Numerical Optimization
Lecture Notes #14
Practical Newton Methods — Hessian Modifications

Peter Blomgren,
⟨blomgren.peter@gmail.com⟩

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Fall 2018
Outline

1 Recap
 • Robust Inexact Newton Methods

2 Hessian Modifications
 • Eigenvalue Modification
 • $B = A + \tau I$
 • Gershgorin Modification
Quick Recap: Building Robust Inexact Newton Methods

We looked at combining a modified version of the linear CG-solver (or preferably a PCG(M)-solver) with a line-search algorithm to produce an almost “unbreakable” approximate Newton method.

The modification to the CG-solver comprise of an additional termination criterion for the case where the local Hessian ($\nabla^2 f(\bar{x}_k)$) is not positive definite, and we get a CG-internal search direction for which $\bar{p}^T \nabla^2 f(\bar{x}_k) \bar{p} \leq 0$, i.e the search takes into a part of space with negative curvature.

The worst we do (in a particular iteration) is to take a steepest descent step.

Potential Outstanding Problem: $\bar{p}^T \nabla^2 f(\bar{x}_k) \bar{p}$ small and positive \Rightarrow long step.
Quick Recap: Building Robust Inexact Newton Methods

We also discussed how to specify the forcing sequence \(\{ \eta^{(k)} \} \) for the tolerance termination criterion \((\| \bar{r}_k \| \leq \eta^{(k)} \| \nabla f(\bar{x}_k) \|) \) so that the overall convergence rate of the resulting algorithm is quadratic (when \(B_k = \nabla^2 f(x_k) \)) or super-linear (when \(B_k \approx \nabla^2 f(x_k) \)).

We also hinted at a different approach to dealing with non-positive definite Hessians in the direct-linear-solver-framework — a modification of the Hessian \((\nabla^2 f(\bar{x}_k) + E_k) \) so that the resulting matrix is sufficiently positive definite; today we take a closer look at this approach.
Hessian Modifications

We look at modifying the Hessian matrix $\nabla^2 f(\bar{x}_k)$ by either explicitly or implicitly adding a matrix E_k (usually a multiple of the identity matrix) so that the resulting matrix

$$B_k = \nabla^2 f(\bar{x}_k) + E_k$$

is **sufficiently positive definite** (all the eigenvalues of B_k are bounded away from zero.)

There are a number of different approaches, we look at a few...

- Eigenvalue Modification
- Direct and Indirect modification of the Hessian
Since $\nabla^2 f(\bar{x}_k)$ is symmetric we can always find an orthonormal matrix Q_k and a diagonal matrix $\Lambda_k = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$ so that (dropping the subscripts k)

$$\nabla^2 f(\bar{x}) = Q \Lambda Q^T = \sum_{i=1}^{n} \lambda_i \bar{q}_i \bar{q}_i^T.$$

For simplicity of argument, let us assume $Q = I$ (we can get to this scenario by an appropriate change of variables.)

Example:

$$\nabla f(\bar{x}) = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, \quad \nabla^2 f(\bar{x}) = \text{diag}(10, 3, -1) \quad \Rightarrow \quad \bar{p}^N = \begin{bmatrix} -0.1 \\ 1 \\ 2 \end{bmatrix}$$

and $\nabla f(\bar{x})^T \bar{p}^N = 0.90$, hence \bar{p}^N is not a descent direction.

(continued...)

Peter Blomgren, {blomgren.peter@gmail.com}
Idea #1: Replace negative eigenvalues by some positive number δ, e.g. $\delta = \sqrt{\varepsilon_{\text{mach}}}$

In 32-bit double precision (and Matlab) $\varepsilon_{\text{mach}} \approx 10^{-16}$, so $\delta = 10^{-8}$ seems like a reasonable choice(?) We can express the Hessian modification as

$$B_k = \sum_{i=1}^{2} \lambda_i \bar{q}_i \bar{q}_i^T + \delta \bar{q}_3 \bar{q}_3^T = \sum_{i=1}^{n} \max(\lambda_i, \delta) \bar{q}_i \bar{q}_i^T$$

We now have

$$B_k = \text{diag}(10, 3, 10^{-8}) \Rightarrow \bar{p} \approx \begin{bmatrix} -0.1 \\ 1 \\ -200,000,000 \end{bmatrix}$$

We notice that \bar{p} is approximately parallel to \bar{q}_3, and huge...
The long step length violates the spirit of Newton’s method — recall that the quadratic convergence properties come from a local argument with the Taylor expansion.

Idea #2: Replace negative eigenvalues by $-\lambda_i$

Now $B_k = \text{diag}(|\lambda_1|, |\lambda_2|, \ldots, |\lambda_n|)$, and in our example we get

$$\bar{p} = \begin{bmatrix} -0.1 \\ 1 \\ -2 \end{bmatrix}, \quad \nabla f(\bar{x})^T \bar{p} = -7.1, \text{ descent direction!}$$

This seems to work?!?

