Numerical Optimization

Lecture Notes \＃10
Conjugate Gradient Methods－Linear CG，Part \＃1

Peter Blomgren，〈blomgren．peter＠gmail．com〉
Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／

Fall 2018

Outline

(1) Recap

- Trust Region: Global Convergence and Enhancements
(2) Conjugate Gradient Methods
- Introduction: Notation, Definitions, Properties
- A Conjugate Direction Method
(3) A Little Bit (More) Theory...
- n-step Convergence for Non-Diagonal A; Cheap Residuals
- Expanding Subspace Minimization

Quick Recap: - Global Convergence and Enhancements

We looked at some theorems describing the convergence of our algorithms. We noted that there was a bit of a gap between what is generally true/practical, and what can be proved. (Theoretical limit points vs. numerical stopping criteria.)

Further, we looked at some enhancements including scaling

$$
D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right), \quad d_{i}>0, \quad T(\Delta)=\left\{\overline{\mathbf{p}} \in \mathbb{R}^{n}:\|D \overline{\mathbf{p}}\| \leq \Delta\right\}
$$

and the use of non-Euclidean norms - the latter primarily come in handy in the context of constrained optimization.

We now explore an important computational tool, which will help us solve problems of realistic size. - Conjugate Gradient Methods.

Conjugate Gradient Methods: Introduction

For short: "CG" Methods.

- One of the most useful techniques for solving large linear systems of equations $A \overline{\mathbf{x}}=\overline{\mathbf{b}}$. "Linear CG"
- Can be adopted to solve nonlinear optimization problems. "Nonlinear CG" (Our type of problems!)
- Linear CG is an alternative to Gaussian elimination (well suited for large problems).
- Performance of linear CG is strongly tied to the distribution of the eigenvalues of A.

First, we explore the Linear CG method...

The linear CG method is an iterative method for solving linear systems of equations:

$$
A \overline{\mathbf{x}}=\overline{\mathbf{b}}, \quad A \in \mathbb{R}^{n \times n}, \quad \overline{\mathbf{x}} \in \mathbb{R}^{n}, \quad \overline{\mathbf{b}} \in \mathbb{R}^{n},
$$

where the matrix A is symmetric positive definite ${ }^{\exists \text { extensions }}$.
Notice/Recall: This problem is equivalent to minimizing $\Phi(\overline{\mathbf{x}})$ where

$$
\Phi(\overline{\mathbf{x}})=\frac{1}{2} \overline{\mathbf{x}}^{T} A \overline{\mathbf{x}}-\overline{\mathbf{b}}^{T} \overline{\mathbf{x}}+c,
$$

since

$$
\nabla \Phi(\overline{\mathbf{x}})=A \overline{\mathbf{x}}-\overline{\mathbf{b}} \quad \stackrel{\text { def }}{=} \quad \overline{\mathbf{r}}(\overline{\mathbf{x}}) .
$$

We refer to $\overline{\mathbf{r}}(\overline{\mathbf{x}})$ as the residual of the linear system. Note that if $\overline{\mathbf{x}}^{*}=A^{-1} \overline{\mathbf{b}}$, then $\overline{\mathbf{r}}\left(\overline{\mathbf{x}}^{*}\right)=0$, i.e. the residual is a measure of how close (or far) we are from solving the linear system.

Conjugate Directions

Definition (Conjugate Vector)

A set of nonzero vectors $\left\{\overline{\mathbf{p}}_{0}, \overline{\mathbf{p}}_{1}, \ldots, \overline{\mathbf{p}}_{n-1}\right\}$ is said to be conjugate with respect to the symmetric positive definite matrix A if

$$
\overline{\mathbf{p}}_{i}^{T} A \overline{\mathbf{p}}_{j}=0, \quad \forall i \neq j
$$

Property: Linear Independence of Conjugate Vectors

A set of conjugate vectors $\left\{\overline{\mathbf{p}}_{0}, \overline{\mathbf{p}}_{1}, \ldots, \overline{\mathbf{p}}_{n-1}\right\}$ is linearly independent.

Why should we care? - We can minimize $\Phi(\overline{\mathbf{x}})$ in n steps by successively minimizing along the directions in a conjugate set...

