Numerical Optimization

Lecture Notes #9 — Trust-Region Methods Global Convergence and Enhancements

> Peter Blomgren, \(\text{blomgren.peter@gmail.com} \)

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Fall 2018

Outline

- Recap & Introduction
 - Recap: Iterative "Nearly Exact" Solution of the Subproblem
 - Quick Lookahead
- 2 Global Convergence
 - Tool #1 A Lemma: The Cauchy Point
 - Tool #2 A Theorem
 - Recall: The Trust Region Algorithm
- 3 Global Convergence...
 - Convergence to Stationary Points
- 4 Enhancements
 - Scaling

Recap: — Iterative "Nearly Exact" Solution of the Subproblem

Last time we looked at nearly exact solution of the subproblem

$$\min_{\bar{\mathbf{p}} \in T_k} m_k(\bar{\mathbf{p}}) = \min_{\bar{\mathbf{p}} \in T_k} f(\bar{\mathbf{x}}_k) + \bar{\mathbf{p}}^T \nabla f(\bar{\mathbf{x}}_k) + \frac{1}{2} \bar{\mathbf{p}}^T B_k \bar{\mathbf{p}}$$

This approach is viable for problems with few degrees of freedom, e.g. $T_k \subseteq \mathbb{R}^n$, n "small." Where "small" means that the **unitary diagonalization** $Q_k \Lambda_k Q_k^T = B_k$ is computable in a "reasonable" amount of time.

From a theoretical characterization of the exact problem, we derived an algorithm which finds a nearly exact solution at a cost per iteration approximately **three** times that of dogleg and 2D-subspace minimization.

The scheme was based on a 1-D Newton iteration (with some clever tricks), and some careful analysis of special (hard) cases.

On Today's Menu

We wrap up the first pass of Trust Region methods —

- We briefly discuss global convergence properties for trust region methods.
- We look at some theorems, but leave the proofs as "exercises."
- For second order $(B_k \neq \nabla^2 f(\bar{\mathbf{x}}_k))$ models we can show convergence to a stationary point.
- For trust-region Newton methods $(B_k = \nabla^2 f(\bar{\mathbf{x}}_k))$ models we can show convergence to a point where the second order necessary conditions hold.
- We look at modifications for poorly scaled problems, as well as the use of non-spherical trust regions.

Theorem (Second Order Necessary Conditions)

If $\bar{\mathbf{x}}^*$ is a local minimizer of f and $\nabla^2 f$ is continuous in an open neighborhood of $\bar{\mathbf{x}}^*$, then $\nabla f(\bar{\mathbf{x}}^*) = 0$ and $\nabla^2 f(\bar{\mathbf{x}}^*)$ is positive semi-definite.

Global Convergence: Tool #1 — A Lemma

Recall: The trust-region subproblem is

$$\bar{\mathbf{p}}_k = \operatorname*{arg\,min}_{\|\bar{\mathbf{p}}\| \leq \Delta_k} m_k(\bar{\mathbf{p}}) = \operatorname*{arg\,min}_{\|\bar{\mathbf{p}}\| \leq \Delta_k} f(\bar{\mathbf{x}}_k) + \bar{\mathbf{p}}^T \nabla f(\bar{\mathbf{x}}_k) + \frac{1}{2} \bar{\mathbf{p}}^T B_k \bar{\mathbf{p}}.$$

The following lemma gives us a lower bound for the decrease in the model at the Cauchy point:

Lemma (Cauchy point descent)

The Cauchy point $\mathbf{\bar{p}}_{k}^{c}$ satisfies

$$m_k(\mathbf{ar{0}}) - m_k(\mathbf{ar{p}}_k^c) \geq rac{1}{2} \|
abla f(\mathbf{ar{x}}_k) \| \, \min \left[\Delta_k, rac{\|
abla f(\mathbf{ar{x}}_k) \|}{\| B_k \|}
ight].$$

