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Recap Trust Region: Global Convergence and Enhancements

Quick Recap: — Global Convergence and Enhancements

We looked at some theorems describing the convergence of our
algorithms. We noted that there was a bit of a gap between what
is generally true/practical, and what can be proved. (Theoretical limit

points vs. numerical stopping criteria.)

Further, we looked at some enhancements including scaling

D = diag(d1, d2, . . . , dn), di > 0, T (∆) = {p̄ ∈ R
n : ‖Dp̄‖ ≤ ∆},

and the use of non-Euclidean norms — the latter primarily come
in handy in the context of constrained optimization.

We now explore an important computational tool, which will help
us solve problems of realistic size. — Conjugate Gradient
Methods.
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Conjugate Gradient Methods
A Little Bit (More) Theory...

Introduction: Notation, Definitions, Properties
A Conjugate Direction Method

Conjugate Gradient Methods: Introduction

For short: “CG” Methods.

One of the most useful techniques for solving large linear
systems of equations Ax̄ = b̄. “Linear CG”

Can be adopted to solve nonlinear optimization problems.
“Nonlinear CG” (Our type of problems!)

Linear CG is an alternative to Gaussian elimination (well
suited for large problems).

Performance of linear CG is strongly tied to the distribution of
the eigenvalues of A.

First, we explore the Linear CG method...
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Conjugate Gradient Methods
A Little Bit (More) Theory...

Introduction: Notation, Definitions, Properties
A Conjugate Direction Method

The Linear CG Method Language and Notation

The linear CG method is an iterative method for solving linear systems
of equations:

Ax̄ = b̄, A ∈ R
n×n, x̄ ∈ R

n, b̄ ∈ R
n,

where the matrix A is symmetric positive definite∃ extensions.

Notice/Recall: This problem is equivalent to minimizing Φ(x̄) where

Φ(x̄) =
1

2
x̄TAx̄− b̄T x̄+ c ,

since
∇Φ(x̄) = Ax̄− b̄

def

= r̄(x̄).

We refer to r̄(x̄) as the residual of the linear system. Note that if
x̄∗ = A−1b̄, then r̄(x̄∗) = 0, i.e. the residual is a measure of how close
(or far) we are from solving the linear system.
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Conjugate Gradient Methods
A Little Bit (More) Theory...

Introduction: Notation, Definitions, Properties
A Conjugate Direction Method

Conjugate Directions

Definition (Conjugate Vector)

A set of nonzero vectors {p̄0, p̄1, . . . , p̄n−1} is said to be conjugate
with respect to the symmetric positive definite matrix A if

p̄Ti Ap̄j = 0, ∀i 6= j .

Property: Linear Independence of Conjugate Vectors

A set of conjugate vectors {p̄0, p̄1, . . . , p̄n−1} is linearly
independent.

Why should we care? — We can minimize Φ(x̄)
in n steps by successively minimizing along the di-
rections in a conjugate set...

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #1 — (6/21)



Conjugate Gradient Methods
A Little Bit (More) Theory...

Introduction: Notation, Definitions, Properties
A Conjugate Direction Method

Conjugate Direction Method ( != CG Method ) 1 of 4

Given a starting point x̄0 ∈ R
n, and a set of conjugate directions

{p̄0, p̄1, . . . , p̄n−1} we generate a sequence of points x̄k ∈ R
n by

setting
x̄k+1 = x̄k + αk p̄k ,

where αk is the minimizer of the quadratic function
ϕ(α) = Φ(x̄k + αp̄k), i.e. the minimizer of Φ(·) along the line
ℓ̄(α) = x̄k + αp̄k .

We have already solved this problem — in the context of
step-length selection for line search methods, see lecture #6 — so
we “know” that the optimizer is given by

αk = −
r̄Tk p̄k

p̄Tk Ap̄k
, where r̄k = r̄(x̄k).
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Conjugate Gradient Methods
A Little Bit (More) Theory...

