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Step Length Selection Recap

Quick Recap: Last Time — Step Length Selection 1 of 2

We improved on Backtracking Line Search — introducing interpolation
based alternatives for finding a new trial step length when the old one is
rejected.

Interpolation #1: (No extra gradient evaluations: ∇f (x̄k + αp̄k)) —
First use the optimizer α1 of the quadratic model interpolating Φ(0),
Φ′(0), and Φ(α0). If that fails, try the optimizer α2 of the cubic model
interpolating Φ(0), Φ′(0), Φ(α0), and Φ(α1). If α2 fails, keep building
similar cubic models.

Interpolation #2: (Evaluations of ∇f (x̄k + αp̄k) if not excessively
expensive) — First use the optimizer α1 of the cubic model interpolating
Φ(0), Φ′(0), Φ(α0), and Φ′(α0) (Hermite polynomial). If that fails, try
the optimizer α2 of the cubic model interpolating Φ(α0), Φ

′(α0), Φ(α1),
and Φ′(α1). If α2 fails, keep building similar cubic models.
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Step Length Selection Recap

Quick Recap: Last Time — Step Length Selection 2 of 2

Strategies for the initial step α0. — Newton and quasi-Newton have a
sense of scale, use α0 = 1.

For other search directions (lacking a sense of scale) —

Strategy #1: Assume the rate of change in the current iteration will be
the same as in the previous iteration.

α
[k]
0 = α

[k−1] p̄
T

k−1∇f (x̄k−1)

p̄T
k
∇f (x̄k)

.

Strategy #2: Use the minimizer of the quadratic interpolant of
f (x̄k−1), f (x̄k), and p̄T

k
∇f (x̄k).

α
[k]
0 =

2[f (x̄k)− f (x̄k−1)]

p̄T
k
∇f (x̄k)

.

Finally, we looked at a full implementation of a Line Search algorithm
yielding steps satisfying the Strong Wolfe conditions.
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Trust Region Methods
The Trust Region Subproblem...
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The Return of Taylor Expansions...
The Trust Region, Measures of Success, and Algorithm

Lookahead: This Time — Trust Region Methods

The Idea:

Build a, usually quadratic, model around the current point x̄k .

Along with the model we define a region in which we trust the
model to be a good representation of the objective f .

Let the next iterate x̄∗
k+1 be the (approximate) optimizer of

the model in the “trust region.”

The step α and the direction p̄ are selected simultaneously.

If the new point x̄∗
k+1 is not acceptable, we reduce the size of

the trust region, and repeat.
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Trust Region Methods — Introduction

Clearly, we want our algorithm to have some “memory” of what
happened in the past.

— If the first point was accepted in the previous iteration, we
may want to increase the size of the trust region in the current
iteration. This way, we can allow large steps when we have a
good model of the objective.

— If, on the other hand, many reductions of the trust region
were required in the previous iteration, then we probably do
not have a very good model; hence we start with a small trust
region in the current iteration.
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Trust Region Methods — The Quadratic Model 1 of 2

The “model” is based on (surprise, surprise!) the Taylor
expansion of the objective f at the current point x̄k —

mk(p̄) = f (x̄k) + p̄T∇f (x̄k) +
1

2
p̄TBk p̄,

where Bk is a symmetric matrix.

We see that the first two terms agree with the Taylor expansion,
and that if Bk = ∇2f (x̄k) the model agrees with the first three
terms of the expansion.

In the first case Bk 6= ∇2f (x̄k) the error in the model is quadratic
in p̄, i.e.

‖mk(p̄)− f (x̄k + p̄)‖ ∼ O
(

‖p̄‖2
)

,

and in the second case it is cubic

‖mk(p̄)− f (x̄k + p̄)‖ ∼ O
(

‖p̄‖3
)

.
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Trust Region Methods — The Quadratic Model 2 of 2

When the first three terms of the quadratic model agrees with the
Taylor expansion, i.e. Bk = ∇2f (x̄k), the algorithm is called the
trust-region Newton Method.