Conjugate Direction Method (!= CG Method) 1 of 4

Given a starting point $\overline{\mathbf{x}}_{0} \in \mathbb{R}^{n}$, and a set of conjugate directions $\left\{\overline{\mathbf{p}}_{0}, \overline{\mathbf{p}}_{1}, \ldots, \overline{\mathbf{p}}_{n-1}\right\}$ we generate a sequence of points $\overline{\mathbf{x}}_{k} \in \mathbb{R}^{n}$ by setting

$$
\overline{\mathbf{x}}_{k+1}=\overline{\mathbf{x}}_{k}+\alpha_{k} \overline{\mathbf{p}}_{k},
$$

where α_{k} is the minimizer of the quadratic function $\varphi(\alpha)=\Phi\left(\overline{\mathbf{x}}_{k}+\alpha \overline{\mathbf{p}}_{k}\right)$, i.e. the minimizer of $\Phi(\cdot)$ along the line $\bar{\ell}(\alpha)=\overline{\mathbf{x}}_{k}+\alpha \overline{\mathbf{p}}_{k}$.
We have already solved this problem - in the context of step-length selection for line search methods, see lecture \#6 - so we "know" that the optimizer is given by

$$
\alpha_{k}=-\frac{\overline{\mathbf{r}}_{k}^{T} \overline{\mathbf{p}}_{k}}{\overline{\mathbf{p}}_{k}^{T} A \overline{\mathbf{p}}_{k}}, \quad \text { where } \overline{\mathbf{r}}_{k}=\overline{\mathbf{r}}\left(\overline{\mathbf{x}}_{k}\right)
$$

Conjugate Direction Method (!= CG Method) 2 of 4

Abstract

Theorem (n-step convergence) For any $\overline{\mathbf{x}}_{0} \in \mathbb{R}^{n}$ the sequence $\left\{\overline{\mathbf{x}}_{k}\right\}$ generated by the conjugate direction algorithm converges to the solution $\overline{\mathbf{x}}^{*}$ of the linear system in at most n steps.

The proof indicates how properties of CG are found...
Proof: Part 1

Conjugate Direction Method (!= CG Method) 2 of 4

Theorem (n-step convergence)

For any $\overline{\mathbf{x}}_{0} \in \mathbb{R}^{n}$ the sequence $\left\{\overline{\mathbf{x}}_{k}\right\}$ generated by the conjugate direction algorithm converges to the solution $\overline{\mathbf{x}}^{*}$ of the linear system in at most n steps.

The proof indicates how properties of CG are found...

Proof: Part 1

Since the directions $\left\{\overline{\mathbf{p}}_{i}\right\}$ are linearly independent, they must span the whole space \mathbb{R}^{n}. Hence, we can write

$$
\overline{\mathbf{x}}^{*}-\overline{\mathbf{x}}_{0}=\sum_{k=0}^{n-1} \sigma_{k} \overline{\mathbf{p}}_{k}
$$

for some choice of scalars σ_{k}. We need to establish that $\sigma_{k}=\alpha_{k}$.

Conjugate Direction Method (!= CG Method) 3 of 4

Proof: Part 2.

If we are generating \bar{x}_{k} by the conjugate direction method, then we have

$$
\overline{\mathbf{x}}_{k}=\overline{\mathbf{x}}_{0}+\alpha_{0} \overline{\mathbf{p}}_{0}+\alpha_{1} \overline{\mathbf{p}}_{1}+\cdots+\alpha_{k-1} \overline{\mathbf{p}}_{k-1},
$$

Conjugate Direction Method (!= CG Method) 3 of 4

Proof: Part 2.

If we are generating \bar{x}_{k} by the conjugate direction method, then we have

$$
\overline{\mathbf{x}}_{k}=\overline{\mathbf{x}}_{0}+\alpha_{0} \overline{\mathbf{p}}_{0}+\alpha_{1} \overline{\mathbf{p}}_{1}+\cdots+\alpha_{k-1} \overline{\mathbf{p}}_{k-1},
$$

we multiply this by $\overline{\mathbf{p}}_{k}^{T} A$

$$
\overline{\mathbf{p}}_{k}^{T} A \overline{\mathbf{x}}_{k}=\overline{\mathbf{p}}_{k}^{T} A\left[\overline{\mathbf{x}}_{0}+\alpha_{0} \overline{\mathbf{p}}_{0}+\alpha_{1} \overline{\mathbf{p}}_{1}+\cdots+\alpha_{k-1} \overline{\mathbf{p}}_{k-1}\right],
$$

Conjugate Direction Method (!= CG Method) 3 of 4

Proof: Part 2.

