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Recap & Introduction
Recap: Iterative “Nearly Exact” Solution of the Subproblem
Quick Lookahead

Recap: — Iterative “Nearly Exact” Solution of the Subproblem

Last time we looked at nearly exact solution of the subproblem

min
p̄∈Tk

mk(p̄) = min
p̄∈Tk

f (x̄k) + p̄T∇f (x̄k) +
1

2
p̄TBk p̄

This approach is viable for problems with few degrees of freedom, e.g.
Tk ⊆ Rn, n “small.” Where “small” means that the unitary
diagonalization QkΛkQ

T
k = Bk is computable in a “reasonable” amount

of time.

From a theoretical characterization of the exact problem, we derived an
algorithm which finds a nearly exact solution at a cost per iteration
approximately three times that of dogleg and 2D-subspace minimization.

The scheme was based on a 1-D Newton iteration (with some clever
tricks), and some careful analysis of special (hard) cases.
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On Today’s Menu

We wrap up the first pass of Trust Region methods —

– We briefly discuss global convergence properties for trust region methods.

– We look at some theorems, but leave the proofs as “exercises.”

– For second order (Bk 6= ∇2f (x̄k)) models we can show convergence
to a stationary point.

– For trust-region Newton methods (Bk = ∇2f (x̄k)) models we can
show convergence to a point where the second order necessary
conditions hold.

– We look at modifications for poorly scaled problems, as well as the use
of non-spherical trust regions.

Theorem (Second Order Necessary Conditions)

If x̄∗ is a local minimizer of f and ∇2f is continuous in an open
neighborhood of x̄∗, then ∇f (x̄∗) = 0 and ∇2f (x̄∗) is positive
semi-definite.
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Global Convergence: Tool #1 — A Lemma

Recall: The trust-region subproblem is

p̄k = argmin
‖p̄‖≤∆k

mk(p̄) = argmin
‖p̄‖≤∆k

f (x̄k) + p̄T∇f (x̄k) +
1

2
p̄TBk p̄.

The following lemma gives us a lower bound for the decrease in the
model at the Cauchy point:

Lemma (Cauchy point descent)

The Cauchy point p̄ck satisfies

mk(0̄)−mk(p̄
c
k) ≥

1

2
‖∇f (x̄k)‖ min

[
∆k ,

‖∇f (x̄k)‖
‖Bk‖

]
.
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Proof of Lemma The Cauchy Point

We recall the explicit expressions for the Cauchy point (from
lecture 7)





p̄ck = −τk
∆k

‖∇f (x̄k )‖
∇f (x̄k )

where

τk =

{
1 if ∇f (x̄k )

TBk∇f (x̄k ) ≤ 0

min
(
1, ‖∇f (x̄k )‖3

∆k∇f (x̄k )
TBk∇f (x̄k )

)
otherwise
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Figure: The three possible scenarios for selection of τ .
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Proof of Lemma Case#1

Case#1 (∇f (x̄k)Bk∇f (x̄) ≤ 0):

In this scenario mk(p̄ck)−mk(0̄) =

= mk

(
−∆k

∇f (x̄k)

‖∇f (x̄k)‖

)
−mk(0̄)

= −∆k‖∇f (x̄k)‖ +
1

2

∆2
k

‖∇f (x̄k)‖2
∇f (x̄k)

TBk∇f (x̄k)︸ ︷︷ ︸
≤0

≤ −∆k‖∇f (x̄k)‖

≤ −‖∇f (x̄k)‖min

(
∆k ,

‖∇f (x̄k)‖
‖Bk‖

)

Hence,

mk (0̄) − mk (p̄
c
k ) ≥ ‖∇f (x̄k )‖min

(
∆k ,

‖∇f (x̄k )‖
‖Bk‖

)
≥

1

2
‖∇f (x̄k )‖min

(
∆k ,

‖∇f (x̄k )‖
‖Bk‖

)
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Proof of Lemma Case#2

Case#2 (∇f (x̄k)Bk∇f (x̄) > 0, and
‖∇f (x̄k )‖3

∆k∇f (x̄k )TBk∇f (x̄k )
≤ 1):

In this scenario the Cauchy point is in the interior of the trust region, and
mk(p̄ck)−mk(0̄) =

= − ‖∇f (x̄k)‖4
∇f (x̄k)TBk∇f (x̄k)

+
1

2

‖∇f (x̄k)‖4
(∇f (x̄k)TBk∇f (x̄k))2

∇f (x̄k)
TBk∇f (x̄k)

= −1

2

‖∇f (x̄k)‖4
∇f (x̄k)TBk∇f (x̄k)

≤ −1

2

‖∇f (x̄k)‖4
‖Bk‖ ‖∇f (x̄k)‖2

= −1

2

‖∇f (x̄k)‖2
‖Bk‖

≤ −1

2
‖∇f (x̄k)‖min

(
∆k ,

‖∇f (x̄k)‖
‖Bk‖

)

Use the minus sign to flip the inequality, and we’re there!
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Proof of Lemma Case#3