In general, all we need to assume about the matrices Bk is that
they are symmetric, and ‖Bk‖ < M (uniformly bounded).

The locally constrained trust region problem is

min
p̄∈Tk

mk(p̄) = min
p̄∈Tk

[

f (x̄k) + p̄T∇f (x̄k) +
1

2
p̄TBk p̄

]

,

where Tk is the trust region.

Note: If Bk is positive definite, and p̄B
k

= −B−1
k

∇f (x̄k) ∈ Tk ,
then the full step is allowed.
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Illustration: The Quadratic Model 1 of 3
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Figure: The picture to the left shows the contour lines of the objective f (x̄) =
x21 + x22/4 + 4(x1 − x2)

2 · sin2(x2) and the picture to the right shows the same
contour lines for the model mk (p̄) whose first three terms agree with the Taylor
expansion of the objective.
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Illustration: The Quadratic Model 2 of 3

Figure: The picture to the left mesh plot of the objective f (x̄) = x21 +x22/4+4(x1−

x2)
2 · sin2(x2) and the picture to the right shows the mesh plot for the model mk (p̄)

whose first three terms agree with the Taylor expansion of the objective.
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Illustration: The Quadratic Model 3 of 3

Model Error (log
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 scale)
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Figure: The model error ‖mk (p̄)− f (x̄+ p̄)‖, at x̄ = 0̄.
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Trust Region Methods — The Trust Region

Usually, the Trust Region Tk is defined by its radius ∆k :

Tk = {x̄ ∈ R
n : ‖x̄‖ ≤ ∆k}.

Note: If ‖B−1
k

∇f (x̄k)‖ > ∆k then the full step is not allowed,
and we must find the optimal solution to the (locally) con-
strained problem

min
‖p̄‖≤∆k

[

f (x̄k) + p̄T∇f (x̄k) +
1

2
p̄TBk p̄

]

.

The solution is not immediately obvious.

In practice we only need an approximate solution which yields
sufficient decrease in the objective.
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The Base-Line Trust Region Algorithm 1 of 3

As in the line search case, we start out by formulating a working
Trust-Region algorithm. Then we study the different components of the
algorithm, and substitute more clever solutions to the various
subproblems.

First, we define a ratio measuring the success of a step —

Definition

Given a step p̄k we define the ratio

ρk =
actual reduction

predicted reduction
=

f (x̄k)− f (x̄k + p̄k)

mk(0)−mk(p̄k)

The predicted reduction is always non-negative (the step p̄k = 0 is part
of the trust region). Thus if ρk < 0 the step must be rejected (since
f (x̄k + p̄k) > f (x̄k)).
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The Base-Line Trust Region Algorithm 2 of 3

If ρk < 0 We shrink the size of the trust region.

If ρk ≈ 0 Then we shrink the size of the trust region.

If ρk ≈ 1 Then the model is in good agreement with the objective;
in this case it is (probably) safe to expand the trust
region for the next iteration.

Otherwise we keep the size of the trust region.
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The Base-Line Trust Region Algorithm 3 of 3

Algorithm: Trust Region

[ 1] Set k = 1, ∆̂ > 0, ∆0 ∈ (0, ∆̂), and η ∈ (0, 1
4
)

[ 2] While optimality condition not satisfied

[ 3] Get p̄k (approximate solution)

[ 4] Evaluate ρk =
f (x̄k )−f (x̄k+p̄k )

mk (0)−mk (p̄k )

[ 5] if ρk < 1
4

[ 6] ∆k+1 = 1
4
∆k

[ 7] else

[ 8] if ρk > 3
4
and ‖p̄k‖ = ∆k

[ 9] ∆k+1 = min(2∆k , ∆̂)

