Numerical Optimization
Lecture Notes #9 — Trust-Region Methods
Global Convergence and Enhancements

Peter Blomgren,
⟨blomgren.peter@gmail.com⟩

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Fall 2018
1 Recap & Introduction
 • Recap: Iterative “Nearly Exact” Solution of the Subproblem
 • Quick Lookahead

2 Global Convergence
 • Tool #1 — A Lemma: The Cauchy Point
 • Tool #2 — A Theorem
 • Recall: The Trust Region Algorithm

3 Global Convergence...
 • Convergence to Stationary Points

4 Enhancements
 • Scaling
Recap: — Iterative “Nearly Exact” Solution of the Subproblem

Last time we looked at **nearly exact solution** of the subproblem

\[
\min_{\bar{p} \in T_k} m_k(\bar{p}) = \min_{\bar{p} \in T_k} f(\bar{x}_k) + \bar{p}^T \nabla f(\bar{x}_k) + \frac{1}{2} \bar{p}^T B_k \bar{p}
\]

This approach is viable for problems with few degrees of freedom, e.g. \(T_k \subseteq \mathbb{R}^n \), \(n \) “small.” Where “small” means that the **unitary diagonalization** \(Q_k \Lambda_k Q_k^T = B_k \) is computable in a “reasonable” amount of time.

From a theoretical characterization of the exact problem, we derived an algorithm which finds a nearly exact solution at a cost per iteration approximately **three** times that of dogleg and 2D-subspace minimization.

The scheme was based on a 1-D Newton iteration (with some clever tricks), and some careful analysis of special (hard) cases.
On Today’s Menu

We wrap up the first pass of Trust Region methods —

- We briefly discuss global convergence properties for trust region methods.
- We look at some theorems, but leave the proofs as “exercises.”
- For second order ($B_k \neq \nabla^2 f(\bar{x}_k)$) models we can show convergence to a stationary point.
- For trust-region Newton methods ($B_k = \nabla^2 f(\bar{x}_k)$) models we can show convergence to a point where the second order necessary conditions hold.
- We look at modifications for poorly scaled problems, as well as the use of non-spherical trust regions.

Theorem (Second Order Necessary Conditions)

If \bar{x}^* *is a local minimizer of* f *and* $\nabla^2 f$ *is continuous in an open neighborhood of* \bar{x}^*, *then* $\nabla f(\bar{x}^*) = 0$ *and* $\nabla^2 f(\bar{x}^*)$ *is positive semi-definite.*
Global Convergence: Tool #1 — A Lemma

Recall: The trust-region subproblem is

$$
\tilde{p}_k = \arg \min_{\|\tilde{p}\| \leq \Delta_k} m_k(\tilde{p}) = \arg \min_{\|\tilde{p}\| \leq \Delta_k} f(\bar{x}_k) + \tilde{p}^T \nabla f(\bar{x}_k) + \frac{1}{2} \tilde{p}^T B_k \tilde{p}.
$$

The following lemma gives us a lower bound for the decrease in the model at the Cauchy point:

Lemma (Cauchy point descent)

The Cauchy point \tilde{p}^c_k satisfies

$$
m_k(\bar{0}) - m_k(\tilde{p}^c_k) \geq \frac{1}{2} \|\nabla f(\bar{x}_k)\| \min \left[\Delta_k, \frac{\|\nabla f(\bar{x}_k)\|}{\|B_k\|} \right].
$$
Proof of Lemma

We recall the explicit expressions for the Cauchy point (from lecture 7)

\[
\bar{p}_k^c = -\tau_k \frac{\Delta_k}{\|\nabla f(\bar{x}_k)\|} \nabla f(\bar{x}_k)
\]

where

\[
\tau_k = \begin{cases}
1 & \text{if } \nabla f(\bar{x}_k)^T B_k \nabla f(\bar{x}_k) \leq 0 \\
\min\left(1, \frac{\|\nabla f(\bar{x}_k)\|^3}{\Delta_k \nabla f(\bar{x}_k)^T B_k \nabla f(\bar{x}_k)}\right) & \text{otherwise}
\end{cases}
\]

Figure: The three possible scenarios for selection of \(\tau \).

