\text{low}} \) is the \(\alpha \) corresponding to the lower function value, i.e. \(\Phi(\alpha_{\text{low}}) < \Phi(\alpha_{\text{high}}) \).

[3] \(\alpha_{\text{low}} \) and \(\alpha_{\text{high}} \) satisfy: \(\Phi'(\alpha_{\text{low}})(\alpha_{\text{high}} - \alpha_{\text{low}}) < 0 \).

See the figure on slide 23.
Algorithm: zoom function

01. while(TRUE)
02. **Interpolate** to find α_j between α_{low} and α_{high}
03. Compute $\Phi(\alpha_j)$
04. if $(\Phi(\alpha_j) > \Phi(0) + c_1 \alpha_j \Phi'(0))$ or $(\Phi(\alpha_j) \geq \Phi(\alpha_{low}))$
05. $\alpha_{high} = \alpha_j$
06. else
07. Compute $\Phi'(\alpha_j)$
08. if $|\Phi'(\alpha_j)| \leq -c_2 \Phi'(0)$
09. $\alpha_* = \alpha_j$, and **return**(α_*)
09.5 end::if–08
10. if $\Phi'(\alpha_j)(\alpha_{high} - \alpha_{low}) \geq 0$
11. $\alpha_{high} = \alpha_{low}$
11.5 end::if–10
12. $\alpha_{low} = \alpha_j$
12.5 end::if-else–04-06
13. end::while

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

Line Search Methods: Step Length Selection — (22/30)
In practical applications \((c_1 = 10^{-4} \text{ and } c_2 = 0.9)\), enforcing strong Wolfe conditions require a similar amount of work compared with the Wolfe conditions.

The advantage of the strong conditions is that by decreasing \(c_2\) we can force the accepted step lengths to be closer to the local minima of \(\Phi(\cdot)\), this is particularly helpful in applications of steepest descent or conjugate gradient methods.

Figure: A possible scenario for zoom — since \(\alpha_{\text{low}} < \alpha_{\text{high}}\) we must have negative slope at \(\alpha_{\text{low}}\).
Figure: Illustrating the 04-condition; since we know we can push the objective down to $\Phi(\alpha_{low})$, we reject α_j even though it satisfies the Armijo condition.
Re-do Homework #1, replacing the backtracking line search with the algorithm discussed in this lecture.

Do not forget the safe-guards.

Note that (some of) the interpolation formulas are anchored at 0 on the left; but neither α_{low} nor α_{high} is guaranteed to be 0.

Compare the performance for both the Newton and Steepest Descent algorithms; is there a significant difference?

Help and hints on the next slide...
Modularize your code — Have separate zoom, and interpolate functions, and a “driver” which directs “traffic.”

Implement zoom first. Debug using a simple version of \(\text{interpolate}(\text{alow}, \text{ahigh}) = (\text{alow}+\text{ahigh})/2. \)

Once zoom works, replace the interpolation step by \textit{either}

- \([\text{easier}]\) Hermite-based cubic interpolation
- \([\text{harder}]\) Quadratic-Cubic interpolation

In order to debug the interpolation, it is useful to plot the interpolation function in the \((\text{alow}, \text{ahigh})\) interval, and verify that the value selected for the next alpha indeed corresponds to the minimum.
Functions :: symbolic, “anonymous”

```matlab
1 \%(Rosenbrock Function) :: usage f(1.2,1.3)
2 f = @(x,y) 100*(y-x.^2).^2+(1-x).^2;
3
4 \%(Use symbolic toolbox to compute derivatives)
5 syms x y
6 df_dx = diff(f(x,y),x)
7 df_dy = diff(f(x,y),y)
8 df_dxx = diff(f(x,y),x,x)
9 df_dxy = diff(f(x,y),x,y)
10 df_dyy = diff(f(x,y),y,y)
11
12 \%(Make "callable" non-symbolic functions)
13 f_dx = matlabFunction(df_dx, 'Vars', [x y])
14 f_dy = matlabFunction(df_dy, 'Vars', [x y])
15 f_dxx = matlabFunction(df_dxx, 'Vars', [x y])
16 f_dxy = matlabFunction(df_dxy, 'Vars', [x y])
17 f_dyy = matlabFunction(df_dyy, 'Vars', [x y])
18
19 \%(Gradient and Hessian functions)
20 f_grad = @(x,y) [f_dx(x,y) ; f_dy(x,y)]
21 f_hess = @(x,y) [f_dxx(x,y) f_dxy(x,y) ; f_dxy(x,y) f_dyy(x,y)]
22
23 \%(Function, gradient, and hessian with vector arguments)
24 vf = @(x) f(x(1),x(2))
25 vf_grad = @(x) f_grad(x(1),x(2))
26 vf_hess = @(x) f_hess(x(1),x(2))
```
Functions :: symbolic, “anonymous”

28 \%(Steepest descent, and Newton directions)\n29 \text{sd} = @(x) -\text{vf} _\text{grad}(x)/\text{norm}(\text{vf} _\text{grad}(x))
30 \text{nd} = @(x) -\text{vf} _\text{hess}(x) \backslash \text{vf} _\text{grad}(x)
31
32 \%(Linear model --- Notice :: functions as arguments!)\n33 \text{lmod} = @(a,pk,xk,vf,vf_grad) \text{vf}(xk) + a*pk'*\text{vf} _\text{grad}(xk)
34
35 \%(Quadratic model)\n36 \text{qmod} = @(a,pk,xk,vf,vf_grad,vf_hess) \ldots
37 \quad \text{vf}(xk) + a*pk'*\text{vf} _\text{grad}(xk) + 1/2*a^2*pk'*\text{vf} _\text{hess}(xk)*pk
38
39 \%(Armijo condition check)\n40 \text{armijo} = @(a,c1,xk,pk,f,vf_grad) \ldots
41 \quad (f(xk+a*pk) <= f(xk) + c1*a*pk'*\text{vf} _\text{grad}(xk))
42
43 c1 = 10^{-(-4)}
44 x0 = [1.2 ; 1.2]
45 sd0 = sd(x0)
46 nd0 = nd(x0)
47 alpha = 1
if armijo(alpha, c1, x0, sd0, vf, vf_grad)

 fprintf('SD can take full step from x0 = [%g,%g]n', ...
 x0(1),x0(2))

else

 fprintf('SD can NOT take full step from x0 = [%g,%g]n', ...
 x0(1),x0(2))

end

if armijo(alpha, c1, x0, nd0, vf, vf_grad)

 fprintf('Newton can take full step from x0 = [%g,%g]n', ...
 x0(1),x0(2))

else

 fprintf('Newton can NOT take full step from x0 = [%g,%g]n', ...
 x0(1),x0(2))

end
algorithm
 line search
 "zoom" function, 22
 strong Wolfe conditions, 19
roadmap
 unconstrained optimization, 5
step length
 interpolation
 safeguards, 14
 strategies, 10
 selection
 classification, 8
 cubic model, 12
 quadratic model, 11
unconstrained optimization
 roadmap, 5