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Recap
Fundamentals: Rate of Convergence

Quick Recap: Last Time

Some fundamental building blocks of unconstrained optimization:

Theorem (Taylor)

For some t ∈ (0, 1), we have

f (x̄+ p̄) = f (x̄) + p̄T ∇f (x̄)︸ ︷︷ ︸
gradient

+
1

2
p̄T

[
∇2f (x̄+ tp̄)

]

︸ ︷︷ ︸
Hessian

p̄.

4 theorems relating f (x̄) and its derivatives to optimal solutions.
[1] x̄∗ optimal ⇒ ∇f (x̄∗) = 0.

[2] x̄∗ optimal ⇒ ∇f (x̄∗) = 0, and ∇2f (x̄∗) positive semi-definite.

[3] ∇f (x̄∗) = 0, and ∇2f (x̄∗) positive definite ⇒ x̄∗ optimal.
[4a] f convex, and x̄∗ local optimum ⇒ x̄∗ global optimum.

[4b] f convex, and ∇f (x̄∗) = 0 ⇒ x̄∗ global optimum.

Note: The complete statement of the theorems require sufficient smoothness (exis-
tence) of derivatives of f .
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Key Concepts Rate of Convergence

Definition (Rate of Convergence, Sequences)

Suppose the sequence β = {βn}∞n=1 converges to zero, and
x̄ = {x̄n}∞n=1 converges to a point x̄∗.

If ∃K > 0: ‖x̄n − x̄∗‖ < Kβn, for n > N (i.e. for n large enough),
then we say that {x̄n}∞n=1 converges to x̄∗ with a Rate of
Convergence O(βn) (“Big Oh of βn”).

We write
x̄n = x̄∗ +O(βn).

Note: The sequence β = {βn}∞n=1 is usually chosen to be e.g.

βn =
1

np
, for some value of p.
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Rates of Convergence

Let x̄ = {x̄n}∞n=1 be a sequence converging to x̄∗, the convergence
rate is said to be

Q-linear (quotient-linear) if ∃r ∈ (0, 1) and K ∈ Z such that

‖x̄k+1 − x̄∗‖
‖x̄k − x̄∗‖ ≤ r , ∀k ≥ K .

Q-superlinear if

lim
k→∞

‖x̄k+1 − x̄∗‖
‖x̄k − x̄∗‖ = 0.

Q-quadratic if ∃r ∈ R+ and K ∈ Z such that

‖x̄k+1 − x̄∗‖
‖x̄k − x̄∗‖2 ≤ r , ∀k ≥ K .

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Convergence; Line Search Methods — (5/28)

Introduction
Line Search Methods

Search Direction: Steepest Descent, Newton, or Other?!?
Step Length Selection — 1D Minimization
Step Length Selection — The Wolfe Conditions
Homework #1

Line Search Methods

We now focus on line search methods where we (i) pick a search
direction p̄k and, then (ii) solve the one-dimensional problem

min
α>0

f (x̄k + αp̄k).

The solution gives us an optimal value for αk , so the next point is
given by

x̄k+1 = x̄k + αk p̄k ,

where αk is known as the step length.

In order for a line search method to be work well, we need good
choices of the direction p̄k and the step length αk .
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Steepest Descent Direction Line Search

The intuitive choice for p̄k is to move in the direction of steepest
descent, i.e. in the negative gradient direction.

Going back to the Taylor expansion

f (x̄+ αp̄) = f (x̄) + αp̄T∇f (x̄),

we immediately see that the direction of most rapid decrease gives

min
‖p̄‖=1

p̄T∇f (x̄) = min
θ∈[0,2π]

cos θ ‖∇f (x̄)‖ = −‖∇f (x̄)‖,

which is achieved when θ = π ⇔ p̄ = −∇f (x̄)/‖∇f (x̄)‖.
Recall: v̄T w̄ = cos θ ‖v̄‖ · ‖w̄‖, where θ is the angle between the

vectors v̄ and w̄.
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Steepest Descent Direction Line Search

Figure: The steepest descent direction p̄k is perpendicular to the
contour lines of the objective.

w

v
θ

Figure: v̄T w̄ = cos θ ‖v̄‖ · ‖w̄‖.
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Newton Direction Line Search

If f is smooth enough and the Hessian is positive definite, we can
select p̄k to be the “Newton direction.” We write down the second
order Taylor expansion:

f (x̄+ p̄) ≈ f (x̄) + p̄T∇f (x̄) +
1

2
p̄T

[
∇2f (x̄)

]
p̄.

We seek the minimum of the right-hand-side by computing the
derivative width respect to p̄ and set the result to zero

∇f (x̄) +

[
∇2f (x̄)

]
p̄ = 0,

which gives the Newton direction

p̄N = −
[
∇2f (x̄)

]−1

∇f (x̄).

