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Recap Nonlinear Conjugate Gradient Methods

Quick Recap: Nonlinear Conjugate Gradient Methods

Extension of the linear CG to work for non-linear (optimization) problems.

In the first pass (Fletcher-Reeves’ Algorithm), we simply replaced all instances of the
residual r̄k by the gradient of the objective ∇f (x̄k ), and the step length αk is
calculated by a linesearch.

We looked at some modifications, and arrived at the Polak-Ribière PR+CG algorithm,
where the β of Fletcher-Reeves is modified

βFR

k+1 =
∇f

T

k+1∇fk+1

∇f T
k
∇fk

→ βPR

k+1 =
∇fTk+1(∇fk+1 −∇fk)

∇fTk ∇fk

and the final β is β+
k+1 = max(βPR

k+1, 0).

Finally, periodic restarting, when

∇f
T

k
∇fk−1

∇f T
k
∇fk

≥ ν ∼ 0.1

was introduced in order to ensure good convergence.
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Practical Newton Methods: Introduction

We know (e.g. from Lecture #5) that Newton’s method has
great local convergence properties. Once we get close to the
minimizer x̄∗ convergence is quadratic.

This convergence requires that we start “close enough” to x̄∗ — in
regions far away, where the objective is not convex, all bets are off
and the behavior can be quite erratic; we cannot guarantee
convergence at all!

Our present goal:
⇒ To design a Newton-based method which is robust and efficient

in “all” cases.
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The Newton Step

We get the Newton step from the symmetric n × n linear system

The Newton Direction: ∇2f (x̄k)p̄
N
k = −∇f (x̄k)

For global convergence the Newton direction must be a descent
direction, this is true if the Hessian (∇2f (x̄k)) is positive definite.

If the Hessian is not positive definite, the Newton direction may be an
ascent direction and/or extremely long (division by almost zero).

We look at two approaches: The first uses the conjugate gradient
method, and gives us the “Newton-CG” methods for both line-search
and trust-region methods; the second strategy involves modifying the
Hessian so that it becomes “sufficiently positive definite,” yielding the
“modified Newton method.”
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Computational Cost

As always, we want to keep the computational cost down.

In Newton-CG, this is accomplished by terminating the
computation before an exact solution to

∇2f (x̄k)p̄
N

k = −∇f (x̄k),

has been found. Thus we get and approximation p̄k ≈ p̄N
k
, hence

the name “inexact Newton methods.”

We would like to exploit any special sparsity structure in the
Hessian in order to solve the linear problem as efficiently as
possible.

For now, we assume we have access to the Hessian in analytical
form. We will cover this final issue soon.
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Inexact Newton Steps

If we settle for an inexact (approximate) solution of

∇2f (x̄k)p̄
N

k
= −∇f (x̄k),

then we need a measure of how close our approximate solution p̄k is to
the exact Newton direction... Another use of the residual

r̄k = ∇2f (x̄k)p̄k +∇f (x̄k).

Usually we do not want the termination condition for the inexact solution
to depend on the size of f , hence are interested in the relative size of
the residual, and say that an approximate solution is good enough when

Termination criterion: ‖̄rk‖ ≤ ηk‖∇f (x̄k)‖, ηk ∈ (0, 1)

The sequence {ηk} is known as a forcing sequence.
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The Forcing Sequence: Convergence 1 of 3

Selection of the forcing sequence greatly impacts how fast the overall
algorithm converges, as illustrated in the following results:

Theorem

Suppose that the gradient ∇f (x̄) is continuously differentiable in a

neighborhood N of a minimizer x̄∗, and assume that the Hessian

∇2f (x̄∗) is positive definite. Consider the iteration x̄k+1 = x̄k + p̄k where

r̄k(p̄k) satisfies
‖̄rk‖ ≤ ηk‖∇f (x̄k)‖, ηk ∈ (0, 1)

and assume that ηk ≤ η for some η ∈ [0, 1). Then, if the starting point

x̄0 is sufficiently near x̄∗, the sequence {x̄k} converges to x̄∗ linearly.

That is, for all sufficiently large k we have

‖x̄k+1 − x̄∗‖ ≤ c‖x̄k − x̄∗‖

for some constant c ∈ (0, 1).
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The Forcing Sequence: Convergence 2 of 3

The preceding theorem is neither very exiting, nor very useful (on
its own).

The restriction on the forcing sequence is very mild, we are
basically just requiring that we make some progress in solving the
linear system

∇2f (x̄k)p̄
N

k = −∇f (x̄k).

Likewise, the result — linear convergence — is good news, but
hardly anything that causes us to throw a party!

However, by carefully selecting the forcing sequence we get a
slightly more exciting result...
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The Forcing Sequence: Convergence 3 of 3

Theorem

Suppose that the conditions of the previous theorem hold, and

assume that the iterates {x̄k} generated by the inexact Newton

method converge to x̄∗. Then the rate of convergence is

superlinear if ηk → 0, and quadratic if ηk = O(‖∇f (x̄k)‖).

Now we know exactly how hard we have to work at solving the
linear systems in order to achieve certain convergence rates, e.g.