If we are generating \bar{x}_{k} by the conjugate direction method, then we have

$$
\overline{\mathbf{x}}_{k}=\overline{\mathbf{x}}_{0}+\alpha_{0} \overline{\mathbf{p}}_{0}+\alpha_{1} \overline{\mathbf{p}}_{1}+\cdots+\alpha_{k-1} \overline{\mathbf{p}}_{k-1},
$$

we multiply this by $\overline{\mathbf{p}}_{k}^{T} A$

$$
\overline{\mathbf{p}}_{k}^{T} \boldsymbol{A} \overline{\mathbf{x}}_{k}=\overline{\mathbf{p}}_{k}^{T} \boldsymbol{A}\left[\overline{\mathbf{x}}_{0}+\alpha_{0} \overline{\mathbf{p}}_{0}+\alpha_{1} \overline{\mathbf{p}}_{1}+\cdots+\alpha_{k-1} \overline{\mathbf{p}}_{k-1}\right],
$$

using the conjugacy property, we see that all but the first term on the right-hand-side are zero:

$$
\overline{\mathbf{p}}_{k}^{T} A \overline{\mathbf{x}}_{k}=\overline{\mathbf{p}}_{k}^{T} A \overline{\mathbf{x}}_{0} \quad \Leftrightarrow \quad \overline{\mathbf{p}}_{k}^{T} A\left(\overline{\mathbf{x}}_{k}-\overline{\mathbf{x}}_{0}\right)=0 .
$$

Conjugate Dire Proof: Part 2.

If we are generating \bar{x}_{k} by the conjugate direction method, then we have

$$
\overline{\mathbf{x}}_{k}=\overline{\mathbf{x}}_{0}+\alpha_{0} \overline{\mathbf{p}}_{0}+\alpha_{1} \overline{\mathbf{p}}_{1}+\cdots+\alpha_{k-1} \overline{\mathbf{p}}_{k-1},
$$

we multiply this by $\overline{\mathbf{p}}_{k}^{T} A$

$$
\overline{\mathbf{p}}_{k}^{T} \boldsymbol{A} \overline{\mathbf{x}}_{k}=\overline{\mathbf{p}}_{k}^{T} \boldsymbol{A}\left[\overline{\mathbf{x}}_{0}+\alpha_{0} \overline{\mathbf{p}}_{0}+\alpha_{1} \overline{\mathbf{p}}_{1}+\cdots+\alpha_{k-1} \overline{\mathbf{p}}_{k-1}\right]
$$

using the conjugacy property, we see that all but the first term on the right-hand-side are zero:

$$
\overline{\mathbf{p}}_{k}^{T} A \overline{\mathbf{x}}_{k}=\overline{\mathbf{p}}_{k}^{T} A \overline{\mathbf{x}}_{0} \quad \Leftrightarrow \quad \overline{\mathbf{p}}_{k}^{T} A\left(\overline{\mathbf{x}}_{k}-\overline{\mathbf{x}}_{0}\right)=0
$$

Now we have

$$
\overline{\mathbf{p}}_{k}^{T} A\left(\overline{\mathbf{x}}^{*}-\overline{\mathrm{x}}_{0}\right)=\overline{\mathbf{p}}_{k}^{T} A(\overline{\mathrm{x}}^{*}-\overline{\mathrm{x}}_{0}-\underbrace{\left(\overline{\bar{x}}_{k}-\overline{\mathrm{x}}_{0}\right)}_{\text {adds } 0})=\overline{\mathbf{p}}_{k}^{T} A\left(\overline{\mathbf{x}}^{*}-\overline{\mathbf{x}}_{k}\right)=\overline{\mathbf{p}}_{k}^{T}\left(\overline{\mathbf{b}}^{-}-A \overline{\mathbf{x}}_{k}\right)=-\overline{\mathbf{p}}_{k}^{T} \overline{\mathrm{r}}_{k} .
$$

Conjugate Direction Method (!= CG Method)

Proof: Part 3.