Introduction: Notation, Definitions, Properties
A Conjugate Direction Method

Conjugate Direction Method ( != CG Method ) 2 of 4

Theorem (n-step convergence)

For any x̄0 ∈ R
n the sequence {x̄k} generated by the conjugate direction

algorithm converges to the solution x̄∗ of the linear system in at most n

steps.

The proof indicates how properties of CG are found...

Proof: Part 1 (Fundmental Building Block).
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Conjugate Direction Method ( != CG Method ) 2 of 4

Theorem (n-step convergence)

For any x̄0 ∈ R
n the sequence {x̄k} generated by the conjugate direction

algorithm converges to the solution x̄∗ of the linear system in at most n

steps.

The proof indicates how properties of CG are found...

Proof: Part 1 (Fundmental Building Block).

Since the directions {p̄i} are linearly independent, they must span the
whole space R

n. Hence, we can write

x̄∗ − x̄0 =

n−1∑

k=0

σk p̄k

for some choice of scalars σk . We need to establish that σk = αk .
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Conjugate Gradient Methods
A Little Bit (More) Theory...

Introduction: Notation, Definitions, Properties
A Conjugate Direction Method

Conjugate Direction Method ( != CG Method ) 3 of 4

Proof: Part 2.

If we are generating x̄k by the conjugate direction method, then we have

x̄k = x̄0 + α0p̄0 + α1p̄1 + · · ·+ αk−1p̄k−1,
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Conjugate Direction Method ( != CG Method ) 3 of 4

Proof: Part 2.

If we are generating x̄k by the conjugate direction method, then we have

x̄k = x̄0 + α0p̄0 + α1p̄1 + · · ·+ αk−1p̄k−1,

we multiply this by p̄T
k
A

p̄Tk Ax̄k = p̄Tk A [x̄0 + α0p̄0 + α1p̄1 + · · ·+ αk−1p̄k−1] ,
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Conjugate Direction Method ( != CG Method ) 3 of 4

Proof: Part 2.

If we are generating x̄k by the conjugate direction method, then we have

x̄k = x̄0 + α0p̄0 + α1p̄1 + · · ·+ αk−1p̄k−1,

we multiply this by p̄T
k
A

p̄Tk Ax̄k = p̄Tk A [x̄0 + α0p̄0 + α1p̄1 + · · ·+ αk−1p̄k−1] ,

using the conjugacy property, we see that all but the first term on the right-hand-side
are zero:

p̄Tk Ax̄k = p̄Tk Ax̄0 ⇔ p̄Tk A(x̄k − x̄0) = 0.
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Proof: Part 2.

If we are generating x̄k by the conjugate direction method, then we have

x̄k = x̄0 + α0p̄0 + α1p̄1 + · · ·+ αk−1p̄k−1,

we multiply this by p̄T
k
A

p̄Tk Ax̄k = p̄Tk A [x̄0 + α0p̄0 + α1p̄1 + · · ·+ αk−1p̄k−1] ,

using the conjugacy property, we see that all but the first term on the right-hand-side
are zero:

p̄Tk Ax̄k = p̄Tk Ax̄0 ⇔ p̄Tk A(x̄k − x̄0) = 0.

Now we have

p̄
T
k A(x̄

∗

− x̄0) = p̄
T
k A(x̄

∗

− x̄0 − (x̄k − x̄0)
︸ ︷︷ ︸

adds 0

) = p̄
T
k A(x̄

∗

− x̄k ) = p̄
T
k (b̄ − Ax̄k ) = −p̄

T
k r̄k .
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Conjugate Gradient Methods
A Little Bit (More) Theory...

Introduction: Notation, Definitions, Properties
A Conjugate Direction Method

Conjugate Direction Method ( != CG Method ) 4 of 4

Proof: Part 3.

We have shown
p̄Tk A(x̄

∗
− x̄0) = −p̄Tk r̄k .

Now, we notice that the right-hand-side is the numerator in αk :

αk =
−p̄T

k
r̄k

p̄T
k
Ap̄k

⇒ αk =
p̄T
k
A(x̄∗ − x̄0)

p̄T
k
Ap̄k

.
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Proof: Part 3.