Peter Blomgren, {blomgren.peter@gmail.com}
Proof of Lemma

Case#1 \((\nabla f(\bar{x}_k)B_k \nabla f(\bar{x}) \leq 0)\):

In this scenario \(m_k(\bar{p}_k^c) - m_k(\bar{0}) =\)

\[
= m_k \left(-\Delta_k \frac{\nabla f(\bar{x}_k)}{\|\nabla f(\bar{x}_k)\|} \right) - m_k(\bar{0})
\]

\[
= -\Delta_k \|\nabla f(\bar{x}_k)\| + \frac{1}{2} \frac{\Delta_k^2}{\|\nabla f(\bar{x}_k)\|^2} \nabla f(\bar{x}_k)^T B_k \nabla f(\bar{x}_k) \leq 0
\]

\[
\leq -\Delta_k \|\nabla f(\bar{x}_k)\|
\]

\[
\leq -\|\nabla f(\bar{x}_k)\| \min \left(\Delta_k, \frac{\|\nabla f(\bar{x}_k)\|}{\|B_k\|} \right)
\]

Hence,

\[
m_k(\bar{0}) - m_k(\bar{p}_k^c) \geq \|\nabla f(\bar{x}_k)\| \min \left(\Delta_k, \frac{\|\nabla f(\bar{x}_k)\|}{\|B_k\|} \right) \geq \frac{1}{2} \|\nabla f(\bar{x}_k)\| \min \left(\Delta_k, \frac{\|\nabla f(\bar{x}_k)\|}{\|B_k\|} \right)
\]
Proof of Lemma

Case#2 \((\nabla f(\vec{x}_k)B_k\nabla f(\vec{x})) > 0, \text{ and } \frac{||\nabla f(\vec{x}_k)||^3}{\Delta_k\nabla f(\vec{x}_k)^T B_k \nabla f(\vec{x}_k)} \leq 1) \):

In this scenario the Cauchy point is in the interior of the trust region, and

\[
m_k(\vec{p}_k^c) - m_k(\vec{0}) =
\]

\[
= -\frac{||\nabla f(\vec{x}_k)||^4}{\nabla f(\vec{x}_k)^T B_k \nabla f(\vec{x}_k)} + \frac{1}{2} \frac{||\nabla f(\vec{x}_k)||^4}{(\nabla f(\vec{x}_k)^T B_k \nabla f(\vec{x}_k))^2} \nabla f(\vec{x}_k)^T B_k \nabla f(\vec{x}_k)
\]

\[
= -\frac{1}{2} \frac{||\nabla f(\vec{x}_k)||^4}{\nabla f(\vec{x}_k)^T B_k \nabla f(\vec{x}_k)}
\]

\[
\leq -\frac{1}{2} \frac{||\nabla f(\vec{x}_k)||^4}{\|B_k\| \|\nabla f(\vec{x}_k)\|^2} = -\frac{1}{2} \frac{||\nabla f(\vec{x}_k)||^2}{\|B_k\|}
\]

\[
\leq -\frac{1}{2} \frac{||\nabla f(\vec{x}_k)||}{\min \left(\Delta_k, \frac{||\nabla f(\vec{x}_k)||}{\|B_k\|} \right)}
\]

Use the minus sign to flip the inequality, and we’re there!

Peter Blomgren, \{blomgren.peter@gmail.com\}
Proof of Lemma

Case#3 \((\nabla f(\bar{x}_k)B_k \nabla f(\bar{x}) > 0, \text{ and } \frac{||\nabla f(\bar{x}_k)||^3}{\Delta_k \nabla f(\bar{x}_k)^T B_k \nabla f(\bar{x}_k)} > 1)\):

