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Recap & Preview
Convergence Analysis: Steepest Descent

Quick Recap: Some Recent Discussion

— Discussion on ‘‘Sufficient Decrease’’ for line search:

— Wolfe Conditions

— Strong Wolfe Conditions

— Algorithm: Backtracking Line Search

— For the Steepest Descent Direction

— For the Newton Direction

— Example #1: f (x̄) = (x1 + x22 )
2

— Example #2: f (x̄) = (x1 + x22 )
2 + 0.5(x21 + x22 )

— The Zoutendijk Condition

— Smooth and bounded (below) f ⇒ Steepest Descent direction and Wolfe
conditions will give globally convergent method:

lim
k→∞

‖∇f (x̄k )‖ = 0.

Also true for Newton direction if Hessian ∇2f (x̄) is positive definite and the
condition number is uniformly bounded.
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Recap & Preview
Convergence Analysis: Steepest Descent

Are We Done?

We know the following (for nice enough f )

— If we ensure that p̄k 6⊥ ∇f (x̄k) ⇔ cos θk ≥ δ > 0

— Compute cos θk in each iteration, and turn p̄k in the
steepest descent direction if needed (cos θk < δ).

— and αk satisfies the Wolfe conditions

— E.g. backtracking line search.

— then we have a globally convergent algorithm.

Therefore optimization is easy???
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Recap & Preview
Convergence Analysis: Steepest Descent

No, We Are Not Done! 1 of 2

We can perform angle tests (| cos θk | > δ); and subsequently
“turn” p̄k to ensure global convergence, however

This may (will!) slow down the convergence rate...

When the Hessian is ill-conditioned (close to singular), the
appropriate search direction may be almost orthogonal to the
gradient, and an unlucky choice of δ may prevent this.

They break Quasi-Newton methods (which are very important

for LARGE problems)
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Recap & Preview
Convergence Analysis: Steepest Descent

No, We Are Not Done! 2 of 2

Algorithmic strategies for rapid convergence is often in direct
conflict with the theoretical requirements for global convergence.

⇒ Steepest descent is the “model citizen” for global convergence,
but it is quite slow (we’ll show this today).

⇒ Newton iteration converges fast for good initial guesses, but
the Newton direction may not even be a descent direction “far
away” from the solution.

The Goal: the best of both worlds — rapid global convergence.
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Recap & Preview
Convergence Analysis: Steepest Descent

Preview: Coming Up Next...

We take a more careful look at the rates of convergence for
Steepest Descent, Newton, and Quasi-Newton methods.

We show, using a simple model case, that the resulting rates of
convergence are:

— Linear (Steepest Descent)

— Quadratic (Newton)

— Super-Linear (Quasi-Newton)

Finally, we discuss coordinate descent methods.

Note: The convergence analysis builds on Taylor’s theorem, and
linear algebra results applied to quadratic forms

f (x̄) =
1

2
x̄TQ x̄− b̄T x̄, where Q is sym. pos. def.
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Recap & Preview
Convergence Analysis: Steepest Descent

Convergence Analysis: Steepest Descent 1 of 7

We apply the steepest descent method to the simple quadratic
model objective

f (x̄) =
1

2
x̄TQ x̄− b̄T x̄,

where Q is an n × n symmetric positive matrix. Further, we
idealize the method by using exact line searches.

The gradient is

∇f (x̄) = Q x̄− b̄, and hence x̄∗ = Q−1b̄ is unique.

The step length αk : Let ḡk = ∇f (x̄k), then αk is the α which
minimizes

f (x̄k − αḡk) =
1

2
(x̄k − αḡk)

TQ(x̄k − αḡk)− b̄T (x̄k − αḡk).
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Recap & Preview
Convergence Analysis: Steepest Descent

Convergence Analysis: Steepest Descent 2 of 7

Expanding the expression we have:

f (x̄k − αḡk ) =
1

2
x̄Tk Qx̄k +

1

2
α
2 ḡTk Qḡk −

1

2
αḡTk Qx̄k −

1

2
αx̄Tk Qḡk − b̄T x̄k + αb̄T ḡk .