We have shown

$$
\overline{\mathbf{p}}_{k}^{T} A\left(\overline{\mathbf{x}}^{*}-\overline{\mathbf{x}}_{0}\right)=-\overline{\mathbf{p}}_{k}^{T} \overline{\mathbf{r}}_{k}
$$

Now, we notice that the right-hand-side is the numerator in α_{k} :

$$
\alpha_{k}=\frac{-\overline{\mathbf{p}}_{k}^{T} \overline{\mathbf{r}}_{k}}{\overline{\mathbf{p}}_{k}^{T} A \overline{\mathbf{p}}_{k}} \quad \Rightarrow \quad \alpha_{k}=\frac{\overline{\mathbf{p}}_{k}^{T} A\left(\overline{\mathbf{x}}^{*}-\overline{\mathbf{x}}_{0}\right)}{\overline{\mathbf{p}}_{k}^{T} A \overline{\mathbf{p}}_{k}}
$$

Conjugate Direction Method (!= CG Method)

Proof: Part 3.

We have shown

$$
\overline{\mathbf{p}}_{k}^{T} A\left(\overline{\mathbf{x}}^{*}-\overline{\mathbf{x}}_{0}\right)=-\overline{\mathbf{p}}_{k}^{T} \overline{\mathbf{r}}_{k} .
$$

Now, we notice that the right-hand-side is the numerator in α_{k} :

$$
\alpha_{k}=\frac{-\overline{\mathbf{p}}_{k}^{T} \overline{\mathbf{r}}_{k}}{\overline{\mathbf{p}}_{k}^{T} A \overline{\mathbf{p}}_{k}} \quad \Rightarrow \quad \alpha_{k}=\frac{\overline{\mathbf{p}}_{k}^{T} A\left(\overline{\mathbf{x}}^{*}-\overline{\mathbf{x}}_{0}\right)}{\overline{\mathbf{p}}_{k}^{T} A \overline{\mathbf{p}}_{k}}
$$

We conclude the proof by showing that σ_{k} can be expressed in the same manner;

Conjugate Direction Method (!= CG Method)

Proof: Part 3.

We have shown

$$
\overline{\mathbf{p}}_{k}^{T} A\left(\overline{\mathbf{x}}^{*}-\overline{\mathbf{x}}_{0}\right)=-\overline{\mathbf{p}}_{k}^{T} \overline{\mathbf{r}}_{k} .
$$

Now, we notice that the right-hand-side is the numerator in α_{k} :

$$
\alpha_{k}=\frac{-\overline{\mathbf{p}}_{k}^{T} \overline{\mathbf{r}}_{k}}{\overline{\mathbf{p}}_{k}^{T} A \overline{\mathbf{p}}_{k}} \quad \Rightarrow \quad \alpha_{k}=\frac{\overline{\mathbf{p}}_{k}^{T} A\left(\overline{\mathbf{x}}^{*}-\overline{\mathbf{x}}_{0}\right)}{\overline{\mathbf{p}}_{k}^{T} A \overline{\mathbf{p}}_{k}}
$$

We conclude the proof by showing that σ_{k} can be expressed in the same manner; we premultiply the expression for ($\overline{\mathbf{x}}^{*}-\overline{\mathbf{x}}_{0}$) by $\overline{\mathbf{p}}_{k}^{T} A$ and obtain

$$
\overline{\mathbf{p}}_{k}^{T} A\left(\overline{\mathbf{x}}^{*}-\overline{\mathbf{x}}_{0}\right)=\overline{\mathbf{p}}_{k}^{T} A \sum_{i=0}^{n-1} \sigma_{i} \overline{\mathbf{p}}_{i}=\sum_{i=0}^{n-1} \sigma_{i} \overline{\mathbf{p}}_{k}^{T} A \overline{\mathbf{p}}_{i}=\sigma_{k} \overline{\mathbf{p}}_{k}^{T} A \overline{\mathbf{p}}_{k} .
$$

Hence,

$$
\sigma_{k}=\frac{\overline{\mathbf{p}}_{k}^{T} A\left(\overline{\mathbf{x}}^{*}-\overline{\mathbf{x}}_{0}\right)}{\overline{\mathbf{p}}_{k}^{T} A \overline{\mathbf{p}}_{k}} \equiv \alpha_{k} .
$$

Conjugate Direction Method: Comments and Interpretation

Most of the proofs regarding CD and CG methods are argued in a similar way - by looking at optimizers and residuals over sub-spaces of \mathbb{R}^{n} spanned by some subset of a set of conjugate vectors.