It may reorder the eigenvalues (and thus the “importance”/ordering of subspaces), i.e.

$$\lambda_1 < \lambda_2 < \lambda_3, \quad \text{but} \quad |\lambda_2| < |\lambda_1| < |\lambda_3|.$$
Let’s reconsider Idea#1, what went wrong? When we solve $B\bar{p} = -\nabla f(\bar{x})$ we get

$$\bar{p} = -B^{-1}\nabla f(\bar{x}) = -\sum_{i=1}^{2} \frac{1}{\lambda_i} \bar{q}_i (\bar{q}_i^T \nabla f(\bar{x})) - \frac{1}{\delta} \bar{q}_3 (\bar{q}_3^T \nabla f(\bar{x})),$$

it’s clearly the right-most term that makes us violate the spirit of Newton’s method.

We could simply just drop this term (i.e. ignore the subspace corresponding to negative eigenvalues), or

Select δ so that we ensure that the step length is not excessive (trust-region flavor!).

Bad news: There is no accepted “best” way of modifying the Hessian in this manner.
If we for a moment “forget” about the issue of selecting δ so that the step length is reasonable, we can ask the question “what is the smallest change to A, which gives us an positive definite matrix B?”

The answer depends on how we measure... Two standard measures are the Frobenius norm $\|A\|_F$, and the Euclidean norm $\|A\|$

$$\|A\|_F^2 = \sum_{i,j} a_{ij}^2, \quad \|A\| = \max \|\bar{x}^T A \bar{x}\| = \max_{\|\bar{x}\|=1} \|\text{eig}(A)\|.$$

If we use the Frobenius norm, the smallest change is of the type “change negative eigenvalues to small positive ones:”

$$B = A + \Delta A, \quad \text{where } \Delta A = Q \text{diag}(\tau_i) Q^T, \quad \tau_i = \begin{cases} 0 & \lambda_i \geq \delta \\ \delta - \lambda_i & \lambda_i < \delta \end{cases}$$
If, on the other hand, we use the Euclidean norm the smallest change includes a multiple of the identity matrix, i.e. “shift the eigenvalue spectrum, so all eigenvalues are positive:”

\[B = A + \Delta A, \quad \text{where} \quad \Delta A = \tau I, \quad \tau = \max(0, \delta - \lambda_{\min}(A)) \]

We recognize this type of modification to \(A \) from our discussion on “Nearly exact solutions to the subproblem” for trust-region methods (Lecture #9)...

Both constant-diagonal — \(\tau I \) — and “Frobenius-style” — \(Q \text{diag}(\tau_i) Q^T \) — modifications are used in production software. Generally they do not rely on an exact spectral decomposition (full computation of the eigenvalues) of the Hessian, but use a cousin of Gaussian Elimination (usually the Cholesky factorization) which allows introduction of modifications indirectly.

Peter Blomgren, (blomgren.peter@gmail.com)
In adding a multiple of the identity matrix, we would like to identify a scalar τ so that

$$\tau = \max \left(0, \delta - \lambda_{\text{min}}(A) \right).$$

Usually we do not have access to $\lambda_{\text{min}}(A)$, so we have to use some clever heuristic to get an estimate and generate

$$\begin{cases}
\tau = 0 & \text{if } \lambda_{\text{min}}(A) \geq \delta \\
\tau \geq \delta - \lambda_{\text{min}}(A) & \text{if } \lambda_{\text{min}}(A) < \delta
\end{cases}$$

It is important not to select a value of τ that is unnecessarily large, since this biases the direction toward the steepest descent direction.
The following algorithm uses the fact that

$$|\lambda_i| \leq \|A\|_F, \quad \forall i = 1, 2, \ldots, n$$

it is quite expensive since a new factorization is attempted in each loop, further the generated τ may be unnecessarily large.

Algorithm

$$\beta = \|A\|_F, \quad k=0$$

if($\min(a_{ii}) > 0$) { $\tau_0 = 0$ } else { $\tau_0 = \beta/2$ } endif

while($k < \text{maxiter}$)

 ATTEMPT (Incomplete) Cholesky Factorization

 $$LL^T = A + \tau_k I$$

 if(successful_factorization), return(L)

 else, $\tau_{k+1} = \max(2\tau_k, \beta/2)$

endif

end(while)
It is more efficient to let the Cholesky factorization routine directly modify the matrix A so that the factorization succeeds.

What can go wrong in Cholesky factorization?

We look at the Cholesky factorization in LDL^T-form — set $M = LD^{1/2}$ to get to MM^T form.