Proof of Lemma

The Cauchy Point

We recall the explicit expressions for the Cauchy point (from lecture 7)

$$\left\{ \begin{array}{rcl} \bar{\mathbf{p}}_k^c & = & -\tau_k \frac{\Delta_k}{\|\nabla f(\bar{\mathbf{x}}_k)\|} \nabla f(\bar{\mathbf{x}}_k) \\ \text{where} & \\ \tau_k & = & \left\{ \begin{array}{ll} 1 & \text{if } \nabla f(\bar{\mathbf{x}}_k)^T B_k \nabla f(\bar{\mathbf{x}}_k) \leq 0 \\ \min\left(1, \frac{\|\nabla f(\bar{\mathbf{x}}_k)\|^3}{\Delta_k \nabla f(\bar{\mathbf{x}}_k)^T B_k \nabla f(\bar{\mathbf{x}}_k)} \right) & \text{otherwise} \end{array} \right.$$

Figure: The three possible scenarios for selection of τ .

Proof of Lemma

Case#1

Case#1
$$(\nabla f(\bar{\mathbf{x}}_k)B_k\nabla f(\bar{\mathbf{x}})\leq 0)$$
:

In this scenario $m_k(\bar{\mathbf{p}}_k^c) - m_k(\bar{\mathbf{0}}) =$

cenario
$$m_k(\mathbf{p}_k^\circ) - m_k(\mathbf{0}) =$$

$$= m_k \left(-\Delta_k \frac{\nabla f(\bar{\mathbf{x}}_k)}{\|\nabla f(\bar{\mathbf{x}}_k)\|} \right) - m_k(\bar{\mathbf{0}})$$

$$= -\Delta_k \|\nabla f(\bar{\mathbf{x}}_k)\| + \frac{1}{2} \frac{\Delta_k^2}{\|\nabla f(\bar{\mathbf{x}}_k)\|^2} \underbrace{\nabla f(\bar{\mathbf{x}}_k)^T B_k \nabla f(\bar{\mathbf{x}}_k)}_{\leq 0}$$

$$\leq -\Delta_k \|\nabla f(\bar{\mathbf{x}}_k)\|$$

$$\leq -\|\nabla f(\bar{\mathbf{x}}_k)\| \min\left(\Delta_k, \frac{\|\nabla f(\bar{\mathbf{x}}_k)\|}{\|B_k\|}\right)$$

$$B_k \nabla f(\bar{\mathbf{x}}_k)$$

Hence,

$$m_k(\overline{\mathbf{0}}) - m_k(\overline{\mathbf{p}}_k^{\mathsf{c}}) \geq \|\nabla f(\overline{\mathbf{x}}_k)\| \min\left(\Delta_k, \frac{\|\nabla f(\overline{\mathbf{x}}_k)\|}{\|B_k\|}\right) \geq \frac{1}{2} \|\nabla f(\overline{\mathbf{x}}_k)\| \min\left(\Delta_k, \frac{\|\nabla f(\overline{\mathbf{x}}_k)\|}{\|B_k\|}\right)$$

Case#2
$$(\nabla f(\bar{\mathbf{x}}_k)B_k\nabla f(\bar{\mathbf{x}})>0$$
, and $\frac{\|\nabla f(\bar{\mathbf{x}}_k)\|^3}{\Delta_k\nabla f(\bar{\mathbf{x}}_k)^TB_k\nabla f(\bar{\mathbf{x}}_k)}\leq 1$):

In this scenario the Cauchy point is in the interior of the trust region, and $m_k(\mathbf{\bar{p}}_k^c) - m_k(\mathbf{\bar{0}}) =$

$$= -\frac{\|\nabla f(\bar{\mathbf{x}}_{k})\|^{4}}{\nabla f(\bar{\mathbf{x}}_{k})^{T} B_{k} \nabla f(\bar{\mathbf{x}}_{k})} + \frac{1}{2} \frac{\|\nabla f(\bar{\mathbf{x}}_{k})\|^{4}}{(\nabla f(\bar{\mathbf{x}}_{k})^{T} B_{k} \nabla f(\bar{\mathbf{x}}_{k}))^{2}} \nabla f(\bar{\mathbf{x}}_{k})^{T} B_{k} \nabla f(\bar{\mathbf{x}}_{k})$$