Then, we differentiate with respect to α and set equal to zero

0 = α ḡT
k Qḡk + ḡT

k (−Q x̄k + b̄)︸ ︷︷ ︸
−∇f (x̄k )

.

Hence,

αk =
ḡT
k ḡk

ḡT
k Qḡk

=
∇f (x̄k)T∇f (x̄k)

∇f (x̄k)TQ∇f (x̄k)
.

Steepest descent iteration (with exact linesearch)

x̄k+1 = x̄k −
[ ∇f (x̄k)T∇f (x̄k)

∇f (x̄k)TQ∇f (x̄k)

]
∇f (x̄k)
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Recap & Preview
Convergence Analysis: Steepest Descent

Convergence Analysis: Steepest Descent 3 of 7

For the model ∇f (x̄k) = Q x̄k − b̄ we now have a complete closed
form expression for the iterations.

The figure on the next slide shows a typical convergence pattern
for steepest descent methods — a zig-zagged approach to the
optimum.

In this example the model is

f (x̄) =
1

2

[
x1 x2

] [ 1 1
1 2

] [
x1
x2

]
+
[
1 1

] [ x1
x2

]
,

and

x̄0 =

[
1
1

]
.
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Recap & Preview
Convergence Analysis: Steepest Descent

Illustration: Steepest Descent Convergence Pattern
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Recap & Preview
Convergence Analysis: Steepest Descent

Convergence Analysis: Steepest Descent 4 of 7

In order to measure the rate of convergence we introduce the weighed
Q-norm

‖x̄‖2Q = x̄TQ x̄.

Since Q x̄∗ = b̄, we have

1

2
‖x̄− x̄∗‖2Q = f (x̄)− f (x̄∗),

and since ∇f (x̄∗) = 0, we note that ∇f (x̄k) = Q(x̄k − x̄∗). We can now
express the iteration in terms of the Q-norm:

‖x̄k+1 − x̄∗‖2Q =

[
1− ∇f(x̄k)

T∇f(x̄k)

(∇f(x̄k)TQ∇f(x̄k))(∇f(x̄k)TQ−1∇f(x̄k))

]
‖x̄k − x̄∗‖2Q.

The details are outlined in exercise 3.7 (NW1st p.62, NW2nd p.64).

This is an exact expression of the decrease in each iteration. It is however,
quite cumbersome to work with, a more useful bound can be found...
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Recap & Preview
Convergence Analysis: Steepest Descent

Convergence Analysis: Steepest Descent 5 of 7

Theorem

When the steepest descent method with exact line searches is
applied to the convex quadratic function

f (x̄) =
1

2
x̄TQ x̄− b̄T x̄,

the error norm
1

2
‖x̄− x̄∗‖2Q = f (x̄)− f (x̄∗),

satisfies

‖x̄k+1 − x̄∗‖2Q ≤
[
λn − λ1

λn + λ1

]2
‖x̄k − x̄∗‖2Q,

where 0 < λ1 ≤ · · · ≤ λn are the eigenvalues of Q.
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Recap & Preview
Convergence Analysis: Steepest Descent

Convergence Analysis: Steepest Descent 6 of 7

The theorem shows a linear rate of convergence

‖x̄k+1 − x̄∗‖Q ≤
∣∣∣∣
λn − λ1

λn + λ1

∣∣∣∣ ‖x̄k − x̄∗‖Q.

If λn = λ1 then only one iteration is needed — in this case Q is a
multiple of the identity matrix, and the contours are concentric
circles which means that the steepest descent direction points
straight at the solution.

