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Recap: Iterative “Nearly Exact” Solution of the Subproblem

Recap & Introduction Eites el el

Recap: — Iterative “Nearly Exact” Solution of the Subproblem

Last time we looked at nearly exact solution of the subproblem

_rngn mi(p) = m|n f(Xk) +p' VF(Xe) + pTka
pPE Ik

This approach is viable for problems with few degrees of freedom, e.g.
Ty CR?, n “small.” Where “small” means that the unitary
diagonalization Qk/\kaT = By is computable in a “reasonable” amount
of time.

From a theoretical characterization of the exact problem, we derived an
algorithm which finds a nearly exact solution at a cost per iteration
approximately three times that of dogleg and 2D-subspace minimization.

The scheme was based on a 1-D Newton iteration (with some clever
tricks), and some careful analysis of special (hard) cases.
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Recap: Iterative “Nearly Exact” Solution of the Subproblem

Recap & Introduction Quick Lookahead

On Today's Menu

We wrap up the first pass of Trust Region methods —

— We briefly discuss global convergence properties for trust region methods.

We look at some theorems, but leave the proofs as “exercises.”

—  For second order (By # V2f(Xx)) models we can show convergence
to a stationary point.

—  For trust-region Newton methods (Bx = V?f(Xx)) models we can

show convergence to a point where the second order necessary
conditions hold.

We look at modifications for poorly scaled problems, as well as the use
of non-spherical trust regions.

Theorem (Second Order Necessary Conditions)

Ifx* is a local minimizer of f and V>f is continuous in an open

neighborhood of X*, then Vf(X*) = 0 and V2f(X*) is positive
semi-definite. neosis
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Global Convergence Tool #1 — A Lemma: The Cauchy Point
Tool #2 — A Theorem
Recall: The Trust Region Algorithm

Global Convergence: Tool #1 — A Lemma

Recall: The trust-region subproblem is

. _ e _ - 1+, -
i = arg min my(p) = arg min f(Xx) + p’ VF(Xk) + EpTka.
Bl <Ak Ipll<Ax

The following lemma gives us a lower bound for the decrease in the
model at the Cauchy point:

Lemma (Cauchy point descent)

The Cauchy point p{, satisfies

) I IV £ (%)
my(0) — me(pf) > EHV’[(Xk)H min [Ak’ HBI<||:| ‘
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Global Convergence Tool #1 — A Lemma: The Cauchy Point
Tool #2 — A Theorem
Recall: The Trust Region Algorithm

Proof of Lemma The Cauchy Point

We recall the explicit expressions for the Cauchy point (from

lecture 7)
Ay
'—)c = —Tki_vf()_(k)
k V&I
where
{ 1 if VF(Xk)TBkVF(Xc) <0
Tk = ; V(&)1 ;
min (1, W) otherwise

0.95

i i i

Figure: The three possible scenarios for selection of 7.
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Global Convergence Tool #1 — A Lemma: The Cauchy Point
Tool #2 — A Theorem
Recall: The Trust Region Algorithm

Proof of Lemma Case#1

Case#l (VF(Xx)BkVF(x)<0):
In this scenario mx(pS) — m(0) = o
V(%) ) _ .
= my my 0 071
( “vrzor) ~ ™0
= —A||IVF(xQ)| + 1A72wo‘< YT BV F(x )05 5
T VR P —
<0
< SAVEE
(%
< —| VA min (A”V()”>
[| Bl
Hence,
- i o VA& 1 7zl 3
my(8) — mi() > ||V (%)l min (Ak, uskﬁ ) > IV min <Ak, \\Bkﬁ )
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Global Convergence Tool #1 — A Lemma: The Cauchy Point
Tool #2 — A Theorem
Recall: The Trust Region Algorithm

Proof of Lemma Case#2

Case#t2 (Vf()_(k)Bkvf()_() > 0, and #% S ].)

In this scenario the Cauchy point is in the interior of the trust region, and

mi(Bi) — mi(0) =

[V F(xe)I* 1 IV F(e)l* S \T .
- = f BkVT
VIR T BV AR | 2 (V)T ) T o) BV
1 VAR
2VI(xk) T Bk V£(Xk)
1 VARG VAR
T 2Bl IVxI? 2 ||Bl |
1 f(x = i %
< =17 min (,, SR (
k -
Use the minus sign to flip the inequality, and we're there! SO
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Global Convergence Tool #1 — A Lemma: The Cauchy Point
Tool #2 — A Theorem
Recall: The Trust Region Algorithm