Algorithm: Cholesky Factorization, LDL^T-form

```plaintext
for j = 1:n
    \[ c_{jj} = a_{jj} - \sum_{s=1}^{j-1} d_s l_j^2 \]
    \[ d_j = c_{jj} \] 
    --- The diagonal entries in $D$ (must be $\geq \delta$)
    for i = (j+1):n
        \[ c_{ij} = a_{ij} - \sum_{s=1}^{j-1} d_s l_i l_j \]
        \[ l_{ij} = c_{ij} / d_j \] 
        --- We don’t want $l_{ij}$ to be too large
    end
end
```

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩
If we want to require that the matrix LDL^T is sufficiently positive definite, we simply modify the elements d_j:

$$d_j = c_{jj} \quad \rightarrow \quad d_j = \max(c_{jj}, \delta)$$

Usually, we also want to have a bound on the size of the off-diagonal entries of $M = LD^{1/2}$, i.e. $|m_{ij}| \leq \beta \ (i > j)$, we set

$$\theta_j = \max_{j < i \leq n} |c_{ij}|$$

and let

$$d_j = c_{jj} \quad \rightarrow \quad d_j = \max \left(c_{jj}, \delta, \left[\frac{\theta_j}{\beta} \right]^2 \right)$$

we have

$$|m_{ij}| = |l_{ij} \sqrt{d_j}| = \frac{|c_{ij}|}{\sqrt{d_j}} \leq \frac{|c_{ij}| \beta}{\theta_j} \leq \beta.$$
Finally, we throw in an absolute value on the c_{jj} term for good measure, and come up with

$$d_j = \max \left(|c_{jj}|, \delta, \left[\frac{\theta_j}{\beta} \right]^2 \right), \quad d_j^{\text{add}} = d_j - c_{jj}$$

This exactly what the module `choldecomp()` in the old default project does! (With some modifications for computational efficiency — the algorithm generates the factorization directly in LL^T-form)

<table>
<thead>
<tr>
<th>choldecomp()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation</td>
</tr>
<tr>
<td>maxoffl</td>
</tr>
<tr>
<td>minl</td>
</tr>
<tr>
<td>maxadd</td>
</tr>
</tbody>
</table>
Recap

Hessian Modifications

Eigenvalue Modification

\[\mathbf{B} = \mathbf{A} + \mathbf{\tau I} \]

Gershgorin Modification

Gershgorin Modification

Theorem (Gershgorin’s circle theorem)

Theorem (Gershgorin’s circle theorem)

tells us where the eigenvalues of a matrix are located:

\[|\lambda_i - a_{ii}| \leq \sum_{j\neq i} |a_{ij}|, \quad i = 1, \ldots, n. \]

Now given a matrix \(\mathbf{A} \), let \(\mathbf{b}_1 \) be the smallest value which makes \(\mathbf{A} + \mathbf{b}_1 \mathbf{I} \) positive definite from the Gershgorin circle theorem.

Let \(\mathbf{b}_2 = \text{maxadd from choldecomp()} \), and let \(\mu = \min(\mathbf{b}_1, \mathbf{b}_2) \). Now, \(\mathbf{A} + \mu \mathbf{I} \) is guaranteed to be positive definite.

Old Default Project

This is essentially \texttt{modelhess()} . In addition \texttt{modelhess()} returns the \(LL^T \)-decomposition of \(\mathbf{A} + \mu \mathbf{I} \), and there are tests prior to the first call to \texttt{choldecomp()} which takes care of negative diagonal elements of \(\mathbf{A} \) and large off-diagonal elements of \(\mathbf{A} \).

Note that \texttt{modelhess()} is similar to the algorithm on slide #13, but requires at most two calls to a Cholesky factorization algorithm.

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

Hessian Modifications — (17/22)
Gershgorin’s Circle Theorem: Illustration

\[A = \begin{bmatrix} 1 & 1/2 & 1/5 \\ 1/2 & 2 & 1/3 \\ 1/5 & 1/3 & 3/2 \end{bmatrix}, \quad \lambda(A) = \{0.7875, 1.3363, 2.3762\} \]
Recap
Hessian Modifications

Eigenvalue Modification
\[B = A + \tau I \]

Gershgorin Modification

Gershgorin’s Circle Theorem: Illustration

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

Hessian Modifications — (19/22)
Project Expectation and Deliverables

- Solve a larger optimization problem (see e.g. the “examples of past projects” handout from last time.

- You can look at different types of methods; performance for different test functions, etc... **BEST:** something relevant to your thesis project.

- **Deliverables:**
 - *Project Proposal* — 1 page, Due 11/16/2018
 - *Presentation* — 12–15 minutes, in-class (starting 12/10/2018)
 - *email* — presentation + code(s). (after presentation)
Practical Newton Methods: Trust-Region Newton Methods
Calculating Derivatives: Finite Differencing & Automatic Differentiation
Quasi-Newton Methods...
Recap

Hessian Modifications

B = A + τI

Gershgorin Modification

Index

matrix norm
 Euclidean, 10
 Frobenius, 10

theorem
 Gershgorin's circle theorem, 17