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Recap: Iterative “Nearly Exact” Solution of the Subproblem

Recap & Introduction Eiftes Lelalier]

Recap: — Iterative “Nearly Exact” Solution of the Subproblem

Last time we looked at nearly exact solution of the subproblem

1
. - — —T — o1, =
min m(p) = min f(Xe) +p" VI(xk) + P Bkp

This approach is viable for problems with few degrees of freedom, e.g.
Ty CR" n “small.” Where “small” means that the unitary
diagonalization QA QkT = By is computable in a “reasonable” amount
of time.

From a theoretical characterization of the exact problem, we derived an
algorithm which finds a nearly exact solution at a cost per iteration
approximately three times that of dogleg and 2D-subspace minimization.

The scheme was based on a 1-D Newton iteration (with some clever

tricks), and some careful analysis of special (hard) cases.
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Recap: Iterative “Nearly Exact” Solution of the Subproblem

Recap & Introduction Quick Lookahead

On Today's Menu

We wrap up the first pass of Trust Region methods —

— We briefly discuss global convergence properties for trust region methods.

—  We look at some theorems, but leave the proofs as “exercises.”

—  For second order (Byx # V?f(Xx)) models we can show convergence
to a stationary point.

- For trust-region Newton methods (Bx = V?f(Xx)) models we can
show convergence to a point where the second order necessary
conditions hold.

We look at modifications for poorly scaled problems, as well as the use
of non-spherical trust regions.

Theorem (Second Order Necessary Conditions)

If X* is a local minimizer of f and V?f is continuous in an open
neighborhood of X*, then Vf(x*) = 0 and V2f(X*) is positive
semi-definite. o e
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Global Convergence Tool #1 — A Lemma: The Cauchy Point
Tool #2 — A Theorem

Recall: The Trust Region Algorithm

Global Convergence: Tool #1 — A Lemma

Global Convergence Tool #1 — A Lemma: The Cauchy Point
Tool #2 — A Theorem

Recall: The Trust Region Algorithm

Proof of Lemma

Recall: The trust-region subproblem is

_ : _ . _ - 1+, -
px = arg min my(p) = argmin f(Xi) + p’ VF(Xk) + =’ Bip.
IBll<A IBl<A 2

The following lemma gives us a lower bound for the decrease in the
model at the Cauchy point:

Lemma (Cauchy point descent)

The Cauchy point p§, satisfies

mi(8) — mi(f) = 31V min |4, TS,

=
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Global Convergence Tool #1 — A Lemma: The Cauchy Point
Tool #2 — A Theorem

Recall: The Trust Region Algorithm

Proof of Lemma Casettl
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The Cauchy Point

We recall the explicit expressions for the Cauchy point (from

lecture 7)
Ay
ps —Tk ———— V1 (Xk)
A , IV
whnere
{ 1 if VF(X)T BV (%) <0
Tk = ; V£ :
min (].7 W’m) otherwise
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Figure: The three possible scenarios for selection of . SAN DIFGO STATE
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Global Convergence Tool #1 — A Lemma: The Cauchy Point
Tool #2 — A Theorem
Recall: The Trust Region Algorithm

Proof of Lemma Case#t?

Case#2 (Vf(Xx)BkVf(X) >0, and Aka”(Zkf)(T)_(lks)klgf(ik) <D:

In this scenario the Cauchy point is in the interior of the trust region, and

mi(pg) — mi(0) =

IVF(Xe)I*

< 4
IVl L1 V(%) BeVF(%)

V&) TBVF(Rk) 2 (V)T B VF(Xk))?
I S A

2 VF (%) T BV F(Xk)

Sl VAR 1V -

2B IVE(x)II? 2 ||Bkll ! 5

1 - _ ||Vf(>'<k)||> o = i 2
< —-[[VF(Xk)[| min <Ak, :

IV 1Bl
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Global Convergence Tool #1 — A Lemma: The Cauchy Point
Tool #2 — A Theorem

Recall: The Trust Region Algorithm

Proof of Lemma

IVfEI®
AV (X)) BV F(Xk)

Case#3 (Vf(Xx)BkVf(x) >0, and >1):

We note that in this scenario Vf(Xx)" B VF(Xx) < W,

mi(pg) — mi(0) =

and

Bk r @) 4 Bk U R0 TBVA(Ri)
= T Twer/= 01 k P —— k k k
[V £(Xk)|l 2 [|[VF(xk)]?
-— 1 AQ ”vf(ik)”3 0.99|
< —A||VF = k
= AV S viwae A
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2 || Bl