Proof of Lemma Case#3
= \3
Case#3 (Vf(Xk)BkVf(x) >0, and % >1):
We note that in this scenario Vf(Xx)" By Vf(Xx) < W, and
mi(p) — me(0) =
= [VF(Ze)|? + Eiw& )T Bk Vf(%k)
- ||w( B 2
18 VERIP -
< —A(||VF(x
1 _ 0.96]
= AV |
L otz min (2, IV7 G A
< ——|IVF(Xk)|| min (Ak,
IVFEO I
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Global Convergence Tool #1 — A Lemma: The Cauchy Point
Tool #2 — A Theorem
Recall: The Trust Region Algorithm

Global Convergence: Tool #2 — A Theorem

Let px be any vector, ||pk|| < Ak, such that

mic(0) — mi (i) > ca(mic(0) — mi(p5))

then

mi(8) = mi(i) = 2 VF(Re)| min {A,ﬁ |Vf(>'<k)||} |

[ Bl

Both the dogleg, and 2-D subspace minimization algorithms (as well as
Steihaug’s algorithm) fall into this category, with ¢, = 1, since they all
produce px which give at least as much descent as the Cauchy point, i.e.
my(Px) < mi(p5)-

We are going to use this result to show convergence for the trust region ‘
algorithm (see next slide). sy Dot
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Global Convergence Tool #1 — A Lemma: The Cauchy Point
Tool #2 — A Theorem

Recall: The Trust Region Algorithm

The Trust Region Algorithm

Algorithm: Trust Regio

[1] Set k=1, A >0, Ag € (0,A), and n € [0, £
[ 2] While optimality condition not satisfied

[ 381 Get py (approximate solution)

[ 41 Evaluate py

[5] if p <1

[
[
[

6] Dy = §0x
7] else
8] if pp > 3 and Bkl = Dk
[ 9] Ajiq = min(2Ay, A)
[10] else
[11] Api1 = Dy
[12] endif
[13]  endif
[14] if pp > 7
[15] Xpt1 = Xk + Pk
[16] else
[17] Xpt1 = Xk

[18]  endif
[19] k=k+1
[20] End-While
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Global Convergence... Convergence to Stationary Points

Convergence to Stationary Points

Casen=0
accept any step which produces descent in f — we can show that
the sequence of gradients {Vf(Xx)} has a limit point at zero.

Case n >0
accept a step only if the decrease in f is at least some fixed

fraction of the predicted decrease — we can show the stronger
result {Vf(xx)} — 0.

In order for the proof(s) to work, we must assume that the model
Hessians By are uniformly bounded, i.e. ||Bk|| < 3, and that f is
bounded below on the levelset {x € R" : f(X) < f(Xp)}.

The trust-region bound can be relaxed so that the results hold as
long as the solution to the subproblems satisfy

Pkl < vAk, for some constant v > 1. Sy
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Global Convergence... Convergence to Stationary Points

Convergence to Stationary Points: n =0

Theorem

Let n = 0 in the trust region algorithm. Suppose that ||Bx|| < B for some
constant 3, that f is continuously differentiable and bounded below on
the bounded set {x € R" : f(X) < f(Xo)}, and that all approximate
solutions to the trust-region subproblem satisfy the inequalities

= _ - . VI (x
mk(O) — mk(pk) Z Cl‘IVf(Xk)H min |:Ak, ||B(k|k)||:| s
and
1Bl < 7A,

for some positive constants ¢; and . Then we have

lim inf ||V (%¢)]| = 0.
k—o0

bie
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Global Convergence... Convergence to Stationary Points

Convergence to Stationary Points: n > 0

Theorem

Let ) € (0, %) in the trust region algorithm. Suppose that ||Bk| < j3 for
some constant 3, that f is Lipschitz continuously differentiable and
bounded below on the bounded set {x € R" : f(X) < f(Xo)}, and that
all approximate solutions to the trust-region subproblem satisfy the
inequalities

(@) — mi(Bi) > | V()| min {Ak, W} |

and
Pwll < vAx
for some positive constants ¢; and v. Then we have
lim V(%)= 0.
kmeV (xc)=0

MEGO STATE
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Global Convergence... Convergence to Stationary Points

Proofs: Convergence to Stationary Points

The complete proofs are in NW'** pp.90-91, and pp.92-93; or Nw"
pp-80-82, and pp.82-83.

The proofs are based on manipulation of p — the ratio of actual
(objective) reduction and predicted (model) reduction; Taylor's theorem;
then deriving a contradiction from the supposition ||V f(Xk)| > € using
careful selection of scalings and bounds for Ay.