[10] else

[11] ∆k+1 = ∆k

[12] endif

[13] endif

[14] if ρk > η

[15] x̄k+1 = x̄k + p̄k
[16] else

[17] x̄k+1 = x̄k
[18] endif

[19] k = k + 1

[20] End-While
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The Base-Line Trust Region Algorithm: Missing Parts

Clearly, in order to make use of this “algorithm” we must turn our
attention to the solution of

min
‖p̄‖≤∆k

[

f (x̄k) + p̄T∇f (x̄k) +
1

2
p̄TBk p̄

]

. (Get p̄k)

We look at the easiest approximation:
— the Cauchy point, the minimizer of mk(p̄) in the steepest

descent direction.

Then we study three improvements to the Cauchy point:
— Dogleg method; used when Bk is positive definite.

— 2-D Subspace Minimization; can be used when Bk is
indefinite.

— Steihaug’s Method; appropriate when Bk = ∇2f (x̄k) and
this matrix is large and sparse (most entries are zeros.)
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The Cauchy Point

For global convergence we can be quite sloppy in the minimization of the
model mk(p̄) — all we must require is sufficient reduction in the
model. This is quantified in terms of the Cauchy point p̄c

k
—

Algorithm: Cauchy Point Calculation

Find the minimizer for the linear model lk(p̄) = f (x̄k) + p̄T∇f (x̄k)

p̄sk = argmin
‖p̄‖≤∆k

[

f (x̄k) + p̄T∇f (x̄k)

]

.

Let τk > 0 be the scalar that minimizes mk(τ p̄
s

k
) subject to satisfying the

trust-region constraint, i.e.

τk = argmin
τ>0

mk(τ p̄
s

k), such that , ‖τ p̄sk‖ ≤ ∆k .

Let p̄c
k
= τk p̄

s

k
. This is the Cauchy point.
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The Cauchy Point — Explicit Expressions 1 of 3

We can write down some of the quantities explicitly, e.g.

p̄sk = −∆k

∇f (x̄k)

‖∇f (x̄k)‖
,

is the full step to the trust-region boundary.

Case: ∇f (x̄k)
TBk∇f (x̄k) ≤ 0

mk(τ p̄
s

k
) decreases monotonically with τ , whenever ∇f (x̄k) 6=

0. Hence, τk is the largest τ which keeps satisfies the trust-
region condition; by construction of p̄s

k
, this means τk = 1.

Case: ∇f (x̄k)
TBk∇f (x̄k) > 0

mk(τ p̄
s

k
) is a convex quadratic in τ ; hence τk is the smaller of

the minimizer of the quadratic, or 1.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Trust-Region Methods: Intro. / Cauchy Point — (18/28)



Trust Region Methods
The Trust Region Subproblem...

The Cauchy Point
The Dogleg Method

The Cauchy Point — Explicit Expressions 2 of 3
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Figure: The three possible sce-
narios for selection of τ .
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The Cauchy Point — Explicit Expressions 3 of 3

The unconstrained minimizer of the quadratic is

τ∗
k
=

‖∇f (x̄k)‖
3

∆k∇f (x̄k )TBk∇f (x̄k )
.

Hence we have, for the Cauchy point



























p̄c
k

= −τk
∆k

‖∇f (x̄k )‖
∇f (x̄k )

where

τk =

{

1 if ∇f (x̄k )
TBk∇f (x̄k ) ≤ 0

min
(

1,
‖∇f (x̄k )‖

3

∆k∇f (x̄k )
TBk∇f (x̄k )

)

otherwise.

The Cauchy point is cheap to calculate — no matrix inversions, or
factorizations are required.

A trust-region method will be globally convergent if its steps p̄k give
reductions in the models mk(p̄) that is at least some fixed multiple of the
decrease attained by the Cauchy point in each iteration.
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The Cauchy Point — Are We Done?