Use the minus sign to flip the inequality, and we're there!
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Global Convergence Tool #1 — A Lemma: The Cauchy Point
Tool #2 — A Theorem

Recall: The Trust Region Algorithm

The Trust Region Algorithm

Algorithm: Trust Region

[1] Set k=1, A >0, Ag € (0,A), and n € [0, }
[ 2] While optimality condition not satisfied
[ 31 Get py (approximate solution)

[ 41 Evaluate py

[5] if pp< i

[ 6] Dy = 20y

[ 7] else

L8] if pg > § and [|Byll = Ak

[ 9] Dy = min(2Ay, A)

[10] else

[11] Apir = Ay

[12] endif

[13] endif

[14] if pg > 7

[15] X1 = Xk + Pk

[16] else

171 Ryl = Rx

[18]  endif

[19] k=k+1
[20] End-While
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Global Convergence Tool #1 — A Lemma: The Cauchy Point
Tool #2 — A Theorem

Recall: The Trust Region Algorithm

Global Convergence: Tool #2 — A Theorem

Theorem

Let px be any vector, ||p«|| < Ak, such that

mi(0) — mic(pk) > ca(mi(0) — mic(p5))

then

mi(®) — mi(Bi) = 2 IVF(Ri) | min [Ak, ”Vf(’_‘k)”] ,

1Bkl

Both the dogleg, and 2-D subspace minimization algorithms (as well as
Steihaug's algorithm) fall into this category, with ¢; = 1, since they all
produce px which give at least as much descent as the Cauchy point, i.e.

m(Pr) < me(p5).

We are going to use this result to show convergence for the trust region
algorithm (see next slide). RIS
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Global Convergence... Convergence to Stationary Points

Convergence to Stationary Points

Case =0
accept any step which produces descent in f — we can show that
the sequence of gradients {Vf(Xx)} has a limit point at zero.

Casen >0
accept a step only if the decrease in f is at least some fixed
fraction of the predicted decrease — we can show the stronger
result {Vf(Xc)} — 0.

In order for the proof(s) to work, we must assume that the model
Hessians By are uniformly bounded, i.e. ||Bk|| < (3, and that f is
bounded below on the levelset {x € R" : f(X) < f(Xo)}.

The trust-region bound can be relaxed so that the results hold as
long as the solution to the subproblems satisfy

SAN DIEGO STATE
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Global Convergence... Convergence to Stationary Points Global Convergence... Convergence to Stationary Points

Convergence to Stationary Points: n =0 Convergence to Stationary Points: n > 0

Let n = 0 in the trust region algorithm. Suppose that ||Bk|| < 3 for some Letn € (0,3) in the trust region ?lgorith{n. Suppos.e that_HBkH < B for

constant 3, that f is continuously differentiable and bounded below on some constant 3, that f is Lipschitz (;‘ont/nuous/y_d/ffererzt/able and

the bounded set {x € R" : f(X) < f(Xo)}, and that all approximate bounded below on the bounded set {xe R”: f(x) < f(xo)}:, and that

solutions to the trust-region subproblem satisfy the inequalities all approximate solutions to the trust-region subproblem satisfy the
inequalities

_ ) S uw(wq
mi(0) — me(pi) > || VF(X mm{A,, _ X

0= mpa) = eVl min | S T mu(®) ~ mi(0) > e[V (50 min [y, HE].
k

and

1Bl < vA«, 2

[Bwll < vAx
for some positive constants c¢; and v. Then we have

Jim VF(x,) =0.
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for some positive constants ¢; and . Then we have

lim inf | V£ (%) = 0.
k— o0
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Global Convergence... Convergence to Stationary Points Global Convergence... Convergence to Stationary Points

Proofs: Convergence to Stationary Points Convergence: lterative “Nearly Exact” Solutions pj, for Trust-Region Newton

The complete proofs are in NW'* pp.90-91, and pp.92-93; or NW>"

pp.80-82, and pp.82-83. Theorem (NW?™ p.92, proof in Moré & Sorensen (1983))