Definition (limsup and lim inf)

Let {s,} be a sequence of real numbers. Let E be the set of values x so that s, — x
for some subsequence {s;, }. This set E contains all sub-sequential limits, plus
possibly foo; let

s* =supE, s.=infE

The values s* and s, are the upper and lower limits of {s,}, and we use the notation

limsups, =s*, liminfs, = s, 3
n— o0 n— o0 ﬂ
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Global Convergence... Convergence to Stationary Points

Convergence: lIterative “Nearly Exact” Solutions pj, for Trust-Region Newton

Theorem (NW>" p.92, proof in Moré & Sorensen (1983))

Letn € (0, %) in the algorithm on slide 11, let B, = V?f(Xy), and
suppose that py at each iteration satisfy

mi(0) — mi(Bic) = ca(mic(0) — mi(pi)),
and ||pk|| < yA, for some positive constant «y, and c; € (0,1]. Then
lim ||Vf(x«)| = 0.
k—o00
If, in addition, the set {x € R" : f(X) < f(Xo)} is compact, then either
the algorithm terminates at a point X, at which the second order

necessary conditions for a local minimum hold, or {Xx} has a limit point
x* e {x €R": f(x) < f(Xo)} at which the conditions hold.
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Scaling
Enhancements

Enhancement: Scaling — The Problem

As we have seen before (in the context of steepest descent / line-search),
scaling (ill-conditioning) can cause problems. — If the objective is more
sensitive to changes in one variable than other, the contour lines stretch

out to be narrow ellipses (in 2D).

Clearly, a circular trust-region may be quite limiting in this scenario. — 2
The radius is limited by the sensitive variable. S DRGASTAT
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Scaling
Enhancements

Enhancement: Scaling — The Solution

The solution to the problem of poor scaling is to use elliptical trust
regions. We define a diagonal scaling matrix

D:diag(dl,dg,...,d,,), d; > 0.

Then, the constraint ||Dp|| < A defines an elliptical trust region, and we
get the following scaled trust-region subproblem:

1
i (%) +p' V(%) + =’ Bip.
ﬁeR":T/'J%HSAk (%) +P (%) 2P PP

The scaling matrix can be built using information about the gradient
Vf(Xx) and the Hessian V2f(X,) along the solution path. — We can
allow D = Dy to change from iteration to iteration.

All our analysis/algorithms still work with scaling added — but we get
factors of D2, D1, D, and D? in our expressions. syyucosta
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Scaling
Enhancements

Feature: Non-Euclidean Trust Regions
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Figure: lllustration of (unscaled) trust region boundaries for, from left-to-right:
[Bll2 < Ak, [IPllr < Ak, [IBlla < A, and [[Plloo < A

Most of the time using trust regions based on norms with g # 2:
IPllg < Ak (unscaled), ||Dpllqg < Ak (scaled)

cause us a giant head-ache. There are however some situations )
when such regions come in handy...
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Scaling
Enhancements

Feature: Non-Euclidean Trust Regions
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Figure: lllustration of (unscaled) trust region boundaries for, from left-to-right:
1Pl < Ax, ﬁll% <Ay, |ﬁ||% < Ay, and ||ﬁ||é < Ag.

Using g < 1 leads to non-convex trust regions, which may be a bit
of a pain?!?

This may, however, be useful /necessary for non-convex
optimization problems.
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Scaling
Enhancements

Feature: Non-Euclidean Trust Regions

For constrained problems, e.g.

min f(x), subjectto x;>0,i=1,2,....n

xeR

the trust-region subproblem may be

_mIiRn my(p), subject to X,+p > 0, (component-wise), ||p|| < Ay
peRn

This trust region is the intersection of the disk centered at X, and
the first quadrant. It could look like this:

SAN DIEGO STATE
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Scaling
Enhancements

Feature: Non-Euclidean Trust Regions

Such a region is hard to describe, and hard to work with.

If, instead, we work with the || - ||«-norm, the trust region is the
intersection of the square with sides A centered at X, and the
first quadrant:

Much easier to work with...
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Scaling

Enhancements

definition

lim sup and liminf, 15
lemma

Cauchy point descent, 5
theorem

Convergence (when n = 0), 13

Convergence (when n > 0), 14

Global trust-region Newton convergence (n > 0), 16
Second order necessary conditions, 4

Reference(s):

MS-1983  J.J. Moré and D.C. Sorensen, Computing a Trust Region Step, SIAM Journal on Scientific and Statistical
Computing, 4 (1983), pp. 553 -572.
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