$$= -\frac{1}{2} \frac{\|\nabla f(\bar{\mathbf{x}}_{k})\|^{4}}{\nabla f(\bar{\mathbf{x}}_{k})^{T} B_{k} \nabla f(\bar{\mathbf{x}}_{k})}$$

$$\leq -\frac{1}{2} \frac{\|\nabla f(\bar{\mathbf{x}}_{k})\|^{4}}{\|B_{k}\| \|\nabla f(\bar{\mathbf{x}}_{k})\|^{2}} = -\frac{1}{2} \frac{\|\nabla f(\bar{\mathbf{x}}_{k})\|^{2}}{\|B_{k}\|}$$

$$\leq -\frac{1}{2} \|\nabla f(\bar{\mathbf{x}}_{k})\| \min \left(\Delta_{k}, \frac{\|\nabla f(\bar{\mathbf{x}}_{k})\|}{\|B_{k}\|}\right)$$

Use the minus sign to flip the inequality, and we're there!

Case#3
$$(\nabla f(\overline{\mathbf{x}}_k)B_k\nabla f(\overline{\mathbf{x}})>0$$
, and $\frac{\|\nabla f(\overline{\mathbf{x}}_k)\|^3}{\Delta_k\nabla f(\overline{\mathbf{x}}_k)^TB_k\nabla f(\overline{\mathbf{x}}_k)}>1)$:

We note that in this scenario $\nabla f(\bar{\mathbf{x}}_k)^T B_k \nabla f(\bar{\mathbf{x}}_k) < \frac{\|\nabla f(\bar{\mathbf{x}}_k)\|^3}{\Delta_k}$, and $m_k(\bar{\mathbf{p}}_k^c) - m_k(\bar{\mathbf{0}}) =$

$$= -\frac{\Delta_{k}}{\|\nabla f(\bar{\mathbf{x}}_{k})\|} \|\nabla f(\bar{\mathbf{x}}_{k})\|^{2} + \frac{1}{2} \frac{\Delta_{k}^{2}}{\|\nabla f(\bar{\mathbf{x}}_{k})\|^{2}} \nabla f(\bar{\mathbf{x}}_{k})^{T} B_{k} \nabla f(\bar{\mathbf{x}}_{k})$$

$$\leq -\Delta_{k} \|\nabla f(\bar{\mathbf{x}}_{k})\| + \frac{1}{2} \frac{\Delta_{k}^{2}}{\|\nabla f(\bar{\mathbf{x}}_{k})\|^{2}} \frac{\|\nabla f(\bar{\mathbf{x}}_{k})\|^{3}}{\Delta_{k}}$$

$$= -\frac{1}{2} \Delta_{k} \|\nabla f(\bar{\mathbf{x}}_{k})\|$$

$$\leq -\frac{1}{2} \|\nabla f(\bar{\mathbf{x}}_{k})\| \min \left(\Delta_{k}, \frac{\|\nabla f(\bar{\mathbf{x}}_{k})\|}{\|B_{k}\|}\right)$$

Use the minus sign to flip the inequality, and we're there!

Global Convergence: Tool #2 — A Theorem

Theorem

Let $\bar{\mathbf{p}}_k$ be any vector, $\|\bar{\mathbf{p}}_k\| \leq \Delta_k$, such that

$$m_k(\mathbf{\bar{0}}) - m_k(\mathbf{\bar{p}}_k) \geq c_2(m_k(\mathbf{\bar{0}}) - m_k(\mathbf{\bar{p}}_k^c))$$

then

$$m_k(\mathbf{\bar{0}}) - m_k(\mathbf{\bar{p}}_k) \geq \frac{c_2}{2} \|\nabla f(\mathbf{\bar{x}}_k)\| \min \left[\Delta_k, \frac{\|\nabla f(\mathbf{\bar{x}}_k)\|}{\|B_k\|}\right].$$

Both the dogleg, and 2-D subspace minimization algorithms (as well as Steihaug's algorithm) fall into this category, with $c_2 = 1$, since they all produce $\bar{\mathbf{p}}_k$ which give at least as much descent as the Cauchy point, *i.e.* $m_k(\bar{\mathbf{p}}_k) \leq m_k(\bar{\mathbf{p}}_k^c)$.

