Outline	
Lecture Notes #4 Unconstrained Optimization; Line Search Methods • Recap	
Peter Blomgren, • Example <pre></pre> • Example #2	
Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720 https://termines.edu/	
http://terminus.sdsu.edu/ Fall 2018	IN DIEGO STATE UNIVERSITY
Peter Blomgren, (blomgren.peter@gmail.com) Line Search Methods — (1/18) Peter Blomgren, (blomgren.peter@gmail.com) Line Search Methods —	(2/18)
Line Search Methods Convergence Example #2	
Quick Recap: Last Time Recall — Algorithm: Backtracking Linesearch	
Quick overview of optimization algorithms — two categories 1. Line search — Select a search direction, then optimize in that direction 2. Trust region — Build a local (simple) model of the objective, optimize the model in the local region where we trust it. Convergence rates — linear / superlinear / quadratic. More details on line search — Search directions — Steepest descent (linear convergence) Newton direction (quadratic convergence) Search direction = Steepest descent (linear convergence) Newton direction (quadratic convergence) Extended to the contraction factor ρ can be allowed to vary at each	
Enforcing sufficient decrease in the objective — Vvolte conditions . If the objective a conditions are the objective a conditions and the objective a conditions are the objective a conditions. If the objective a conditions are the objective and the objective a conditions are the objective a conditions are the objective are the objective and the objective are the objective and the objective are the objective a	N DIEGO STATE UNIVERSITY (4/18)

Example: Minimizing $f(\bar{\mathbf{x}}) = (x_1 + x_2^2)^2$

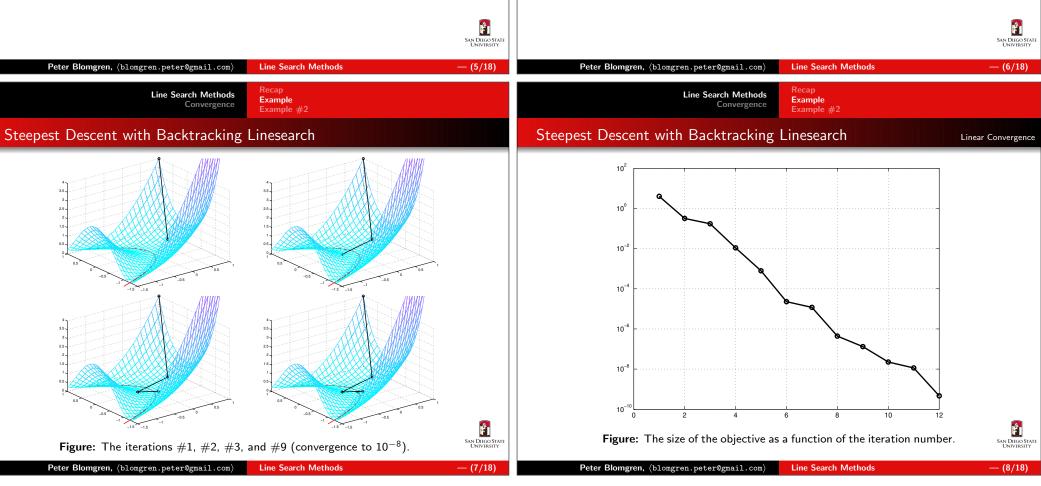
In the next few slides we illustrate our findings so far by minimizing $f(\mathbf{\bar{x}}) = (x_1 + x_2^2)^2$ (with $\mathbf{\bar{x}}_0 = [1, 1]$) using two algorithms:

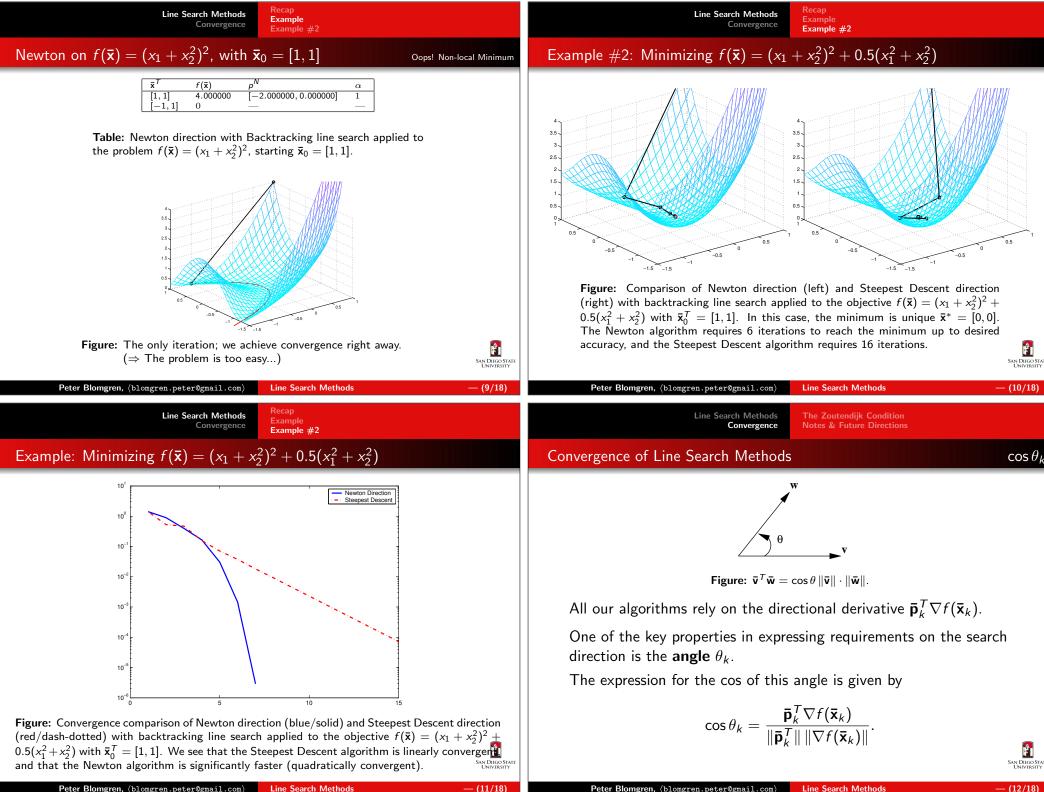
Example

Example #2

- 1. Steepest Descent direction with Backtracking Linesearch.
- 2. Newton direction with Backtracking Linesearch.

One thing to notice is that the entire curve where $x_1 = -x_2^2$ gives $f(\bar{\mathbf{x}}) = 0$ — the minimum is not isolated, nor unique.


Recall:


$$\mathbf{\bar{p}}_{k}^{\text{SD}} = -\frac{\nabla f(\mathbf{\bar{x}}_{k})}{|\nabla f(\mathbf{\bar{x}}_{k})|}, \qquad \mathbf{\bar{p}}_{k}^{N} = -\left[\nabla^{2} f(\mathbf{\bar{x}}_{k})\right]^{-1} \nabla f(\mathbf{\bar{x}}_{k}).$$

Steepest Descent on $f(\bar{\mathbf{x}}) = (x_1 + x_2^2)^2$, with $\bar{\mathbf{x}}_0 = [1, 1]$