The Cauchy point p̄c
k
gives us sufficient reduction for global convergence

and it is cheap-and-easy to compute. Is there any reason to look for
other (approximate) solutions of

argmin
‖p̄‖≤∆k

[

f (x̄k) + p̄T∇f (x̄k) +
1

2
p̄TBk p̄

]

???
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The Cauchy Point — Are We Done?

The Cauchy point p̄c
k
gives us sufficient reduction for global convergence

and it is cheap-and-easy to compute. Is there any reason to look for
other (approximate) solutions of

argmin
‖p̄‖≤∆k

[

f (x̄k) + p̄T∇f (x̄k) +
1

2
p̄TBk p̄

]

???

Well, yes. Using the Cauchy point as our step means that we have
implemented the Steepest Descent method, with a particular step
length. From previous discussion (and HW#1) we know that steepest
descent converges slowly (linearly) even when the step length is chosen
optimally.

∴ there is room for improvement (a.k.a. rotten-tomato-momentTM.)
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The Dogleg Method 1 of 6

Strategy: Dogleg

Method: Dogleg (for Trust-region).

Use When: The model Hessian Bk is positive definite.

At a point x̄k we have already looked at two steps — a step in the
steepest descent direction, and the full step.

Steepest Descent Direction

Full Step
Trust Region
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The Dogleg Method 2 of 6

The full step is given by the unconstrained minimum of the quadratic
model

p̄FS
k = −B−1

k
∇f (x̄k).

The step in the steepest descent direction is given by the
unconstrained minimum of the quadratic model along the steepest
descent direction

p̄Uk = −
∇f (x̄k)

T∇f (x̄k)

∇f (x̄k)TBk∇f (x̄k)
∇f (x̄k).

When the trust region is small, the quadratic term is small, so the
minimum of

argmin
‖p̄‖≤∆k

[

f (x̄k) + p̄T∇f (x̄k) +
1

2
p̄TBk p̄

]

,

is achieved very close to the steepest descent direction.
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The Dogleg Method 3 of 6

On the other hand, as the trust region gets larger (∆k → ∞) the
optimum will move to the full step.

If we plot the optimum as a function of the size of the trust region,
we get a smooth path:

Steepest Descent Direction

Full Step
Trust Region

The Optimal Path
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The Dogleg Method 4 of 6

The idea of the dogleg method is to (i) approximate this path, since the
analytical expression for it is quite expensive; and (ii) to optimize the
model mk(p̄) along the approximate path subject to the trust region
constraint.

The approximate path is a line segment running from 0̄ to p̄U
k
, connected

to a second line segment running from p̄U
k
to p̄FS

k
, something like

Steepest Descent Direction

Full Step
Trust Region

The Optimal Path

The Dogleg Path
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The Dogleg Method 5 of 6

Formally, the dogleg path can be described by one parameter τ

˜̄p(τ) =

{

τ p̄U
k

0 ≤ τ ≤ 1
p̄U
k
+ (τ − 1)(p̄FS

k
− p̄U

k
) 1 ≤ τ ≤ 2

The following result can be shown —

Lemma

Let Bk be positive definite, then

(i) ‖˜̄p(τ)‖ is an increasing function of τ .

(ii) mk(˜̄p(τ)) is a decreasing function of τ .

This means that the optimum along the dogleg path is achieved at
the point where the path exits the trust-region (if it does),
otherwise the full step is allowed and optimal.
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The Dogleg Method 6 of 6

If the full step is not allowed, then the exit point for the dogleg
path is given by the scalar quadratic equation

∥

∥

∥
p̄Uk + (τ − 1)(p̄FS

k − p̄Uk )
∥

∥

∥

2
= ∆2

k , τ ∈ [1, 2]

assuming that p̄U
k
is allowable, otherwise the exit point is along the

steepest descent path

∥

∥

∥
τ p̄Uk

∥

∥

∥

2
= ∆2

k , τ ∈ [0, 1].

Next time we look at dealing with indefinite model Hessians Bk ...
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