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Convergence; Line Search Methods — (9/28)

Introduction
Line Search Methods

Search Direction: Steepest Descent, Newton, or Other?!?
Step Length Selection — 1D Minimization
Step Length Selection — The Wolfe Conditions
Homework #1

Newton Direction Line Search

As long as the Hessian is positive definite, p̄N is a
descent-direction:

p̄N∇f (x̄) = −∇f (x̄)T
[
∇2f (x̄)

]−T

︸ ︷︷ ︸
Pos. Def.

∇f (x̄) < 0

Note: Clearly, the Newton direction is more “expensive” than
the steepest descent direction — we must compute the
Hessian matrix ∇2f (x̄), and invert it (i.e. solve an n × n
linear system).

Note: The convergence rate for steepest descent methods is linear
and for Newton methods it is quadratic, hence there is a
lot to gain by finding the Newton direction.
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Example: NW1st-2.2, p 30. 1 of 3

Problem: Show that the function f (x) = 8x+12y+x2−2y2

has only one stationary point, and that it is neither a max-
imum nor a minimum, but a saddle point. Sketch the
contours for f .

Solution: The gradient of f is

∇f =

[
8 + 2x
12− 4y

]

which has the stationary point (x , y) = (−4, 3). Since the
Hessian

∇2f =

[
2 0
0 −4

]

has both positive and negative eigenvalues, the stationary
point must be a saddle point.
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Figure: The contour lines for
f (x).
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Figure: The function f (x) around
the stationary point.
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Example: NW1st-2.2, p 30. 2 of 3

If we start an iteration in (x0, y0) = (0, 0):

The steepest descent direction is

p̄SD
0 = −∇f = −

[
8 + 2x
12− 4y

]
= −

[
8
12

]

and the Newton direction is

p̄N0 = −[∇2f ]−1∇f = −
[
2 0
0 −4

]−1 [
8
12

]
=

[
−4
3

]
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Example: NW1st-2.2, p 30. 3 of 3
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Newton

Steepest Descent

Figure: The Newton and Steepest Descent directions starting in (0, 0). Note that the Newton method is
heading to the saddle point, but the Steepest descent method will, in general, not converge to a non-minimum
stationary point.
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Modified (Convexified) Example

f(x,y) = 8*x+12*y+x
2
−2*y

2
+1/6*y

4
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Figure: Convexification of the silly book problem. Same point of

interest, ∇f = [8+2x , 12−4y +2/3y3]T , ∇2f =

[
2 0
0 −4 + 2y2

]
.

Now, both the steepest descent and Newton directions are descent
directions.
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Line Search Methods — Directions

Method Search Direction Convergence

Steepest Descent pk = −∇f (x̄k)/‖∇f (x̄k)‖ Linear

Quasi-Newton pk = −H−1
k ∇f (x̄k) Super-Linear

Newton pk = −[∇2f (x̄k)]−1 ∇f (x̄k) Quadratic

Table: Summary of search directions for different schemes. In Quasi-
Newton schemes we do not explicitly compute the Hessian ∇2f (x̄k ) in
each iteration, instead we use an approximation Hk ≈ ∇2f (x̄k ) which is
updated in some clever way [to be explored in great detail later]
(lecture 18→ . . . ).

We will return to the selection of p̄k , but let’s consider the computation
of the step length αk ...
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Line Search Methods: Step Length Selection

Given a descent direction p̄k we would like to find the global
minimizer α∗

k of
min
α>0

f (x̄k + αp̄k).

As this is just one of possible many steps in the iteration, it is not
wise to expend too much time in finding αk . We are faced with a
trade-off:

— We want an αk so that we get a substantial reduction in
the objective f .

— We want to find αk fast.

In practice we perform an inexact line search — settling for an
αk which gives adequate reduction in the objective.
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What is “adequate reduction?”
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Figure: Consider the objective f (x) =
√
x2 + 10−8, if we let xk =

{1,−0.8, 0.7,−0.65, 0.625,−0.6125, 0.60625, . . . }, then the descent directions are
given by pk = {−1, 1,−1, 1,−1, 1,−1, . . . }, so this generates a decreasing se-
quence f (xk + αkpk ) < f (xk ). However, with the current choice of αk =
{−1.8, 1.5,−1.35, 1.275,−1.2375, 1.21875, . . . } the convergence rate is less than
spectacular.

Clearly, we need a stronger condition than f (xk + αkpk) < f (xk).
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The Wolfe Conditions 1 of 2

There are many ways to enforce reduction in the objective, e.g.

Armijo Condition (Wolfe Condition #1)

The Armijo Condition

f (x̄k + αp̄k) ≤ f (x̄k) + c1αp̄
T
k ∇f (x̄), c1 ∈ (0, 1),

requires the reduction to be proportional to the step length α, as
well as the directional derivative p̄Tk ∇f (x̄). In practice c1 is
usually set to be quite small, e.g. ∼ 10−4.
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The Wolfe Conditions 2 of 2

To rule out unacceptably short steps, we additionally enforce

Curvature Coondition (Wolfe Condition #2)

The Curvature Condition

p̄Tk ∇f (x̄k + αp̄k) ≥ c2p̄
T
k ∇f (x̄k), c2 ∈ (c1, 1).