The proofs are based on manipulation of p — the ratio of actual Letn € (0, %)_"” the algo_rithm. on 5/"‘_13 11, let By = V?f(Xy), and
(objective) reduction and predicted (model) reduction; Taylor's theorem; suppose that py at each iteration satisfy

then deriving a contradiction from the supposition ||V f(Xk)|| > € using _ _ _ .

careful selection of scalings and bounds for Ay. mi(0) — mi(Pi) = c1(mi(0) — mi(Py)),

— . — and ||pk|| < vAk, for some positive constant 7y, and ¢; € (0,1]. Then
Definition (limsup and lim inf)
Let {s,} be a sequence of real numbers. Let E be the set of values x so that s, — x lengo HVf()_(k)H =0.

for some subsequence {s;, }. This set E contains all sub-sequential limits, plus

possibly £oo; let If, in addition, the set {x € R" : f(X) < f(Xo)} is compact, then either

the algorithm terminates at a point X, at which the second order
necessary conditions for a local minimum hold, or {Xx} has a limit point
limsupsy = s*,  liminf s, = s x* e {xeR": f(x) < f(Xo)} at which the conditions hold.

n— 0o n—0oo
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s* =supE, s.=IinfE

The values s* and s, are the upper and lower limits of {s,}, and we use the notation
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Scaling

Enhancements

Enhancement: Scaling — The Problem

|
]

3 E 2

As we have seen before (in the context of steepest descent / line-search),
scaling (ill-conditioning) can cause problems. — If the objective is more
sensitive to changes in one variable than other, the contour lines stretch

out to be narrow ellipses (in 2D).

Clearly, a circular trust-region may be quite limiting in this scenario. —  _
The radius is limited by the sensitive variable.
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Scaling
Enhancements

Feature: Non-Euclidean Trust Regions
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Figure: lllustration of (unscaled) trust region boundaries for, from left-to-right:
[Pll2 < Ak, [Pl < Ak, lIPlla < Ak, and [|plloc < A

Most of the time using trust regions based on norms with g # 2:

IPllg < Ak (unscaled), [|Dpllqg < Ak (scaled)

cause us a giant head-ache. There are however some situations
when such regions come in handy...
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Scaling
Enhancements

Enhancement: Scaling — The Solution

The solution to the problem of poor scaling is to use elliptical trust
regions. We define a diagonal scaling matrix

D:diag(dl,dg,...,dn)7 d; > 0.

Then, the constraint ||Dp|| < A defines an elliptical trust region, and we
get the following scaled trust-region subproblem:

1
i f(Xk) + P VI (%) + =P’ Bib.
serr T A, (Xk) +p' VF(Xk) + P B«
The scaling matrix can be built using information about the gradient
Vf(Xk) and the Hessian V2f(X,) along the solution path. — We can
allow D = Dy to change from iteration to iteration.

All our analysis/algorithms still work with scaling added — but we get
factors of D=2, D=1 D, and D? in our expressions.
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Scaling
Enhancements

Feature: Non-Euclidean Trust Regions
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Figure: lllustration of (unscaled) trust region boundaries for, from left-to-right:
IBlls < Ak, [IBlly < Ak, [IBlly < Ak, and [[Bll1 < A

Using g < 1 leads to non-convex trust regions, which may be a bit
of a pain?!?

This may, however, be useful /necessary for non-convex
optimization problems.
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Scaling Scaling

Enhancements Enhancements

Feature: Non-Euclidean Trust Regions Feature: Non-Euclidean Trust Regions

For constrained problems, e.g.
& Such a region is hard to describe, and hard to work with.

min f(X), subjectto x; >0, i=1,2,...,n
XERT If, instead, we work with the || - ||oo-norm, the trust region is the
intersection of the square with sides A, centered at X, and the
the trust-region subproblem may be first quadrant:

_m]iRn my(p), subject to Xx+p > 0, (component-wise), ||p|| < Ak
pER”

This trust region is the intersection of the disk centered at X, and
the first quadrant. It could look like this:

] Much easier to work with...
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Scaling

Enhancements

definition

lim sup and liminf, 15
lemma

Cauchy point descent, 5
theorem

Convergence (when n = 0), 13

Convergence (when n > 0), 14

Global trust-region Newton convergence (n > 0), 16
Second order necessary conditions, 4

Reference(s):

MS-1983  J.J. Moré and D.C. Sorensen, Computing a Trust Region Step, SIAM Journal on Scientific and Statistical
Computing, 4 (1983), pp. 553-572.
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