We have shown
p̄Tk A(x̄

∗
− x̄0) = −p̄Tk r̄k .

Now, we notice that the right-hand-side is the numerator in αk :

αk =
−p̄T

k
r̄k

p̄T
k
Ap̄k

⇒ αk =
p̄T
k
A(x̄∗ − x̄0)

p̄T
k
Ap̄k

.

We conclude the proof by showing that σk can be expressed in the same manner;
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Proof: Part 3.

We have shown
p̄Tk A(x̄

∗
− x̄0) = −p̄Tk r̄k .

Now, we notice that the right-hand-side is the numerator in αk :

αk =
−p̄T

k
r̄k

p̄T
k
Ap̄k

⇒ αk =
p̄T
k
A(x̄∗ − x̄0)

p̄T
k
Ap̄k

.

We conclude the proof by showing that σk can be expressed in the same manner; we
premultiply the expression for (x̄∗ − x̄0) by p̄T

k
A and obtain

p̄Tk A(x̄
∗
− x̄0) = p̄Tk A

n−1∑

i=0

σi p̄i =

n−1∑

i=0

σi p̄
T
k Ap̄i = σk p̄

T
k Ap̄k .

Hence,

σk =
p̄T
k
A(x̄∗ − x̄0)

p̄T
k
Ap̄k

≡ αk .
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Introduction: Notation, Definitions, Properties
A Conjugate Direction Method

Conjugate Direction Method: Comments and Interpretation 1 of 2

Most of the proofs regarding CD and CG methods are argued in a similar
way — by looking at optimizers and residuals over sub-spaces of Rn

spanned by some subset of a set of conjugate vectors.
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Interpretation: If the matrix A

is diagonal, then the contours of
Φ(x̄) are ellipses whose axes are
aligned with the coordinate direc-
tions. In this case, we can find
the minimizer by performing 1D-
minimizations along the coordinate
directions ē1, ē2, . . . , ēn in turn.
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Conjugate Direction Method: Comments and Interpretation 2 of 2
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Interpretation (ctd.): When A is not diagonal, the contours are still ellip-
tical, but are no longer aligned with the coordinate axes. Successive min-
imization along the coordinate directions ē1, ē2, . . . , ēn can not guarantee
convergence in n (or even a (fixed) finite number of) iterations.
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Conjugate Gradient Methods
A Little Bit (More) Theory...

n-step Convergence for Non-Diagonal A; Cheap Residuals
Expanding Subspace Minimization

Recovering n-step Convergence for Non-Diagonal A 1 of 2

For non-diagonal matrices A, the n-step convergence can be
recovered by transforming the problem.

Let S ∈ R
n×n be a matrix with conjugate columns, i.e. if

{p̄0, p̄1, . . . , p̄n−1} is a set of conjugate directions (with respect to
A), then

S =




| | || | |
p̄0 p̄1 · · · p̄n−1
| | || | |


 .

We introduce a new variable x̂ = S−1x̄, and thus get the new
quadratic objective which can be minimized in n steps

Φ̂(x̂) = Φ(S x̂) =
1

2
x̂T (STAS)︸ ︷︷ ︸

Diagonal

x̂− (ST b̄)T x̂.
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Conjugate Gradient Methods
A Little Bit (More) Theory...

n-step Convergence for Non-Diagonal A; Cheap Residuals
Expanding Subspace Minimization

Recovering n-step Convergence for Non-Diagonal A 2 of 2

We note that the matrix (STAS) is diagonal by the conjugacy
property, and that each coordinate direction êi in x̂-space
corresponds to the direction p̄i−1 in x̄-space.

When the matrix is diagonal, each coordinate minimization
determines one of the components of the solution x̄∗. Hence, after
k iterations, the quadratic has been minimized on the subspace
spanned by ê1, ê2, . . . , êk .