We note that in this scenario \(\nabla f(\bar{x}_k)^T B_k \nabla f(\bar{x}_k) < \frac{||\nabla f(\bar{x}_k)||^3}{\Delta_k}\), and

\[
m_k(\bar{p}_k^c) - m_k(\bar{0}) = \]

\[
= -\frac{\Delta_k}{||\nabla f(\bar{x}_k)||} ||\nabla f(\bar{x}_k)||^2 + \frac{1}{2} \frac{\Delta_k^2}{||\nabla f(\bar{x}_k)||^2} \nabla f(\bar{x}_k)^T B_k \nabla f(\bar{x}_k)
\]

\[
\leq -\Delta_k ||\nabla f(\bar{x}_k)|| + \frac{1}{2} \frac{\Delta_k^2}{||\nabla f(\bar{x}_k)||^2} \frac{||\nabla f(\bar{x}_k)||^3}{\Delta_k}
\]

\[
= -\frac{1}{2} \Delta_k ||\nabla f(\bar{x}_k)||
\]

\[
\leq -\frac{1}{2} ||\nabla f(\bar{x}_k)|| \min \left(\Delta_k, \frac{||\nabla f(\bar{x}_k)||}{||B_k||}\right)
\]

Use the minus sign to flip the inequality, and we’re there!
Global Convergence: Tool #2 — A Theorem

Theorem

Let \bar{p}_k be any vector, $\|\bar{p}_k\| \leq \Delta_k$, such that

$$m_k(\bar{0}) - m_k(\bar{p}_k) \geq c_2 (m_k(\bar{0}) - m_k(\bar{p}_c^k))$$

then

$$m_k(\bar{0}) - m_k(\bar{p}_k) \geq \frac{c_2}{2} \|\nabla f(\bar{x}_k)\| \min \left[\Delta_k, \frac{\|\nabla f(\bar{x}_k)\|}{\|B_k\|} \right].$$

Both the dogleg, and 2-D subspace minimization algorithms (as well as Steihaug’s algorithm) fall into this category, with $c_2 = 1$, since they all produce \bar{p}_k which give at least as much descent as the Cauchy point, i.e.

$m_k(\bar{p}_k) \leq m_k(\bar{p}_c^k)$.

We are going to use this result to show convergence for the trust region algorithm (see next slide).
The Trust Region Algorithm

Algorithm: Trust Region

[1] Set $k = 1$, $\widehat{\Delta} > 0$, $\Delta_0 \in (0, \widehat{\Delta})$, and $\eta \in [0, \frac{1}{4}]$
[2] While optimality condition not satisfied
[3] Get \bar{p}_k (approximate solution)
[4] Evaluate ρ_k
[5] if $\rho_k < \frac{1}{4}$
[6] $\Delta_{k+1} = \frac{1}{4} \Delta_k$
[7] else
[8] if $\rho_k > \frac{3}{4}$ and $\|\bar{p}_k\| = \Delta_k$
[9] $\Delta_{k+1} = \min(2\Delta_k, \widehat{\Delta})$
[10] else
[11] $\Delta_{k+1} = \Delta_k$
[12] endif
[13] endif
[14] if $\rho_k > \eta$
[15] $\bar{x}_{k+1} = \bar{x}_k + \bar{p}_k$
[16] else
[17] $\bar{x}_{k+1} = \bar{x}_k$
[18] endif
[19] $k = k + 1$
[20] End-While

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩
Convergence to Stationary Points

Case $\eta = 0$
accept any step which produces descent in f — we can show that the sequence of gradients $\{\nabla f(\bar{x}_k)\}$ has a limit point at zero.

Case $\eta > 0$
accept a step only if the decrease in f is at least some fixed fraction of the predicted decrease — we can show the stronger result $\{\nabla f(\bar{x}_k)\} \to \bar{0}$.

In order for the proof(s) to work, we must assume that the model Hessians B_k are uniformly bounded, i.e. $\|B_k\| \leq \beta$, and that f is bounded below on the levelset $\{\bar{x} \in \mathbb{R}^n : f(\bar{x}) \leq f(\bar{x}_0)\}$.

The trust-region bound can be relaxed so that the results hold as long as the solution to the subproblems satisfy

$$\|\bar{p}_k\| \leq \gamma \Delta_k,$$

for some constant $\gamma \geq 1$.