Interpretation: If the matrix A is diagonal, then the contours of $\Phi(\overline{\mathbf{x}})$ are ellipses whose axes are aligned with the coordinate directions. In this case, we can find the minimizer by performing 1Dminimizations along the coordinate directions $\overline{\mathbf{e}}_{1}, \overline{\mathbf{e}}_{2}, \ldots, \overline{\mathbf{e}}_{n}$ in turn.

Introduction: Notation, Definitions, Properties
A Conjugate Direction Method

Conjugate Direction Method: Comments and Interpretation

Interpretation (ctd.): When A is not diagonal, the contours are still elliptical, but are no longer aligned with the coordinate axes. Successive minimization along the coordinate directions $\overline{\mathbf{e}}_{1}, \overline{\mathbf{e}}_{2}, \ldots, \overline{\mathbf{e}}_{n}$ can not guarantee convergence in n (or even a (fixed) finite number of) iterations.

Recovering n-step Convergence for Non-Diagonal A

For non-diagonal matrices A, the n-step convergence can be recovered by transforming the problem.
Let $S \in \mathbb{R}^{n \times n}$ be a matrix with conjugate columns, i.e. if $\left\{\overline{\mathbf{p}}_{0}, \overline{\mathbf{p}}_{1}, \ldots, \overline{\mathbf{p}}_{n-1}\right\}$ is a set of conjugate directions (with respect to A), then

$$
S=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\overline{\mathbf{p}}_{0} & \overline{\mathbf{p}}_{1} & \cdots & \overline{\mathbf{p}}_{n-1} \\
\mid & \mid & & \mid
\end{array}\right] .
$$

We introduce a new variable $\widehat{\mathbf{x}}=S^{-1} \overline{\mathbf{x}}$, and thus get the new quadratic objective which can be minimized in n steps

$$
\widehat{\Phi}(\widehat{\mathbf{x}})=\Phi(S \widehat{\mathbf{x}})=\frac{1}{2} \widehat{\mathbf{x}}^{T} \underbrace{\left(S^{T} A S\right)}_{\text {Diagonal }} \widehat{\mathbf{x}}-\left(S^{T} \overline{\mathbf{b}}\right)^{T} \widehat{\mathbf{x}}
$$

We note that the matrix $\left(S^{\top} A S\right)$ is diagonal by the conjugacy property, and that each coordinate direction $\widehat{\mathbf{e}}_{i}$ in $\widehat{\mathrm{x}}$-space corresponds to the direction $\overline{\mathbf{p}}_{i-1}$ in $\overline{\mathrm{x}}$-space.

When the matrix is diagonal, each coordinate minimization determines one of the components of the solution $\overline{\mathbf{x}}^{*}$. Hence, after k iterations, the quadratic has been minimized on the subspace spanned by $\widehat{\mathbf{e}}_{1}, \widehat{\mathbf{e}}_{2}, \ldots, \widehat{\mathbf{e}}_{k}$.

If we instead minimize along the conjugate directions, then after k iterations, the quadratic has been minimized on the subspace spanned by $\overline{\mathbf{p}}_{0}, \overline{\mathbf{p}}_{1}, \ldots, \overline{\mathbf{p}}_{k-1}$.

Updating the Residual

Before we state a fundamental theorem regarding the conjugate direction method, we show the following lemma:

Lemma

Given a starting point $\overline{\mathbf{x}}_{0} \in \mathbb{R}^{n}$ and a set of conjugate directions $\left\{\overline{\mathbf{p}}_{0}, \overline{\mathbf{p}}_{1}, \ldots, \overline{\mathbf{p}}_{n-1}\right\}$ if we generate the sequence $\overline{\mathbf{x}}_{k} \in \mathbb{R}^{n}$ by setting

$$
\overline{\mathbf{x}}_{k+1}=\overline{\mathbf{x}}_{k}+\alpha_{k} \overline{\mathbf{p}}_{k}, \quad \text { where } \alpha_{k}=-\frac{\overline{\mathbf{r}}_{k}^{T} \overline{\mathbf{p}}_{k}}{\overline{\mathbf{p}}_{k}^{T} A \overline{\mathbf{p}}_{k}},
$$

with $\overline{\mathbf{r}}_{k}=A \overline{\mathbf{x}}_{k}-b$. Then the $(k+1)$ st residual is given by the following expression

$$
\overline{\mathbf{r}}_{k+1}=\overline{\mathbf{r}}_{k}+\alpha_{k} A \overline{\mathbf{p}}_{k} .
$$