If we instead minimize along the conjugate directions, then after k
iterations, the quadratic has been minimized on the subspace
spanned by p̄0, p̄1, . . . , p̄k−1.
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Conjugate Gradient Methods
A Little Bit (More) Theory...

n-step Convergence for Non-Diagonal A; Cheap Residuals
Expanding Subspace Minimization

Updating the Residual

Before we state a fundamental theorem regarding the conjugate direction
method, we show the following lemma:

Lemma

Given a starting point x̄0 ∈ R
n and a set of conjugate directions

{p̄0, p̄1, . . . , p̄n−1} if we generate the sequence x̄k ∈ R
n by setting

x̄k+1 = x̄k + αk p̄k , where αk = −
r̄Tk p̄k
p̄Tk Ap̄k

,

with r̄k = Ax̄k − b. Then the (k + 1)st residual is given by the following

expression

r̄k+1 = r̄k + αkAp̄k .

Proof: (Quick One-Liner).
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Before we state a fundamental theorem regarding the conjugate direction
method, we show the following lemma:

Lemma

Given a starting point x̄0 ∈ R
n and a set of conjugate directions

{p̄0, p̄1, . . . , p̄n−1} if we generate the sequence x̄k ∈ R
n by setting

x̄k+1 = x̄k + αk p̄k , where αk = −
r̄Tk p̄k
p̄Tk Ap̄k

,

with r̄k = Ax̄k − b. Then the (k + 1)st residual is given by the following

expression

r̄k+1 = r̄k + αkAp̄k .

Proof: (Quick One-Liner).

r̄k+1 = Ax̄k+1 − b̄ = A(x̄k + αk p̄k )− b̄ = αkAp̄k + (Ax̄k − b̄) = αkAp̄k + r̄k .
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n-step Convergence for Non-Diagonal A; Cheap Residuals
Expanding Subspace Minimization

Expanding Subspace Minimization

Theorem (Expanding Subspace Minimization)

Let x̄0 ∈ R
n be any starting point and suppose that the sequence

{x̄k} is generated by

x̄k+1 = x̄k + αk p̄k , where αk = −
r̄Tk p̄k

p̄Tk Ap̄k
.

Then

r̄Tk p̄i = 0, for i = 0, 1, . . . , k − 1,

and x̄k is the minimizer of Φ(x̄) = 1
2 x̄

TAx̄− b̄T x̄ over the set

S(x̄0, k) =

{
x̄ : x̄ = x̄0 + span{p̄0, p̄1, . . . , p̄k−1}

}
.
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Conjugate Gradient Methods
A Little Bit (More) Theory...

n-step Convergence for Non-Diagonal A; Cheap Residuals
Expanding Subspace Minimization

Expanding Subspace Minimization: Proof 1 of 3

Proof: Part 1 (Fundmental Building Block).

First, we show that a point x̃ minimizes Φ over the set S(x̄0, k) if and
only if r(x̃)T p̄i = 0, i = 0, 1, . . . , k − 1.
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Expanding Subspace Minimization: Proof 1 of 3

Proof: Part 1 (Fundmental Building Block).

First, we show that a point x̃ minimizes Φ over the set S(x̄0, k) if and
only if r(x̃)T p̄i = 0, i = 0, 1, . . . , k − 1.

Let h(σ̄) = Φ(x̄0 + σ0p̄0 + σ1p̄1 + · · ·+ σk−1p̄k−1). Since h(σ̄) is a
strictly convex quadratic it has a unique minimizer σ̄∗ that satisfies

∂h(σ̄∗)

∂σi

= 0, i = 0, 1, . . . , k − 1
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First, we show that a point x̃ minimizes Φ over the set S(x̄0, k) if and
only if r(x̃)T p̄i = 0, i = 0, 1, . . . , k − 1.

Let h(σ̄) = Φ(x̄0 + σ0p̄0 + σ1p̄1 + · · ·+ σk−1p̄k−1). Since h(σ̄) is a
strictly convex quadratic it has a unique minimizer σ̄∗ that satisfies

∂h(σ̄∗)

∂σi

= 0, i = 0, 1, . . . , k − 1

By the chain rule, this is equivalent to

∇Φ(x̄0 + σ∗

0 p̄0 + σ∗

1 p̄1 + · · ·+ σ∗

k−1p̄k−1︸ ︷︷ ︸
x̃

)T p̄i = 0, i = 0, 1, . . . , k − 1
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Expanding Subspace Minimization: Proof 1 of 3

Proof: Part 1 (Fundmental Building Block).