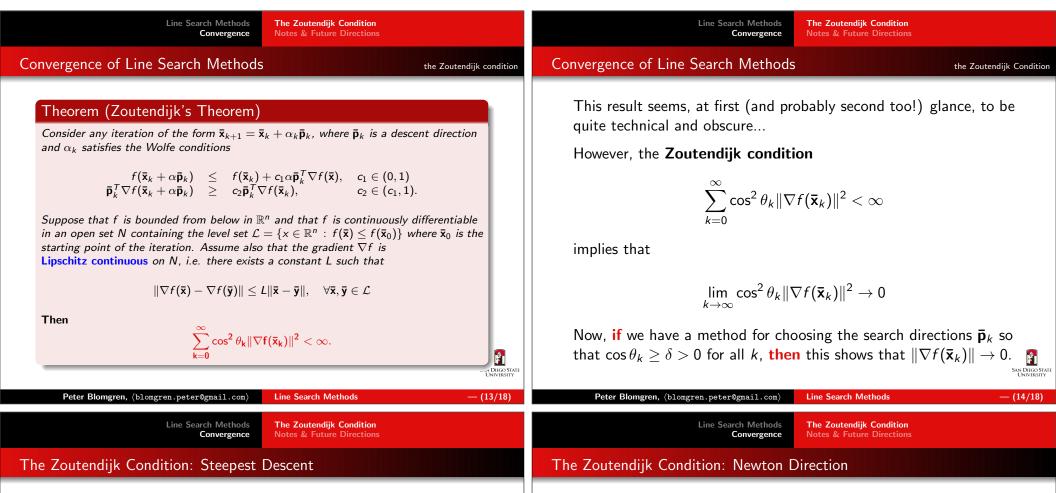

π ^T	$f(\bar{\mathbf{x}})$	$\bar{\mathbf{p}}^{\mathrm{SD}}$	α
[1, 1]	4.000000	$[-4.472136 \cdot 10^{-1}, -8.944272 \cdot 10^{-1}]$	1
[0.552786, 0.105573]	$3.180193 \cdot 10^{-1}$	$[-9.784275 \cdot 10^{-1}, -2.065907 \cdot 10^{-1}]$	1
[-0.425641, -0.101018]	$1.725874 \cdot 10^{-1}$	$[9.801951 \cdot 10^{-1}, -1.980344 \cdot 10^{-1}]$	1/2
[0.064456, -0.200035]	$1.091409 \cdot 10^{-2}$	$[-9.284542 \cdot 10^{-1}, 3.714468 \cdot 10^{-1}]$	1/8
[-0.051600, -0.153604]	$7.843386 \cdot 10^{-4}$	$[9.559089 \cdot 10^{-1}, -2.936633 \cdot 10^{-1}]$	1/32
[-0.021728, -0.162781]	$2.274880 \cdot 10^{-5}$	$[-9.508768 \cdot 10^{-1}, 3.095697 \cdot 10^{-1}]$	1/128
[-0.029157, -0.160363]	$1.183829 \cdot 10^{-5}$	$[9.522234 \cdot 10^{-1}, -3.054022 \cdot 10^{-1}]$	1/256
[-0.025437, -0.161556]	$4.395456 \cdot 10^{-7}$	$[-9.515610 \cdot 10^{-1}, 3.074601 \cdot 10^{-1}]$	1/1024
[-0.026367, -0.161255]	$1.319155 \cdot 10^{-7}$	$[9.517280 \cdot 10^{-1}, -3.069426 \cdot 10^{-1}]$	1/2048
[-0.025902, -0.161405]	$2.246036 \cdot 10^{-8}$	$[-9.516447 \cdot 10^{-1}, 3.072010 \cdot 10^{-1}]$	1/4096
[-0.026134, -0.161330]	$1.137904 \cdot 10^{-8}$	$[9.516864 \cdot 10^{-1}, -3.070717 \cdot 10^{-1}]$	1/8192

Table: Steepest Descent with Backtracking line search applied to the problem $f(\bar{\mathbf{x}}) = (x_1 + x_2^2)^2$, starting $\bar{\mathbf{x}}_0 = [1, 1]$.

(12/18)

For the steepest descent direction we have $\cos \theta_{\mathbf{k}} = -1$. Hence, if we use a line search algorithm which satisfies the Wolfe conditions, it will always converge to a stationary point (under the conditions of the theorem — f bounded below, and ∇f Lipschitz continuous).

This means that steepest descent is **globally convergent** in the sense

$$\lim_{k\to\infty}\|\nabla f(\mathbf{\bar{x}}_k)\|=0.$$

We cannot guarantee convergence to a minimum, only to a stationary point.

Peter Blomgren, blomgren.peter@gmail.com

In order to guarantee convergence to a minimum, more conditions (for example on the Hessian) are required.

Line Search Methods

— (15/18)

Ê

SAN DIEGO ST

in this sense, under these additional conditions:

numbers must be uniformly bounded, *i.e.*

eigen-directions.)

It can be shown that Newton methods are also globally convergent

 $\left\| \left[\nabla^2 f(\bar{\mathbf{x}}_k) \right] \right\| \cdot \left\| \left[\nabla^2 f(\bar{\mathbf{x}}_k) \right]^{-1} \right\| \le M, \quad \text{for some positive } M.$

That is, the ratio of the largest and smallest eigenvalues, $\lambda_{k}^{\text{max}}/\lambda_{k}^{\text{min}}$

must remain bounded. (Think of λ_{k}^{J} as the curvature in the

The proof for the steepest descent direction is given in (NW^{1st}

Newton direction is exercise #3.5 (NW^{1st} p.62, NW^{2nd} p.63)

pp.43–44, NW^{2nd} pp.38–39) and the key part to the proof for the

The Hessian must be **positive definite**, and the **condition**

SAN DIEGO ST