Updating the Residual

Before we state a fundamental theorem regarding the conjugate direction method, we show the following lemma:

Lemma

Given a starting point $\overline{\mathbf{x}}_{0} \in \mathbb{R}^{n}$ and a set of conjugate directions $\left\{\overline{\mathbf{p}}_{0}, \overline{\mathbf{p}}_{1}, \ldots, \overline{\mathbf{p}}_{n-1}\right\}$ if we generate the sequence $\overline{\mathbf{x}}_{k} \in \mathbb{R}^{n}$ by setting

$$
\overline{\mathbf{x}}_{k+1}=\overline{\mathbf{x}}_{k}+\alpha_{k} \overline{\mathbf{p}}_{k}, \quad \text { where } \alpha_{k}=-\frac{\overline{\mathbf{r}}_{k}^{T} \overline{\mathbf{p}}_{k}}{\overline{\mathbf{p}}_{k}^{T} A \overline{\mathbf{p}}_{k}},
$$

with $\overline{\mathbf{r}}_{k}=A \overline{\mathbf{x}}_{k}-b$. Then the $(k+1)$ st residual is given by the following expression

$$
\overline{\mathbf{r}}_{k+1}=\overline{\mathbf{r}}_{k}+\alpha_{k} A \overline{\mathbf{p}}_{k} .
$$

Proof:

$$
\overline{\mathbf{r}}_{k+1}=A \overline{\mathbf{x}}_{k+1}-\overline{\mathbf{b}}=A\left(\overline{\mathbf{x}}_{k}+\alpha_{k} \overline{\mathbf{p}}_{k}\right)-\overline{\mathbf{b}}=\alpha_{k} A \overline{\mathbf{p}}_{k}+\left(A \overline{\mathbf{x}}_{k}-\overline{\mathbf{b}}\right)=\alpha_{k} A \overline{\mathbf{p}}_{k}+\overline{\mathbf{r}}_{k}
$$

Expanding Subspace Minimization

Theorem (Expanding Subspace Minimization)

Let $\overline{\mathbf{x}}_{0} \in \mathbb{R}^{n}$ be any starting point and suppose that the sequence $\left\{\overline{\mathbf{x}}_{k}\right\}$ is generated by

$$
\overline{\mathbf{x}}_{k+1}=\overline{\mathbf{x}}_{k}+\alpha_{k} \overline{\mathbf{p}}_{k}, \quad \text { where } \alpha_{k}=-\frac{\overline{\mathbf{r}}_{k}^{T} \overline{\mathbf{p}}_{k}}{\overline{\mathbf{p}}_{k}^{T} A \overline{\mathbf{p}}_{k}} .
$$

Then

$$
\overline{\mathbf{r}}_{k}^{T} \overline{\mathbf{p}}_{i}=0, \quad \text { for } i=0,1, \ldots, k-1
$$

and $\overline{\mathbf{x}}_{k}$ is the minimizer of $\Phi(\overline{\mathbf{x}})=\frac{1}{2} \overline{\mathbf{x}}^{T} A \overline{\mathbf{x}}-\overline{\mathbf{b}}^{T} \overline{\mathbf{x}}$ over the set

$$
S\left(\overline{\mathbf{x}}_{0}, k\right)=\left\{\overline{\mathbf{x}}: \overline{\mathbf{x}}=\overline{\mathbf{x}}_{0}+\operatorname{span}\left\{\overline{\mathbf{p}}_{0}, \overline{\mathbf{p}}_{1}, \ldots, \overline{\mathbf{p}}_{k-1}\right\}\right\} .
$$

Expanding Subspace Minimization: Proof

Proof: Part 1

First, we show that a point $\tilde{\mathbf{x}}$ minimizes Φ over the set $S\left(\overline{\mathbf{x}}_{0}, k\right)$ if and only if $r(\tilde{\mathbf{x}})^{T} \overline{\mathbf{p}}_{i}=0, i=0,1, \ldots, k-1$.

Expanding Subspace Minimization: Proof

Proof: Part 1

First, we show that a point $\tilde{\mathbf{x}}$ minimizes Φ over the set $S\left(\overline{\mathbf{x}}_{0}, k\right)$ if and only if $r(\tilde{\mathbf{x}})^{T} \overline{\mathbf{p}}_{i}=0, i=0,1, \ldots, k-1$.

