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Recap Trust Region: Global Convergence and Enhancements

Quick Recap: — Global Convergence and Enhancements

We looked at some theorems describing the convergence of our
algorithms. We noted that there was a bit of a gap between what
is generally true/practical, and what can be proved. (Theoretical limit

points vs. numerical stopping criteria.)
Further, we looked at some enhancements including scaling
D = diag(dh, dh, ..., dn), d; >0, T(A)={peR": |Dp| <A},

and the use of non-Euclidean norms — the latter primarily come
in handy in the context of constrained optimization.

We now explore an important computational tool, which will help
us solve problems of realistic size. — Conjugate Gradient
Methods. .
S D\
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Conjugate Gradient Methods Introduction: Notation, Definitions, Properties
A Little Bit (More) Theory... A Conjugate Direction Method

Conjugate Gradient Methods: Introduction

For short: “CG” Methods.

@ One of the most useful techniques for solving large linear
systems of equations AXx = b. “Linear CG”

@ Can be adopted to solve nonlinear optimization problems.
“Nonlinear CG” (Our type of problems!)

@ Linear CG is an alternative to Gaussian elimination (well
suited for large problems).

@ Performance of linear CG is strongly tied to the distribution of
the eigenvalues of A.

First, we explore the Linear CG method...
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Conjugate Gradient Methods Introduction: Notation, Definitions, Properties
A Little Bit (More) Theory... A Conjugate Direction Method

The Linear CG Method Language and Notation

The linear CG method is an iterative method for solving linear systems
of equations:

AX = b, AcR™" xeR", beR"

where the matrix A is symmetric positive definite ®ensions,

Notice/Recall: This problem is equivalent to minimizing ®(x) where

1 —
d(x) = 5iTA;( ~-b'x+c,

since _
Vo(x)=Ax—-b ¥ ¥(x).

We refer to ¥(X) as the residual of the linear system. Note that if
x* = A~1b, then F(X*) = 0, i.e. the residual is a measure of how close
(or far) we are from solving the linear system. Sax Dt st
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Conjugate Gradient Methods Introduction: Notation, Definitions, Properties
A Little Bit (More) Theory... A Conjugate Direction Method

Conjugate Directions

Definition (Conjugate Vector)

A set of nonzero vectors {po, P1,---,Pn—1} is said to be conjugate

with respect to the symmetric positive definite matrix A if

B/ AB; =0, Vi#].

Property: Linear Independence of Conjugate Vectors

A set of conjugate vectors {po, P1,--.,Pn—1} is linearly
independent.

a Why should we care? — We can minimize ®(X)
‘E\ in n steps by successively minimizing along the di-
rections in a conjugate set...

f )
- 4
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Conjugate Gradient Methods Introduction: Notation, Definitions, Properties
A Little Bit (More) Theory... A Conjugate Direction Method

Conjugate Direction Method ( != CG Method ) 1of4

Given a starting point Xo € R", and a set of conjugate directions
{Po,P1,---,Pn—1} wWe generate a sequence of points X, € R" by
setting

Xk+1 = Xk + kP,

where ay is the minimizer of the quadratic function

o(a) = O(Xk + apk), i.e. the minimizer of ®(-) along the line
Z(Oz) = Xk + apk.

We have already solved this problem — in the context of
step-length selection for line search methods, see lecture #6 — so
we “know” that the optimizer is given by

_T_
re Pk

- where Fk = F()_(k)
Pl Ab
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Conjugate Gradient Methods Introduction: Notation, Definitions, Properties
A Little Bit (More) Theory... A Conjugate Direction Method

Conjugate Direction Method ( != CG Method ) 2 0of 4

Theorem (n-step convergence)

For any Xg € R" the sequence {Xx} generated by the conjugate direction
algorithm converges to the solution X* of the linear system in at most n
steps.

The proof indicates how properties of CG are found...

Proof: Part 1 (Fundmental Building Block).

Since the directions {p;} are linearly independent, they must span the
whole space R”. Hence, we can write

n—1
X*—% = Zakﬁk
k=0
for some choice of scalars 0. We need to establish that oy = . O

o DIEGO STATE
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Conjugate Gradient Methods Introduction: Notation, Definitions, Properties
A Little Bit (More) Theory... A Conjugate Direction Method

Conjugate Direction Method  ( != CG Method ) 3of 4

Proof: Part 2.