First, we show that a point x̃ minimizes Φ over the set S(x̄0, k) if and
only if r(x̃)T p̄i = 0, i = 0, 1, . . . , k − 1.

Let h(σ̄) = Φ(x̄0 + σ0p̄0 + σ1p̄1 + · · ·+ σk−1p̄k−1). Since h(σ̄) is a
strictly convex quadratic it has a unique minimizer σ̄∗ that satisfies

∂h(σ̄∗)

∂σi

= 0, i = 0, 1, . . . , k − 1

By the chain rule, this is equivalent to

∇Φ(x̄0 + σ∗

0 p̄0 + σ∗

1 p̄1 + · · ·+ σ∗

k−1p̄k−1︸ ︷︷ ︸
x̃

)T p̄i = 0, i = 0, 1, . . . , k − 1

We recall that ∇Φ(x̃) = Ax̃− b̄ = r̄(x̃), thus we have established
r̄(x̃)T p̄i = 0 ⇔ x̃ minimizes Φ over the set S(x̄0, k).
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Expanding Subspace Minimization: Proof 2 of 3

Proof: Part 2.

We now show that the residuals r̄k satisfy r̄Tk p̄i=0, i = 0, 1, . . . , k − 1.
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Expanding Subspace Minimization: Proof 2 of 3

Proof: Part 2.

We now show that the residuals r̄k satisfy r̄Tk p̄i=0, i = 0, 1, . . . , k − 1.

We use mathematical induction. Since α0 is always the 1D-minimizer, we
have r̄T1 p̄0 = 0, establishing the base case.

From the inductive hypothesis, that r̄Tk−1p̄i = 0, i = 0, 1, . . . , k − 2, we

must show that r̄Tk p̄i = 0, i = 0, 1, . . . , k − 1 in order to complete the
proof.
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Expanding Subspace Minimization: Proof 2 of 3

Proof: Part 2.

We now show that the residuals r̄k satisfy r̄Tk p̄i=0, i = 0, 1, . . . , k − 1.

We use mathematical induction. Since α0 is always the 1D-minimizer, we
have r̄T1 p̄0 = 0, establishing the base case.

From the inductive hypothesis, that r̄Tk−1p̄i = 0, i = 0, 1, . . . , k − 2, we

must show that r̄Tk p̄i = 0, i = 0, 1, . . . , k − 1 in order to complete the
proof.

From the lemma we have an expression for r̄k = r̄k−1 + αk−1Ap̄k−1.

First off we have: p̄Tk−1 r̄k = p̄Tk−1 r̄k−1 + αk−1p̄
T
k−1Ap̄k−1 = 0, since, by

construction (optimality)

αk−1 =
−p̄T

k−1 r̄k−1

p̄T
k−1Ap̄k−1
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Expanding Subspace Minimization: Proof 3 of 3

Proof: Part 3.

Finally,

p̄Ti r̄k = p̄Ti r̄k−1 + αk−1p̄
T
i Ap̄k−1 = 0, i = 0, 1, . . . , k − 2

since
p̄Ti r̄k−1 = 0, i = 0, 1, . . . , k − 2

by the induction hypothesis, and

p̄Ti Ap̄k−1 = 0, i = 0, 1, . . . , k − 2

by conjugacy. This establishes p̄Ti r̄k = 0, i = 0, 1, . . . , k − 1, which
completes the proof.
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Cliff-Hangers...

Cliff-Hanger Questions:

How can we make this useful?

Given A, how do we get a set of conjugate vectors? (They are
not for sale at Costco!)

Even if we have them, why is this scheme any better than
Gaussian elimination?

Where is the gradient?
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Index

n-step convergence, 8, 9
conjugate direction method, 7
conjugate vector, 6
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