Case#3 (∇f (x̄k)Bk∇f (x̄) > 0, and
‖∇f (x̄k )‖3

∆k∇f (x̄k )TBk∇f (x̄k )
> 1):

We note that in this scenario ∇f (x̄k)TBk∇f (x̄k) < ‖∇f (x̄k )‖3

∆k
, and

mk(p̄ck)−mk(0̄) =

= − ∆k

‖∇f (x̄k)‖
‖∇f (x̄k)‖2 +

1

2

∆2
k

‖∇f (x̄k)‖2
∇f (x̄k)

TBk∇f (x̄k)

≤ −∆k‖∇f (x̄k)‖+
1

2

∆2
k

‖∇f (x̄k)‖2
‖∇f (x̄k)‖3

∆k

= −1

2
∆k‖∇f (x̄k)‖

≤ −1

2
‖∇f (x̄k)‖min

(
∆k ,

‖∇f (x̄k)‖
‖Bk‖

)

Use the minus sign to flip the inequality, and we’re there!
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Global Convergence: Tool #2 — A Theorem

Theorem

Let p̄k be any vector, ‖p̄k‖ ≤ ∆k , such that

mk(0̄)−mk(p̄k) ≥ c2(mk(0̄)−mk(p̄
c
k))

then

mk(0̄)−mk(p̄k) ≥
c2
2
‖∇f (x̄k)‖ min

[
∆k ,

‖∇f (x̄k)‖
‖Bk‖

]
.

Both the dogleg, and 2-D subspace minimization algorithms (as well as
Steihaug’s algorithm) fall into this category, with c2 = 1, since they all
produce p̄k which give at least as much descent as the Cauchy point, i.e.
mk(p̄k) ≤ mk(p̄ck).

We are going to use this result to show convergence for the trust region
algorithm (see next slide).
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The Trust Region Algorithm

Algorithm: Trust Region

[ 1] Set k = 1, ∆̂ > 0, ∆0 ∈ (0, ∆̂), and η ∈ [0, 1
4
]

[ 2] While optimality condition not satisfied

[ 3] Get p̄k (approximate solution)

[ 4] Evaluate ρk
[ 5] if ρk < 1

4

[ 6] ∆k+1 = 1
4
∆k

[ 7] else

[ 8] if ρk > 3
4

and ‖p̄k‖ = ∆k

[ 9] ∆k+1 = min(2∆k , ∆̂)
[10] else

[11] ∆k+1 = ∆k
[12] endif

[13] endif

[14] if ρk > η
[15] x̄k+1 = x̄k + p̄k
[16] else

[17] x̄k+1 = x̄k
[18] endif

[19] k = k + 1
[20] End-While

Peter Blomgren, 〈blomgren.peter@gmail.com〉 TR: Global Convergence and Enhancements — (11/23)

Global Convergence
Global Convergence...

Enhancements
Convergence to Stationary Points

Convergence to Stationary Points

Case η = 0
accept any step which produces descent in f — we can show that
the sequence of gradients {∇f (x̄k)} has a limit point at zero.

Case η > 0
accept a step only if the decrease in f is at least some fixed
fraction of the predicted decrease — we can show the stronger
result {∇f (x̄k)} → 0̄.

In order for the proof(s) to work, we must assume that the model
Hessians Bk are uniformly bounded, i.e. ‖Bk‖ ≤ β, and that f is
bounded below on the levelset {x̄ ∈ Rn : f (x̄) ≤ f (x̄0)}.
The trust-region bound can be relaxed so that the results hold as
long as the solution to the subproblems satisfy

‖p̄k‖ ≤ γ∆k , for some constant γ ≥ 1.
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Convergence to Stationary Points: η = 0

Theorem

Let η = 0 in the trust region algorithm. Suppose that ‖Bk‖ ≤ β for some
constant β, that f is continuously differentiable and bounded below on
the bounded set {x̄ ∈ Rn : f (x̄) ≤ f (x̄0)}, and that all approximate
solutions to the trust-region subproblem satisfy the inequalities

mk(0̄)−mk(p̄k) ≥ c1‖∇f (x̄k)‖ min

[
∆k ,

‖∇f (x̄k)‖
‖Bk‖

]
,

and
‖p̄k‖ ≤ γ∆k ,

for some positive constants c1 and γ. Then we have

lim inf
k→∞

‖∇f (x̄k)‖ = 0.
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Convergence to Stationary Points: η > 0

Theorem

Let η ∈
(
0, 1

4

)
in the trust region algorithm. Suppose that ‖Bk‖ ≤ β for

some constant β, that f is Lipschitz continuously differentiable and
bounded below on the bounded set {x̄ ∈ Rn : f (x̄) ≤ f (x̄0)}, and that
all approximate solutions to the trust-region subproblem satisfy the
inequalities

mk(0̄)−mk(p̄k) ≥ c1‖∇f (x̄k)‖ min

[
∆k ,

‖∇f (x̄k)‖
‖Bk‖

]
.

and
‖p̄k‖ ≤ γ∆k

for some positive constants c1 and γ. Then we have

lim
k→∞

∇f (x̄k) = 0̄.
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Proofs: Convergence to Stationary Points

The complete proofs are in NW1st pp.90–91, and pp.92–93; or NW2nd

pp.80–82, and pp.82–83.