We are going to use this result to show convergence for the trust region algorithm (see next slide).

The Trust Region Algorithm

Algorithm: Trust Region

```
[ 1] Set k=1, \widehat{\Delta}>0, \Delta_0\in(0,\widehat{\Delta}), and \eta\in[0,\frac{1}{4}]
[ 2] While optimality condition not satisfied
[ 3]
           Get \bar{\mathbf{p}}_k (approximate solution)
[ 4]
           Evaluate \rho_k
[5]
           if \rho_k < \frac{1}{4}
           \Delta_{k+1} = \frac{1}{4}\Delta_k
[6]
[7]
           if 
ho_k > rac{3}{4} and \|ar{\mathbf{p}}_k\| = \Delta_k
[ 8]
F 91
                \Delta_{k+1} = \min(2\Delta_k, \widehat{\Delta})
Γ107
               else
[11]
                \Delta_{k+1} = \Delta_k
[12]
               endif
Γ137
           endif
[14]
           if \rho_k > \eta
[15]
               \bar{\mathbf{x}}_{k+1} = \bar{\mathbf{x}}_k + \bar{\mathbf{p}}_k
[16]
           else
[17]
              \bar{\mathbf{x}}_{k+1} = \bar{\mathbf{x}}_k
[18]
           endif
           k = k + 1
T197
[20] End-While
```


Convergence to Stationary Points

Case $\eta = 0$

accept any step which produces descent in f — we can show that the sequence of gradients $\{\nabla f(\bar{\mathbf{x}}_k)\}$ has a **limit point** at zero.

Case $\eta > 0$

accept a step only if the decrease in f is at least some fixed fraction of the predicted decrease — we can show the stronger result $\{\nabla f(\bar{\mathbf{x}}_k)\} \to \bar{\mathbf{0}}$.

In order for the proof(s) to work, we must assume that the model Hessians B_k are uniformly bounded, i.e. $\|B_k\| \leq \beta$, and that f is bounded below on the levelset $\{\overline{\mathbf{x}} \in \mathbb{R}^n : f(\overline{\mathbf{x}}) \leq f(\overline{\mathbf{x}}_0)\}$.

The trust-region bound can be relaxed so that the results hold as long as the solution to the subproblems satisfy

$$\|\bar{\mathbf{p}}_k\| \leq \gamma \Delta_k$$
, for some constant $\gamma \geq 1$.

Convergence to Stationary Points: $\eta = 0$

Theorem

Let $\eta=0$ in the trust region algorithm. Suppose that $\|B_k\| \leq \beta$ for some constant β , that f is continuously differentiable and bounded below on the bounded set $\{\overline{\mathbf{x}} \in \mathbb{R}^n : f(\overline{\mathbf{x}}) \leq f(\overline{\mathbf{x}}_0)\}$, and that all approximate solutions to the trust-region subproblem satisfy the inequalities

$$m_k(\mathbf{\bar{0}}) - m_k(\mathbf{\bar{p}}_k) \ge c_1 \|\nabla f(\mathbf{\bar{x}}_k)\| \min \left[\Delta_k, \frac{\|\nabla f(\mathbf{\bar{x}}_k)\|}{\|B_k\|}\right],$$

and

$$\|\bar{\mathbf{p}}_k\| \leq \gamma \Delta_k$$

for some positive constants c_1 and γ . Then we have

$$\liminf_{k\to\infty}\|\nabla f(\bar{\mathbf{x}}_k)\|=0.$$

TR: Global Convergence and Enhancements

Convergence to Stationary Points: $\eta > 0$

Theorem

Let $\eta \in (0, \frac{1}{4})$ in the trust region algorithm. Suppose that $\|B_k\| \leq \beta$ for some constant β , that f is Lipschitz continuously differentiable and bounded below on the bounded set $\{\bar{\mathbf{x}} \in \mathbb{R}^n : f(\bar{\mathbf{x}}) \leq f(\bar{\mathbf{x}}_0)\}$, and that all approximate solutions to the trust-region subproblem satisfy the inequalities