ηk = min
(

10−3
,

√

‖∇f (x̄k)‖
)

Superlinear Convergence

ηk = min
(
10−3

, ‖∇f (x̄k)‖
)

Quadratic Convergence

Note: These results are still local — we still have to figure out how
to make our algorithms work if not started “close” to x̄∗.
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We now have the pieces necessary to build robust Newton
methods with good performance characteristics: first on the menu
— the line search Newton-CG method:

Getting the search direction p̄k :

We apply the linear Conjugate Gradient (CG) method to the
Newton equations

∇2f (x̄k)p̄
N

k = −∇f (x̄k),

and require that the solution satisfies a termination test of the type

‖̄rk‖ ≤ ηk‖∇f (x̄k)‖, ηk ∈ (0, 1).

However, if the Hessian is not positive definite this may break...
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Line Search Newton-CG Method 2 of 5

If/When the Hessian is not positive definite we may enter a region of
negative curvature; when we do, the CG iteration is terminated in order
to guarantee that the generated p̄k is a descent direction:

In search-direction-search, we set A = ∇2f (x̄k), b̄ = −∇f (x̄k) and then
start the CG-iteration:

(1) The starting point is set to x̄(0) = 0

(2) If a (CG-internal) search direction p̄(i) generated by the CG-
iteration satisfies

[

p̄(i)
]T

A
[

p̄(i)
]

≤ 0, Negative curvature test

then, if (i == 0), set x̄(0) = b̄ = −∇f (x̄k) [Steepest Descent] and
return, otherwise stop immediately and return x̄(i).

(3) The approximate Newton step p̄k
def
= x̄(i).
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Algorithm: “CG-core”

Given A, b̄, η(κ), x̄CG0 : r̄0 = Ax̄CG0 − b̄, p̄0 = −r̄0, k = 0

while ( ‖̄rk‖ > η(κ)‖b̄‖) )

αk =
r̄T
k
r̄k

p̄T
k
Ap̄k

,
Store the vector Ap̄k
and the scalar r̄T

k
r̄k

if p̄T
k
Ap̄k ≤ 0, k > 0 return(x̄CG

k
)

if p̄T
k
Ap̄k ≤ 0, k = 0 return(p̄0)

x̄CG
k+1 = x̄CG

k
+ αk p̄k

r̄k+1 = r̄k + αkAp̄k

βk+1 =
r̄T
k+1 r̄k+1

r̄Tk r̄k
, Save numerator for next iteration!

p̄k+1 = −r̄k+1 + βk+1p̄k

end-while( k = k + 1 )

— The p̄k ’s are CG-internal search directions, not to be confused with the search
direction for the optimization algorithm!
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Line Search Newton-CG Method 4 of 5

Note: If the CG-core algorithm encounters a direction of nega-
tive curvature in the first iteration, the steepest descent
direction is used.

Algorithm: Line Search Newton-CG Method HW#2 + HW#3+

Given x̄0: k = 0

while ( x̄k is not a minimum, e.g. ‖∇f (x̄k ) ‖ ≥ 10−6 )

p̄N-CG
k

= CG-core(A = ∇2
f (x̄k ), b̄ = −∇f (x̄k ), η

(κ) = ηk , x̄
CG
0 = 0̄)

αLS
k

= linesearch Strong Wolfe(p̄N-CG
k

, . . . )

x̄k+1 = x̄k + αLS
k
p̄N-CG
k

end-while ( k = k + 1 )

Where we specify ηk as discussed earlier, and the linesearch is such that
αk satisfies the Wolfe, Strong Wolfe, Goldstein, or Armijo backtracking
conditions.
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Comments:

• Nothing is stopping us from basing this on the preconditioned
version of CG, in fact that is probably the right thing to do (see
other comments)!

• Line Search Newton-CG (LS-N-CG) is well suited for large
problems.

• LS-N-CG has one minor weakness — If/When the Hessian is
nearly singular, the Newton-CG direction can be excessively
long resulting in many function evaluations in the linesearch.

• This weakness is greatly alleviated by preconditioning, i.e.

implementing LS-N-PCG(M).
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Modified Newton’s Method Hand-Waving 1 of 2

Sometimes it is desirable to use a direct linear algebra technique,
i.e. an efficient cousin of Gaussian Elimination, to solve the
Newton equations

∇2f (x̄k)p̄
N

k = −∇f (x̄k).

If/When the Hessian is not positive definite (or close to singular),
it can be modified either before or during the solution process so
that in effect we solve

[
∇2f (x̄k) + Ek

]

︸ ︷︷ ︸

Sufficiently Positive Definite

p̄Nk = −∇f (x̄k),

where the Hessian modification Ek is chosen so that the resulting
matrix is sufficiently positive definite.
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Modified Newton’s Method Hand-Waving 2 of 2

Algorithm: Line Search Newton with Modification

Given x̄0: k = 0

while ( x̄k is not a minimum, e.g. ‖∇f (x̄k ) ‖ ≥ 10−6 )

Bk = factorize(∇2
f (x̄k ) + Ek )

p̄N-mod
k

= −B
−1
k

∇f (x̄k)

αLS
k

= linesearch Strong Wolfe(p̄N-mod
k

, . . . )

x̄k+1 = x̄k + αLS
k
p̄N-mod
k

end-while ( k = k + 1 )

Where the linesearch is such that αk satisfies the Wolfe, Strong Wolfe,
Goldstein, or Armijo backtracking conditions.

The factorization algorithm is such that Ek = 0 if ∇2f (x̄k) is sufficiently
positive definite; otherwise chosen so that Bk = (∇2f (x̄k) + Ek) is
sufficiently positive definite.

We save the details of Hessian modification for next lecture...
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