Let $h(\bar{\sigma})=\Phi\left(\overline{\mathbf{x}}_{0}+\sigma_{0} \overline{\mathbf{p}}_{0}+\sigma_{1} \overline{\mathbf{p}}_{1}+\cdots+\sigma_{k-1} \overline{\mathbf{p}}_{k-1}\right)$. Since $h(\bar{\sigma})$ is a strictly convex quadratic it has a unique minimizer $\bar{\sigma}^{*}$ that satisfies

$$
\frac{\partial h\left(\bar{\sigma}^{*}\right)}{\partial \sigma_{i}}=0, \quad i=0,1, \ldots, k-1
$$

Expanding Subspace Minimization: Proof

Proof: Part 1

First, we show that a point $\tilde{\mathbf{x}}$ minimizes Φ over the set $S\left(\overline{\mathbf{x}}_{0}, k\right)$ if and only if $r(\tilde{\mathbf{x}})^{T} \overline{\mathbf{p}}_{i}=0, i=0,1, \ldots, k-1$.

Let $h(\bar{\sigma})=\Phi\left(\overline{\mathbf{x}}_{0}+\sigma_{0} \overline{\mathbf{p}}_{0}+\sigma_{1} \overline{\mathbf{p}}_{1}+\cdots+\sigma_{k-1} \overline{\mathbf{p}}_{k-1}\right)$. Since $h(\bar{\sigma})$ is a strictly convex quadratic it has a unique minimizer $\bar{\sigma}^{*}$ that satisfies

$$
\frac{\partial h\left(\bar{\sigma}^{*}\right)}{\partial \sigma_{i}}=0, \quad i=0,1, \ldots, k-1
$$

By the chain rule, this is equivalent to

$$
\nabla \Phi(\underbrace{\overline{\mathbf{x}}_{0}+\sigma_{0}^{*} \overline{\mathbf{p}}_{0}+\sigma_{1}^{*} \overline{\mathbf{p}}_{1}+\cdots+\sigma_{k-1}^{*} \overline{\mathbf{p}}_{k-1}}_{\tilde{\mathbf{x}}})^{T} \overline{\mathbf{p}}_{i}=0, \quad i=0,1, \ldots, k-1
$$

Expanding Subspace Minimization: Proof

Proof: Part 1

First, we show that a point $\tilde{\mathbf{x}}$ minimizes Φ over the set $S\left(\overline{\mathbf{x}}_{0}, k\right)$ if and only if $r(\tilde{\mathbf{x}})^{T} \overline{\mathbf{p}}_{i}=0, i=0,1, \ldots, k-1$.

Let $h(\bar{\sigma})=\Phi\left(\overline{\mathbf{x}}_{0}+\sigma_{0} \overline{\mathbf{p}}_{0}+\sigma_{1} \overline{\mathbf{p}}_{1}+\cdots+\sigma_{k-1} \overline{\mathbf{p}}_{k-1}\right)$. Since $h(\bar{\sigma})$ is a strictly convex quadratic it has a unique minimizer $\bar{\sigma}^{*}$ that satisfies

$$
\frac{\partial h\left(\bar{\sigma}^{*}\right)}{\partial \sigma_{i}}=0, \quad i=0,1, \ldots, k-1
$$

By the chain rule, this is equivalent to

$$
\nabla \Phi(\underbrace{\overline{\mathbf{x}}_{0}+\sigma_{0}^{*} \overline{\mathbf{p}}_{0}+\sigma_{1}^{*} \overline{\mathbf{p}}_{1}+\cdots+\sigma_{k-1}^{*} \overline{\mathbf{p}}_{k-1}}_{\tilde{\mathbf{x}}})^{T} \overline{\mathbf{p}}_{i}=0, \quad i=0,1, \ldots, k-1
$$

We recall that $\nabla \Phi(\tilde{\mathbf{x}})=A \tilde{\mathbf{x}}-\overline{\mathbf{b}}=\overline{\mathbf{r}}(\tilde{\mathbf{x}})$, thus we have established $\overline{\mathbf{r}}(\tilde{\mathbf{x}})^{T} \overline{\mathbf{p}}_{i}=0 \Leftrightarrow \tilde{\mathbf{x}}$ minimizes Φ over the set $S\left(\overline{\mathbf{x}}_{0}, k\right)$. IVERSITY

Expanding Subspace Minimization: Proof

Proof: Part 2.