$$m_k(\mathbf{\bar{0}}) - m_k(\mathbf{\bar{p}}_k) \geq c_1 \|\nabla f(\mathbf{\bar{x}}_k)\| \min \left[\Delta_k, \frac{\|\nabla f(\mathbf{\bar{x}}_k)\|}{\|B_k\|}\right].$$

and

$$\|\bar{\mathbf{p}}_k\| \leq \gamma \Delta_k$$

for some positive constants c_1 and γ . Then we have

$$\lim_{k\to\infty}\nabla f(\mathbf{\bar{x}}_k)=\mathbf{\bar{0}}.$$

Proofs: Convergence to Stationary Points

The complete proofs are in NW^{1st} pp.90–91, and pp.92–93; or NW^{2nd} pp.80–82, and pp.82–83.

The proofs are based on manipulation of ρ — the ratio of actual (objective) reduction and predicted (model) reduction; Taylor's theorem; then deriving a contradiction from the supposition $\|\nabla f(\bar{\mathbf{x}}_k)\| \ge \epsilon$ using careful selection of scalings and bounds for Δ_k .

Definition (lim sup and lim inf)

Let $\{s_n\}$ be a sequence of real numbers. Let E be the set of values x so that $s_{n_k} \to x$ for some subsequence $\{s_{n_k}\}$. This set E contains all sub-sequential limits, plus possibly $\pm \infty$; let

$$s^* = \sup E$$
, $s_* = \inf E$

The values s^* and s_* are the upper and lower limits of $\{s_n\}$, and we use the notation

$$\limsup_{n\to\infty} s_n = s^*, \quad \liminf_{n\to\infty} s_n = s_*$$

Convergence: Iterative "Nearly Exact" Solutions $\bar{\mathbf{p}}_k^*$, for Trust-Region Newton

Theorem (NW^{2nd} p.92, proof in Moré & Sorensen (1983))

Let $\eta \in (0, \frac{1}{4})$ in the algorithm on slide 11, let $B_k = \nabla^2 f(\bar{\mathbf{x}}_k)$, and suppose that $\bar{\mathbf{p}}_k$ at each iteration satisfy

$$m_k(\mathbf{\bar{0}}) - m_k(\mathbf{\bar{p}}_k) \geq c_1(m_k(\mathbf{\bar{0}}) - m_k(\mathbf{\bar{p}}_k^*)),$$

and $\|\bar{\mathbf{p}}_k\| \leq \gamma \Delta_k$, for some positive constant γ , and $c_1 \in (0,1]$. Then

$$\lim_{k\to\infty}\|\nabla f(\overline{x}_k)\|=0.$$

If, in addition, the set $\{\bar{\mathbf{x}} \in \mathbb{R}^n : f(\bar{\mathbf{x}}) \leq f(\bar{\mathbf{x}}_0)\}$ is compact, then **either** the algorithm terminates at a point $\bar{\mathbf{x}}_k$ at which the second order necessary conditions for a local minimum hold, or $\{\bar{\mathbf{x}}_k\}$ has a limit point $\bar{\mathbf{x}}^* \in \{\bar{\mathbf{x}} \in \mathbb{R}^n : f(\bar{\mathbf{x}}) \leq f(\bar{\mathbf{x}}_0)\}$ at which the conditions hold.

Enhancement: Scaling — The Problem

As we have seen before (in the context of steepest descent / line-search), scaling (ill-conditioning) can cause problems. — If the objective is more sensitive to changes in one variable than other, the contour lines stretch out to be narrow ellipses (in 2D).

Clearly, a circular trust-region may be quite limiting in this scenario. — The radius is limited by the sensitive variable.