As the condition number κ(Q) = λn/λ1 increases the contours
(in the ēn × ē1 plane) become more elongated, which increases the
amount of zig-zagging. The ratio λn−λ1

λn+λ1
approaches one, which

shows a significant slow-down in the convergence.
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Recap & Preview
Convergence Analysis: Steepest Descent

Illustration: Contours
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Figure: The contour plots
for λn/λ1 = 2, λn/λ1 = 4,
and λn/λ1 = 16. As
the contours get more
stretched the steepest de-
scent method will increase
the amount of zigzagging.
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Recap & Preview
Convergence Analysis: Steepest Descent

Convergence Analysis: Steepest Descent 7 of 7

Theorem (Generalization to general nonlinear objective functions)

Suppose that f : Rn → R is twice continuously differentiable, and
that the iterates generated by the steepest-descent method with
exact line searches converge to a point x̄∗ where the Hessian
matrix ∇2f (x̄∗) is positive definite. Let r be any scalar satisfying

r ∈
(
λn − λ1

λn + λ1
, 1

)
,

where λ1 ≤ · · · ≤ λn are the eigenvalues of ∇2f (x̄∗). Then for all
k sufficiently large, we have

f (x̄k+1)− f (x̄∗) ≤ r2
[
f (x̄k)− f (x̄∗)

]
.
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Recap & Preview
Convergence Analysis: Steepest Descent

Convergence Analysis: Steepest Descent Notes

The statement of the theorem is different from the statement in
Nocedal-Wright (1st edition, ≤ 3rd printing); it has been updated
according to Nocedal’s posted errata:
(http://www.ece.northwestern.edu/∼nocedal/book/errata.html)

Inexact line searches will not improve the convergence rate;
hence the theorem shows that convergence can be quite slow even
when κ(∇2f (x̄∗)) is quite small.

E.g. when κ(∇2f (x̄∗)) = 100, 100 iterations will reduce the error
by a multiplicative factor of 0.0183... or roughly 57 iterations per
digit.
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Recap & Preview
Convergence Analysis: Steepest Descent

Illustration: Slow Convergence for Steepest Descent

Figure: Linear Convergence — Estimated number of iterations
needed to reduce the error by a factor of 10−8.
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Convergence: Quasi-Newton
Coordinate Descent Methods

Convergence: Newton 1 of 3

We now look at the Newton search direction

p̄Nk = −
[
∇2f (x̄k)

]−1∇f (x̄k).

This may not always be a descent direction since the Hessian
matrix ∇2f (x̄k) may not always be positive definite.

We delay the discussion of how to deal with non-descent Newton
directions until a later time.

For now we focus on the local result, i.e. we start the iteration
close enough to the optimum x̄∗ that all Hessians along the
solution trajectory are positive definite.
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Convergence: Newton 2 of 3

Theorem

Suppose that f is twice differentiable and that the Hessian ∇2f (x̄)
is Lipschitz continuous in a neighborhood of the solution x̄∗ at
which the sufficient conditions ∇f (x̄∗) = 0 and ∇2f (x̄∗) is positive
definite are satisfied. Consider the Newton method,
x̄k+1 = x̄k + p̄Nk . Then,

1. if the starting point x̄0 is sufficiently close to x̄∗, the sequence
of iterates converges to x̄∗.

2. the rate of convergence of {x̄k} is quadratic.

3. the sequence of gradient norms {‖∇f (x̄k)‖} converges quadrat-
ically to zero.

The proof is in (NW1st pp.52–53, NW2nd pp.45.)
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Convergence: Newton Illustration 3 of 3

Figure: Quadratic Convergence — Estimated number of iterations
needed to reduce the error by a factor of 10−8. At a minimum we must
have |re0| < 1 in order to get convergence.
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Convergence: Quasi-Newton 1 of 4

We now turn our attention to the “middle case,” where we have a
search direction of the form

p̄k = −H−1
k ∇f (x̄k)

where Hk is symmetric positive definite — and a clever
approximation to the Hessian ∇2f (x̄k) — the discussion on how to
build and update Hk is postponed until later.