If we are generating X, by the conjugate direction method, then we have
X = Xo + aopo + a1p1 + - - + k—1Pk—-1,

we multiply this by ﬁZ—A

Pi AXk = pj A% + aoBo + by + -+ + ak_1Pk—1],

using the conjugacy property, we see that all but the first term on the right-hand-side
are zero:
pIAX, =pl A% < Pl ARk —%)=0.

Now we have

ST ok oy _aT ek oo o ST ok o T - ST
Pr A(X™ — %) = By A(X" — %o — (Xk — %0)) = Py A(X™ — Xx) = P (b — ARk) = —Ppy Pk
N——

adds 0
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Conjugate Gradient Methods Introduction: Notation, Definitions, Properties

A Little Bit (More) Theory... A Conjugate Direction Method
Conjugate Direction Method ( != CG Method ) 4 of 4
Proof: Part 3.
We have shown
PLAX" —%0) = —P) T

Now, we notice that the right-hand-side is the numerator in oy:

=To ST A(3* _ 3
—Py Tk P A(X* —Xo
Q) = k = = L. Sl . L4 ( )

P} Abi p] Abk

We conclude the proof by showing that o, can be expressed in the same manner; we
premultiply the expression for (X* — Xo) by ﬁZA and obtain

n—1 n—1
PLAR" —%0) =B AD _0ibi = > _ 0D} Abi = 0ib Apu-
i=0 i=0
Hence,
Y plAR* —%0) N
k= — T .= = k-
P} Ap
D MEGO STATE
4 IVERSITY
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Conjugate Gradient Methods Introduction: Notation, Definitions, Properties
A Little Bit (More) Theory... A Conjugate Direction Method

Conjugate Direction Method: Comments and Interpretation 1of 2

Most of the proofs regarding CD and CG methods are argued in a similar
way — by looking at optimizers and residuals over sub-spaces of R”
spanned by some subset of a set of conjugate vectors.

Interpretation: If the matrix A
is diagonal, then the contours of
®(x) are ellipses whose axes are
aligned with the coordinate direc-
tions. In this case, we can find
the minimizer by performing 1D-
minimizations along the coordinate
directions €1, €5,...,€&, in turn.
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Conjugate Gradient Methods Introduction: Notation, Definitions, Properties
A Little Bit (More) Theory... A Conjugate Direction Method

Conjugate Direction Method: Comments and Interpretation 2 of 2

=
=

-4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5
Interpretation (ctd.): When A is not diagonal, the contours are still ellip-
tical, but are no longer aligned with the coordinate axes. Successive min-

5

imization along the coordinate directions €1, €y, ...,€&, can not guarantee
convergence in n (or even a (fixed) finite number of) iterations. say Ducosr
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Conjugate Gradient Methods n-step Convergence for Non-Diagonal A; Cheap Residuals
A Little Bit (More) Theory... Expanding Subspace Minimization

Recovering n-step Convergence for Non-Diagonal A 1of2

For non-diagonal matrices A, the n-step convergence can be
recovered by transforming the problem.

Let S € R™" be a matrix with conjugate columns, i.e. if
{Po,P1,---,Pn—1} is a set of conjugate directions (with respect to
A), then

We introduce a new variable X = S~!%, and thus get the new
quadratic objective which can be minimized in n steps

B(%) = (SK) = %QT (STAS)R — (STB)"%.
Diagonal
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Conjugate Gradient Methods n-step Convergence for Non-Diagonal A; Cheap Residuals
A Little Bit (More) Theory... Expanding Subspace Minimization

Recovering n-step Convergence for Non-Diagonal A 2 of 2

We note that the matrix (ST AS) is diagonal by the conjugacy
property, and that each coordinate direction €; in X-space
corresponds to the direction p;_; in X-space.

When the matrix is diagonal, each coordinate minimization
determines one of the components of the solution X*. Hence, after
k iterations, the quadratic has been minimized on the subspace
spanned by €1,€>, ..., €.