Enhancement: Scaling — The Solution

The solution to the problem of poor scaling is to use **elliptical** trust regions. We define a diagonal scaling matrix

$$D=\operatorname{diag}(d_1,d_2,\ldots,d_n),\quad d_i>0.$$

Then, the constraint $\|D\overline{\mathbf{p}}\| \leq \Delta$ defines an elliptical trust region, and we get the following scaled trust-region subproblem:

$$\min_{\bar{\mathbf{p}}\in\mathbb{R}^n: \|D\bar{\mathbf{p}}\|\leq \Delta_k} f(\bar{\mathbf{x}}_k) + \bar{\mathbf{p}}^T \nabla f(\bar{\mathbf{x}}_k) + \frac{1}{2} \bar{\mathbf{p}}^T B_k \bar{\mathbf{p}}.$$

The scaling matrix can be built using information about the gradient $\nabla f(\bar{\mathbf{x}}_k)$ and the Hessian $\nabla^2 f(\bar{\mathbf{x}}_k)$ along the solution path. — We can allow $D=D_k$ to change from iteration to iteration.

All our analysis/algorithms still work with scaling added — but we get factors of D^{-2} , D^{-1} , D, and D^2 in our expressions.

Figure: Illustration of (unscaled) trust region boundaries for, from left-to-right: $\|\bar{\mathbf{p}}\|_2 \leq \Delta_k$, $\|\bar{\mathbf{p}}\|_1 \leq \Delta_k$, $\|\bar{\mathbf{p}}\|_4 \leq \Delta_k$, and $\|\bar{\mathbf{p}}\|_\infty \leq \Delta_k$.

Most of the time using trust regions based on norms with $q \neq 2$:

$$\|ar{\mathbf{p}}\|_q \leq \Delta_k$$
 (unscaled), $\|Dar{\mathbf{p}}\|_q \leq \Delta_k$ (scaled)

cause us a giant head-ache. There are however some situations when such regions come in handy...

Figure: Illustration of (unscaled) trust region boundaries for, from left-to-right: $\|\bar{\mathbf{p}}\|_1 \leq \Delta_k, \ \|\bar{\mathbf{p}}\|_{\frac{1}{2}} \leq \Delta_k, \ \|\bar{\mathbf{p}}\|_{\frac{1}{4}} \leq \Delta_k, \ \text{and} \ \|\bar{\mathbf{p}}\|_{\frac{1}{8}} \leq \Delta_k.$

Using q < 1 leads to non-convex trust regions, which may be a bit of a pain?!?

This may, however, be useful/necessary for non-convex optimization problems.

Feature: Non-Euclidean Trust Regions

For **constrained** problems, *e.g.*

$$\min_{\overline{\mathbf{x}} \in \mathbb{R}^n} f(\overline{\mathbf{x}}), \quad \text{subject to} \quad x_i \geq 0, \ i = 1, 2, \dots, n$$

the trust-region subproblem may be

$$\min_{ar{\mathbf{p}}\in\mathbb{R}^n}m_k(ar{\mathbf{p}}),\quad ext{subject to}\quad ar{\mathbf{x}}_k+ar{\mathbf{p}}\geq 0, ext{ (component-wise)}, \ \|ar{\mathbf{p}}\|\leq \Delta_k$$

This trust region is the intersection of the disk centered at $\bar{\mathbf{x}}_k$ and the first quadrant. It could look like this:

Feature: Non-Euclidean Trust Regions

Such a region is hard to describe, and hard to work with.

If, instead, we work with the $\|\cdot\|_{\infty}$ -norm, the trust region is the intersection of the square with sides Δ_k centered at $\bar{\mathbf{x}}_k$ and the first quadrant:

Much easier to work with...

Index

definition

```
lim sup and lim inf, 15 lemma Cauchy point descent, 5 theorem Convergence (when \eta=0), 13 Convergence (when \eta>0), 14 Global trust-region Newton convergence (\eta>0), 16 Second order necessary conditions, 4
```

Reference(s):

MS-1983 J.J. Moré and D.C. Sorensen, Computing a Trust Region Step, SIAM Journal on Scientific and Statistical Computing, 4 (1983), pp. 553–572.