We now show that the residuals $\overline{\mathbf{r}}_{k}$ satisfy $\overline{\mathbf{r}}_{k}^{T} \overline{\mathbf{p}}_{i}=0, i=0,1, \ldots, k-1$.

Expanding Subspace Minimization: Proof

Proof: Part 2.

We now show that the residuals $\overline{\mathbf{r}}_{k}$ satisfy $\overline{\mathbf{r}}_{k}^{T} \overline{\mathbf{p}}_{i}=0, i=0,1, \ldots, k-1$.
We use mathematical induction. Since α_{0} is always the 1D-minimizer, we have $\overline{\mathbf{r}}_{1}^{T} \overline{\mathbf{p}}_{0}=0$, establishing the base case.

From the inductive hypothesis, that $\overline{\mathbf{r}}_{k-1}^{T} \overline{\mathbf{p}}_{i}=0, i=0,1, \ldots, k-2$, we must show that $\overline{\mathbf{r}}_{k}^{T} \overline{\mathbf{p}}_{i}=0, i=0,1, \ldots, k-1$ in order to complete the proof.

Expanding Subspace Minimization: Proof

Proof: Part 2.

We now show that the residuals $\overline{\mathbf{r}}_{k}$ satisfy $\overline{\mathbf{r}}_{k}^{T} \overline{\mathbf{p}}_{i}=0, i=0,1, \ldots, k-1$.
We use mathematical induction. Since α_{0} is always the 1D-minimizer, we have $\overline{\mathbf{r}}_{1}^{T} \overline{\mathbf{p}}_{0}=0$, establishing the base case.
From the inductive hypothesis, that $\overline{\mathbf{r}}_{k-1}^{T} \overline{\mathbf{p}}_{i}=0, i=0,1, \ldots, k-2$, we must show that $\mathbf{r}_{k}^{T} \overline{\mathbf{p}}_{i}=0, i=0,1, \ldots, k-1$ in order to complete the proof.

From the lemma we have an expression for $\overline{\mathbf{r}}_{k}=\overline{\mathbf{r}}_{k-1}+\alpha_{k-1} A \overline{\mathbf{p}}_{k-1}$.
First off we have: $\overline{\mathbf{p}}_{k-1}^{T} \overline{\mathbf{r}}_{k}=\overline{\mathbf{p}}_{k-1}^{T} \overline{\mathbf{r}}_{k-1}+\alpha_{k-1} \overline{\mathbf{p}}_{k-1}^{T} A \overline{\mathbf{p}}_{k-1}=0$, since, by construction (optimality)

$$
\alpha_{k-1}=\frac{-\overline{\mathbf{p}}_{k-1}^{T} \overline{\mathbf{r}}_{k-1}}{\overline{\mathbf{p}}_{k-1}^{T} A \overline{\mathbf{p}}_{k-1}}
$$

Expanding Subspace Minimization: Proof

Proof: Part 3.

Finally,

$$
\overline{\mathbf{p}}_{i}^{T} \overline{\mathbf{r}}_{k}=\overline{\mathbf{p}}_{i}^{T} \overline{\mathbf{r}}_{k-1}+\alpha_{k-1} \overline{\mathbf{p}}_{i}^{T} A \overline{\mathbf{p}}_{k-1}=0, \quad i=0,1, \ldots, k-2
$$

since

$$
\overline{\mathbf{p}}_{i}^{T} \overline{\mathbf{r}}_{k-1}=0, \quad i=0,1, \ldots, k-2
$$

by the induction hypothesis, and

$$
\overline{\mathbf{p}}_{i}^{T} A \overline{\mathbf{p}}_{k-1}=0, \quad i=0,1, \ldots, k-2
$$

by conjugacy. This establishes $\overline{\mathbf{p}}_{i}^{T} \overline{\mathbf{r}}_{k}=0, i=0,1, \ldots, k-1$, which completes the proof.

Cliff-Hangers...

Cliff-Hanger Questions:

- How can we make this useful?
- Given A, how do we get a set of conjugate vectors? (They are not for sale at Costco!)
- Even if we have them, why is this scheme any better than Gaussian elimination?
- Where is the gradient?

Index

n-step convergence, 8, 9
conjugate direction method, 7
conjugate vector, 6