If we instead minimize along the conjugate directions, then after k
iterations, the quadratic has been minimized on the subspace
spanned by po, p1, - - -, Pk—1-

S/ l)\
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Conjugate Gradient Methods n-step Convergence for Non-Diagonal A; Cheap Residuals
A Little Bit (More) Theory... Expanding Subspace Minimization

Updating the Residual

Before we state a fundamental theorem regarding the conjugate direction
method, we show the following lemma:

Lemma
Given a starting point Xy € R" and a set of conjugate directions
{Po,P1,.--,Pn_1} if we generate the sequence X, € R" by setting
_T_
< = — Y Pk
Rir1 = Xi + uPr,  where oy = — ————,
P APk
with ¥ = AXx — b. Then the (k + 1)st residual is given by the following
expression
Fir1 = T + o Api. )
Proof: (Quick One-Liner).

Fiy1 = AXpy1 — b = ARy + axpx) — b = Ay + (A%, — b) = APy + Fi.
[ | ncosmn

) versiTy
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Conjugate Gradient Methods n-step Convergence for Non-Diagonal A; Cheap Residuals
oo Sul :

A Little Bit (More) Theory... Exp pace Mini ion

Expanding Subspace Minimization

Theorem (Expanding Subspace Minimization)

Let Xg € R" be any starting point and suppose that the sequence

{Xk} is generated by

- - _ Pl bk
Xk+1 = Xk + akpk, where ap = ——F—.
Py APk
Then

¥/ pi=0, fori=0,1,...,k—1,

and X is the minimizer of ®(X) = 3X" AX — b X over the set

S(Xo, k) = {i P X=Xo +Span{5o,51,---,5k—1}}-
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Conjugate Gradient Methods n-step Convergence for Non-Diagonal A; Cheap Residuals
ling Sul inimization

A Little Bit (More) Theory... Exp pace M

Expanding Subspace Minimization: Proof

1of 3

Proof: Part 1 (Fundmental Building Block).

First, we show that a point X minimizes ® over the set S(Xo, k) if and
only if r(x)Tp; =0,i=0,1,...,k—1.

Let h(&) = (D()_(o + oopo+o1p1 + - + O'kfll_)kfl). Since h(&) is a
strictly convex quadratic it has a unique minimizer * that satisfies
Oh(a*)

80,-

=0, i=01,....,k—1

By the chain rule, this is equivalent to

V(o + ogPo + 01P1 + -+ 0% _1Pk-1) B =0, i=01,... k-1

X

We recall that V(%) = A% — b = F(X), thus we have established
F(X)"p; = 0 < X minimizes ® over the set S(Xo, k).

mll¢
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Conjugate Gradient Methods n-step Convergence for Non-Diagonal A; Cheap Residuals
A Little Bit (More) Theory... Expanding Subspace Minimization

Expanding Subspace Minimization: Proof 2 of 3

Proof: Part 2.
We now show that the residuals ¥4 satisfy ¥/ p;=0, i =0,1,...,k — 1.

We use mathematical induction. Since «q is always the 1D-minimizer, we
have ¥/ po = 0, establishing the base case.

From the inductive hypothesis, that ¥/ p; =0, i =0,1,...,k — 2, we
must show that FkT[_),- =0,i=0,1,...,k—1in order to complete the
proof.

From the lemma we have an expression for ¥y =¥x_1 + ax_1Apk_1.

First off we have: p] 7« = B _1Fx_1 + ax_1P]_1APk_1 = 0, since, by
construction (optimality)

g = 751—_1ka1
l_)/z—,lAr_)kfl -
D MEGO STATE
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Conjugate Gradient Methods n-step Convergence for Non-Diagonal A; Cheap Residuals
A Little Bit (More) Theory... Expanding Subspace Minimization

Expanding Subspace Minimization: Proof 30of 3

Proof: Part 3.
Finally,

P/ Pk =B/ 1+ k1B Apk-1=0, i=0,1,....,k—2

since

p/T_1=0, i=0,1,... k=2

by the induction hypothesis, and
p/Apy_1=0, i=0,1,...,k—2

by conjugacy. This establishes ['),-TFk =0,i=0,1,..., k—1, which
completes the proof. O

’
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Conjugate Gradient Methods n-step Convergence for Non-Diagonal A; Cheap Residuals
A Little Bit (More) Theory... Expanding Subspace Minimization

Cliff-Hangers...

Cliff-Hanger Questions:

@ How can we make this useful?

@ Given A, how do we get a set of conjugate vectors? (They are
not for sale at Costco!)

@ Even if we have them, why is this scheme any better than
Gaussian elimination?

@ Where is the gradient?
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Index

n-step convergence, 8
conjugate direction method, 7
conjugate vector, 6
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