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩
Convergence to Stationary Points: $\eta = 0$

Theorem

Let $\eta = 0$ in the trust region algorithm. Suppose that $\|B_k\| \leq \beta$ for some constant β, that f is continuously differentiable and bounded below on the bounded set $\{\bar{x} \in \mathbb{R}^n : f(\bar{x}) \leq f(\bar{x}_0)\}$, and that all approximate solutions to the trust-region subproblem satisfy the inequalities

$$m_k(\bar{0}) - m_k(\bar{p}_k) \geq c_1 \|\nabla f(\bar{x}_k)\| \min \left[\Delta_k, \frac{\|\nabla f(\bar{x}_k)\|}{\|B_k\|} \right],$$

and

$$\|\bar{p}_k\| \leq \gamma \Delta_k,$$

for some positive constants c_1 and γ. Then we have

$$\liminf_{k \to \infty} \|\nabla f(\bar{x}_k)\| = 0.$$
Convergence to Stationary Points: $\eta > 0$

Theorem

Let $\eta \in (0, \frac{1}{4})$ in the trust region algorithm. Suppose that $\|B_k\| \leq \beta$ for some constant β, that f is Lipschitz continuously differentiable and bounded below on the bounded set $\{ \bar{x} \in \mathbb{R}^n : f(\bar{x}) \leq f(\bar{x}_0) \}$, and that all approximate solutions to the trust-region subproblem satisfy the inequalities

$$m_k(\bar{0}) - m_k(\bar{p}_k) \geq c_1 \|\nabla f(\bar{x}_k)\| \min \left\{ \Delta_k, \frac{\|\nabla f(\bar{x}_k)\|}{\|B_k\|} \right\}.$$

and

$$\|\bar{p}_k\| \leq \gamma \Delta_k$$

for some positive constants c_1 and γ. Then we have

$$\lim_{k \to \infty} \nabla f(\bar{x}_k) = \bar{0}.$$
Proofs: Convergence to Stationary Points

The complete proofs are in NW1st pp.90–91, and pp.92–93; or NW2nd pp.80–82, and pp.82–83.

The proofs are based on manipulation of ρ — the ratio of actual (objective) reduction and predicted (model) reduction; Taylor’s theorem; then deriving a contradiction from the supposition $\| \nabla f(\bar{x}_k) \| \geq \epsilon$ using careful selection of scalings and bounds for Δ_k.

Definition (lim sup and lim inf)

Let $\{s_n\}$ be a sequence of real numbers. Let E be the set of values x so that $s_{n_k} \to x$ for some subsequence $\{s_{n_k}\}$. This set E contains all sub-sequential limits, plus possibly $\pm \infty$; let

$$s^* = \sup E, \quad s_* = \inf E$$

The values s^* and s_* are the upper and lower limits of $\{s_n\}$, and we use the notation

$$\limsup_{n \to \infty} s_n = s^*, \quad \liminf_{n \to \infty} s_n = s_*$$
Theorem (NW2nd p.92, proof in Moré & Sorensen (1983))

Let $\eta \in (0, \frac{1}{4})$ in the algorithm on slide 11, let $B_k = \nabla^2 f(\bar{x}_k)$, and suppose that \bar{p}_k at each iteration satisfy

$$m_k(\bar{0}) - m_k(\bar{p}_k) \geq c_1(m_k(\bar{0}) - m_k(\bar{p}_k^*)),$$

and $\|\bar{p}_k\| \leq \gamma \Delta_k$, for some positive constant γ, and $c_1 \in (0, 1]$. Then

$$\lim_{k \to \infty} \|\nabla f(\bar{x}_k)\| = 0.$$

If, in addition, the set $\{\bar{x} \in \mathbb{R}^n : f(\bar{x}) \leq f(\bar{x}_0)\}$ is compact, then either the algorithm terminates at a point \bar{x}_k at which the second order necessary conditions for a local minimum hold, or $\{\bar{x}_k\}$ has a limit point $\bar{x}^* \in \{\bar{x} \in \mathbb{R}^n : f(\bar{x}) \leq f(\bar{x}_0)\}$ at which the conditions hold.
As we have seen before (in the context of steepest descent / line-search), **scaling** (ill-conditioning) can cause problems. — If the objective is more sensitive to changes in one variable than other, the contour lines stretch out to be narrow ellipses (in 2D).