The proofs are based on manipulation of ρ — the ratio of actual
(objective) reduction and predicted (model) reduction; Taylor’s theorem;
then deriving a contradiction from the supposition ‖∇f (x̄k)‖ ≥ ǫ using
careful selection of scalings and bounds for ∆k .

Definition (lim sup and lim inf)

Let {sn} be a sequence of real numbers. Let E be the set of values x so that snk → x
for some subsequence {snk }. This set E contains all sub-sequential limits, plus
possibly ±∞; let

s∗ = supE , s∗ = inf E

The values s∗ and s∗ are the upper and lower limits of {sn}, and we use the notation

lim sup
n→∞

sn = s∗, lim inf
n→∞

sn = s∗
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Convergence: Iterative “Nearly Exact” Solutions p̄∗k , for Trust-Region Newton

Theorem (NW2nd p.92, proof in Moré & Sorensen (1983))

Let η ∈
(
0, 1

4

)
in the algorithm on slide 11, let Bk = ∇2f (x̄k), and

suppose that p̄k at each iteration satisfy

mk(0̄)−mk(p̄k) ≥ c1(mk(0̄)−mk(p̄
∗
k)),

and ‖p̄k‖ ≤ γ∆k , for some positive constant γ, and c1 ∈ (0, 1]. Then

lim
k→∞

‖∇f(x̄k)‖ = 0.

If, in addition, the set {x̄ ∈ Rn : f (x̄) ≤ f (x̄0)} is compact, then either
the algorithm terminates at a point x̄k at which the second order
necessary conditions for a local minimum hold, or {x̄k} has a limit point
x̄∗ ∈ {x̄ ∈ Rn : f (x̄) ≤ f (x̄0)} at which the conditions hold.
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Enhancement: Scaling — The Problem
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As we have seen before (in the context of steepest descent / line-search),
scaling (ill-conditioning) can cause problems. — If the objective is more
sensitive to changes in one variable than other, the contour lines stretch
out to be narrow ellipses (in 2D).

Clearly, a circular trust-region may be quite limiting in this scenario. —
The radius is limited by the sensitive variable.
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Enhancement: Scaling — The Solution

The solution to the problem of poor scaling is to use elliptical trust
regions. We define a diagonal scaling matrix

D = diag(d1, d2, . . . , dn), di > 0.

Then, the constraint ‖Dp̄‖ ≤ ∆ defines an elliptical trust region, and we
get the following scaled trust-region subproblem:

min
p̄∈Rn : ‖Dp̄‖≤∆k

f (x̄k) + p̄T∇f (x̄k) +
1

2
p̄TBk p̄.

The scaling matrix can be built using information about the gradient
∇f (x̄k) and the Hessian ∇2f (x̄k) along the solution path. — We can
allow D = Dk to change from iteration to iteration.

All our analysis/algorithms still work with scaling added — but we get
factors of D−2, D−1, D , and D2 in our expressions.
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Feature: Non-Euclidean Trust Regions 1 of 4
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Figure: Illustration of (unscaled) trust region boundaries for, from left-to-right:
‖p̄‖2 ≤ ∆k , ‖p̄‖1 ≤ ∆k , ‖p̄‖4 ≤ ∆k , and ‖p̄‖∞ ≤ ∆k .

Most of the time using trust regions based on norms with q 6= 2:

‖p̄‖q ≤ ∆k (unscaled), ‖Dp̄‖q ≤ ∆k (scaled)

cause us a giant head-ache. There are however some situations
when such regions come in handy...
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Feature: Non-Euclidean Trust Regions 2 of 4
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Figure: Illustration of (unscaled) trust region boundaries for, from left-to-right:
‖p̄‖1 ≤ ∆k , ‖p̄‖ 1

2
≤ ∆k , ‖p̄‖ 1

4
≤ ∆k , and ‖p̄‖ 1

8
≤ ∆k .

Using q < 1 leads to non-convex trust regions, which may be a bit
of a pain?!?

This may, however, be useful/necessary for non-convex
optimization problems.
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Feature: Non-Euclidean Trust Regions 3 of 4

For constrained problems, e.g.

min
x̄∈Rn

f (x̄), subject to xi ≥ 0, i = 1, 2, . . . , n

the trust-region subproblem may be

min
p̄∈Rn

mk(p̄), subject to x̄k+p̄ ≥ 0, (component-wise), ‖p̄‖ ≤ ∆k

This trust region is the intersection of the disk centered at x̄k and
the first quadrant. It could look like this:
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Feature: Non-Euclidean Trust Regions 4 of 4

Such a region is hard to describe, and hard to work with.

If, instead, we work with the ‖ · ‖∞-norm, the trust region is the
intersection of the square with sides ∆k centered at x̄k and the
first quadrant:

Much easier to work with...
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Reference(s):

MS-1983 J.J.Moré and D.C. Sorensen, Computing a Trust Region Step, SIAM Journal on Scientific and Statistical
Computing, 4 (1983), pp. 553 – 572.
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