Further, we assume that the iteration is based on an inexact line
search algorithm, where αk satisfies the Wolfe conditions(∗). We
also assume that the line search algorithm always tries the step
α = 1 first.
(∗) This rules out the use of the backtracking algorithm, which may occa-

sionally violate the 2nd Wolfe condition.
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Convergence: Quasi-Newton 2 of 4

Theorem

Suppose that f : Rn → R is twice continuously differentiable.
Consider the iteration x̄k+1 = x̄k + αk p̄k , where p̄k is a descent
direction and αk satisfies the Wolfe conditions with c1 ≤ 1/2. If
the sequence {x̄k} converges to a point x̄∗ such that ∇f (x̄∗) = 0
and ∇2f (x̄∗) is positive define, and if the search direction satisfies

lim
k→∞

‖∇f (x̄k) +∇2f (x̄k)p̄k‖
‖p̄k‖

= 0,

then

1. the step length αk = 1 is admissible for all k > k0, and

2. {x̄k} converges to x̄∗ super-linearly.

Note: Statement of theorem updated according to errata.
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Convergence: Quasi-Newton 3 of 4

If c1 > 1/2 the line search would exclude the minimizer of a
quadratic, forcing αk < 1.

If p̄k is a quasi-Newton search direction, then the limit in the
theorem is equivalent to

lim
k→∞

‖(Hk −∇2f (x̄∗))p̄k‖
‖p̄k‖

= 0.

This shows that we can achieve super-linear convergence even if

lim
k→∞

Hk 6= ∇2f (x̄∗),

i.e. it is sufficient that Hk converges to the Hessian in the search
directions p̄k .

It turns out that this condition is both necessary and sufficient.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Line Search Methods; Rate of Convergence — (24/29)



Line Search Methods
Convergence Beyond Stepest Descent

Convergence: Newton
Convergence: Quasi-Newton
Coordinate Descent Methods

Convergence: Quasi-Newton 4 of 4

Theorem

Suppose that f : Rn → R is twice continuously differentiable. Consider
the iteration x̄k+1 = x̄k + p̄k (i.e. αk ≡ 1) and that p̄k is given by
p̄k = −H−1

k ∇f (x̄k). If {x̄k} converges to a point x̄∗ such that
∇f (x̄∗) = 0 and ∇2f (x̄∗) is positive define, then {x̄k} converges
super-linearly if and only if

lim
k→∞

‖(Hk −∇2f (x̄k))p̄k‖
‖p̄k‖

= 0

holds.

When we return to the construction of quasi-Newton methods, we will
see that satisfying the condition of this theorem is normally not a
problem, hence super-linearly convergent quasi-Newton methods are
readily available for most objective functions.

Note: Statement of theorem updated according to errata.
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Coordinate Descent Methods 1 of 3

Instead of computing the search direction, why not just cycle
through the coordinates? — i.e.

p̄1 =




1
0
0
0
...




T

, p̄2 =




0
1
0
0
...




T

, p̄3 =




0
0
1
0
...




T

, · · ·

Once we reach the final direction p̄n, we start over from p̄1.

Unfortunately, this scheme is quite inefficient in practice, and can
in fact iterate infinitely(∗) without reaching a stationary point.
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Coordinate Descent Methods 2 of 3

A cyclic search along any set of linearly independent directions can
run into this problem of non-convergence.

The gradient ∇f (x̄k) may become more and more perpendicular to
the coordinate search direction, so that cos θk approaches zeros
rapidly enough that the Zoutendijk condition

∞∑

k=0

cos2 θk‖∇f (x̄k)‖2 < ∞,

is satisfied even though ‖∇f (x̄k)‖ 6→ 0.
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Coordinate Descent Methods (CDMs) 3 of 3

Even when coordinate descent methods converge, the rate of
convergence is slower than that of the steepest descent method.

The slowness increases as the number of variables increases.

There are however situations in which coordinate descent may be
useful since

1 no calculation of ∇f (x̄k) is required.

2 convergence can be acceptably fast if the variables are loosely
coupled — the stronger the coupling, the worse the
convergence.

3 it is embarrassingly easy(!) to parallelize CDMs.
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