Clearly, a circular trust-region may be quite limiting in this scenario. — The radius is limited by the sensitive variable.
Enhancement: Scaling — The Solution

The solution to the problem of poor scaling is to use **elliptical** trust regions. We define a diagonal scaling matrix

\[D = \text{diag}(d_1, d_2, \ldots, d_n), \quad d_i > 0. \]

Then, the constraint \(\|D\bar{p}\| \leq \Delta \) defines an elliptical trust region, and we get the following scaled trust-region subproblem:

\[
\min_{\bar{p} \in \mathbb{R}^n : \|D\bar{p}\| \leq \Delta_k} f(\bar{x}_k) + \bar{p}^T \nabla f(\bar{x}_k) + \frac{1}{2} \bar{p}^T B_k \bar{p}.
\]

The scaling matrix can be built using information about the gradient \(\nabla f(\bar{x}_k) \) and the Hessian \(\nabla^2 f(\bar{x}_k) \) along the solution path. — We can allow \(D = D_k \) to change from iteration to iteration.

All our analysis/algorithms still work with scaling added — but we get factors of \(D^{-2}, D^{-1}, D, \) and \(D^2 \) in our expressions.

Peter Blomgren, \(\langle \text{blomgren.peter@gmail.com} \rangle \)
Feature: Non-Euclidean Trust Regions

Figure: Illustration of (unscaled) trust region boundaries for, from left-to-right: $\|\bar{p}\|_2 \leq \Delta_k$, $\|\bar{p}\|_1 \leq \Delta_k$, $\|\bar{p}\|_4 \leq \Delta_k$, and $\|\bar{p}\|_\infty \leq \Delta_k$.

Most of the time using trust regions based on norms with $q \neq 2$:

$$\|\bar{p}\|_q \leq \Delta_k \text{ (unscaled), } \|D\bar{p}\|_q \leq \Delta_k \text{ (scaled)}$$

cause us a giant head-ache. There are however some situations when such regions come in handy...
Feature: Non-Euclidean Trust Regions

Figure: Illustration of (unscaled) trust region boundaries for, from left-to-right: \(\| \bar{p} \|_1 \leq \Delta_k \), \(\| \bar{p} \|_2 \leq \Delta_k \), \(\| \bar{p} \|_4 \leq \Delta_k \), and \(\| \bar{p} \|_8 \leq \Delta_k \).

Using \(q < 1 \) leads to non-convex trust regions, which may be a bit of a pain?!?

This may, however, be useful/necessary for non-convex optimization problems.
For constrained problems, e.g.

$$\min_{\bar{x} \in \mathbb{R}^n} f(\bar{x}), \quad \text{subject to} \quad x_i \geq 0, \ i = 1, 2, \ldots, n$$

the trust-region subproblem may be

$$\min_{\bar{p} \in \mathbb{R}^n} m_k(\bar{p}), \quad \text{subject to} \quad \bar{x}_k + \bar{p} \geq 0, \ (\text{component-wise}), \ \|\bar{p}\| \leq \Delta_k$$

This trust region is the intersection of the disk centered at \bar{x}_k and the first quadrant. It could look like this:
Such a region is hard to describe, and hard to work with.

If, instead, we work with the \(\|\cdot\|_\infty \)-norm, the trust region is the intersection of the square with sides \(\Delta_k \) centered at \(\bar{x}_k \) and the first quadrant:

Much easier to work with...
Index

definition
lim sup and lim inf, 15
lemma
Cauchy point descent, 5
theorem
Convergence (when $\eta = 0$), 13
Convergence (when $\eta > 0$), 14
Global trust-region Newton convergence ($\eta > 0$), 16
Second order necessary conditions, 4

Reference(s):