It prevents us from stopping when more progress can be made by
moving further (increasing α).

Together these two conditions are known as the Wolfe conditions.
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The Wolfe Conditions: Part I — The Armijo Condition

The Armijo Condition

f (x̄k + αp̄k) ≤ f (x̄k) + c1αp̄
T
k ∇f (x̄), c1 ∈ (0, 1)

requires the reduction to be proportional to the step length α, as well as
the directional derivative. In practice c1 is usually set to be quite small,
e.g. ∼ 10−4.

Armijo OK Armijo OK

The "Armijo" Line
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The Wolfe Conditions: Part II — The Curvature Condition

To rule out unacceptable short steps, the curvature condition

p̄Tk ∇f (x̄k + αp̄k) ≥ c2p̄
T
k ∇f (x̄k), c2 ∈ (c1, 1)

— it prevents us from stopping when more progress can be made by
moving further (increasing α). Typical values: cN,QN

2 = 0.9, cCG
2 = 0.1.

Curvature OK Curvature OK

The Curvature Condition
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The Wolfe Conditions: Part I+II — Acceptable Step 1/2

Together, the Armijo and Curvature conditions constitute the Wolfe
Conditions.

The "Armijo" Line

Armijo OKArmijo OK
Curvature OK Curvature OK

The Curvature Condition
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The Wolfe Conditions: Part I+II — Acceptable Step 2/2

Together, the Armijo and Curvature conditions constitute the Wolfe
Conditions.

Step OK Step OK

The "Armijo" Line

Armijo OKArmijo OK
Curvature OK Curvature OK

The Curvature Condition
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The Strong Wolfe Conditions

A step length α may satisfy the Wolfe Conditions

f (x̄k + αp̄k) ≤ f (x̄k) + c1αp̄Tk ∇f (x̄), c1 ∈ (0, 1)
p̄Tk ∇f (x̄k + αp̄k) ≥ c2p̄Tk ∇f (x̄k), c2 ∈ (c1, 1)

even though it is far from a minimizer of f (x̄k + αp̄k), the Strong
Wolfe Conditions

f (x̄k + αp̄k) ≤ f (x̄k) + c1αp̄Tk ∇f (x̄), c1 ∈ (0, 1)
|p̄Tk ∇f (x̄k + αp̄k)| ≤ c2|p̄Tk ∇f (x̄k)|, c2 ∈ (c1, 1)

further disallows values of
[
p̄Tk ∇f (x̄k + αp̄k)

]

which are “too positive,” thus excluding point that are far from
the stationary points of p̄Tk ∇f (x̄k + αp̄k).
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Are the Wolfe Conditions too Restrictive?

It can be shown (see NW2nd pp.35–36) that there exist step lengths α
which satisfy the Wolfe Conditions (and the Strong Wolfe Conditions) for
every function f which is smooth and bounded below.

Formally —

Theorem (Existence of Acceptable α)

Suppose f : Rn → R is continuously differentiable. Let p̄k be a descent
direction at x̄k , and assume that f is bounded below along the line
{x̄k + αp̄k : α > 0}. Then if 0 < c1 < c2 < 1, there exist intervals of
step lengths satisfying the Wolfe conditions and the strong Wolfe
conditions.

See also “Goldstein Conditions” (NW2nd p.36.)
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Algorithm: Backtracking Linesearch

Algorithm: Backtracking Linesearch

[0] Find a descent direction p̄k
[1] Set α > 0, ρ ∈ (0, 1), c ∈ (0, 1), set α = α
[2] While f (x̄k + αp̄k) > f (x̄k) + cαp̄Tk ∇f (x̄k)
[3] α = ρα
[4] End-While

[5] Set αk = α

If an algorithm selects the step lengths appropriately (e.g. backtracking),
we do not have to check the second inequality of the Wolfe conditions.

The algorithm above is especially well suited for use with Newton method
(p̄k = p̄Nk ), where α = 1. It is less successful for quasi-Newton and
CG-based approaches.

The value of the contraction factor ρ can be allowed to vary at each
iteration of the line search. (To be revisited)
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Homework #1 — Due at 12:00pm, Friday September 21, 2018

NW2nd-3.1: Program the steepest descent and Newton algorithms
using the backtracking line search. Use them to minimize the
Rosenbrock function

f (x̄) = 100(x2 − x21 )
2 + (1− x1)

2

Set the initial step length α0 = 1 and report the step length used
by each method at each iteration. First try the initial point
x̄T0 = [1.2, 1.2] and then the more difficult point x̄T0 = [−1.2, 1].

Suggested values: α = 1, ρ = 1
2 , c = 10−4.

Stop when: |f (~xk)| < 10−8, or ‖∇f (~xk)‖ < 10−8.

Note: The homework is due in Peter’s mailbox in GMCS-411 or,
office GMCS-587 (slide under the door if I’m not there).
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