

Ê

SAN DIEGO STAT UNIVERSITY

- (3/28)

Next, we look at Automatic Differentiation Techniques.

and pointers can be found at http://www.AutoDiff.org/, including tools for MATLAB and python.

۴ı

Derivatives Recap — Finite Differences Automatic Differentiation Automatic Differentiation	Derivatives Recap Finite Differences Automatic Differentiation Automatic Differentiation
Micro-History of Automatic Differentiation	The Chain Rule — Forgotten(?) Calculus
 First publications: early 1950s Most cited references (1236) "AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models"; Fournier, Skaug, Ancheta, Ianelli, Magnusson, Maunder, Nielsen, and Sibert; Optimization Methods and Software, 27(2), pp. 233-249. 2012. 	The Chain Rule in its full vector glory takes the form The Chain Rule
 (992) "Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C+++"; Griewank, Juedes, and Utke. ACM Transactions on Mathematical Software (TOMS), 22(2), pp.131-167. 1996. (990) "Automatic Differentiation: Techniques and Applications" Louis B. Rall. 1981. 	If $h : \mathbb{R}^m \to \mathbb{R}$, and $\overline{\mathbf{y}} : \mathbb{R}^n \to \mathbb{R}^m$, then for $\overline{\mathbf{x}} \in \mathbb{R}^n$ we can write
 1st International Conference on AD: USA, 1991 IMA Special Workshop, Minneapolis, USA, 1997 Eine Conference AD Weight and Englishing 2005 	$\nabla_{\bar{\mathbf{x}}} h(\bar{\mathbf{y}}(\bar{\mathbf{x}})) = \sum_{i=1}^{m} \frac{\partial h}{\partial y_i} \nabla y_i(\bar{\mathbf{x}}).$
 First European AD Workshop: France, 2005 AD2016 - 7th International Conference on Algorithmic Differentiation September 2016, UK 21st EuroAD Workshop 19–20 November 2018, Germany 8th SIAM Workshop on Combinatorial Scientific Computing June 6-8, 2018, Bergen, Norway 	Automatic differentiation is essentially applying the chain rule at the code level . — There are two modes of AD, the <i>forward</i> and the <i>reverse</i> mode. We follow the example from Nocedal-Wright.
Peter Blomgren, (blomgren.peter@gmail.com) Automatic Differentiation - (5/28)	Peter Blomgren, (blomgren.peter@gmail.com) Automatic Differentiation
Derivatives Extended Example Automatic Differentiation Comments, Extensions, and Limitations	Derivatives Extended Example Automatic Differentiation Comments, Extensions, and Limitations
Automatic Differentiation — Example 1 of 14	Automatic Differentiation — Example 2 of 14
<section-header><equation-block><equation-block><equation-block><equation-block><equation-block><text><text><text></text></text></text></equation-block></equation-block></equation-block></equation-block></equation-block></section-header>	<section-header><section-header><text><text><text><text><text><image/></text></text></text></text></text></section-header></section-header>

Derivatives Extended Example Automatic Differentiation Comments, Extensions, and Limitations Automatic Differentiation — Example 3 of 14	Derivatives Extended Example Automatic Differentiation Comments, Extensions, and Limitations AD — Example / Forward Mode 4 of 14
$\begin{split} \overbrace{x_1} \\ \overbrace{x_2} \\ \overbrace{x_2} \\ \overbrace{x_3} \\ \overbrace{x_4} \\ \overbrace{x_5} \\ \overbrace{x_7} \\$	<text><text><text><equation-block><equation-block><equation-block><text><equation-block><table-row><table-row><table-row></table-row></table-row></table-row></equation-block></text></equation-block></equation-block></equation-block></text></text></text>
Derivatives Extended Example Automatic Differentiation Comments, Extensions, and Limitations	Derivatives Extended Example Automatic Differentiation Comments, Extensions, and Limitations
AD — Example / Forward Mode 5 of 14	AD — Example / Forward Mode 6 of 14
As soon as the value of x_i is known at a node, we can find	The key to practical implementation of forward-mode automatic
$D_{\bar{p}}x_i \text{ using the chain rule. } E.g.$ when $x_7 = x_4 * x_5$ is known, we have $\nabla x_7 = \frac{\partial x_7}{\partial x_4} \nabla x_4 + \frac{\partial x_7}{\partial x_5} \nabla x_5 = x_5 \nabla x_4 + x_4 \nabla x_5$ Hence, the directional derivative $D_{\bar{p}}x_7 = x_5 D_{\bar{p}}x_4 + x_4 D_{\bar{p}}x_5$ can be evaluated. The accumulation of the directional derivative follows the forward	differentiation is the concurrent evaluation of x_i and $D_{\bar{p}}x_i$. To obtain the complete gradient vector, the procedure is carried out simultaneously for n seed vectors $\bar{\mathbf{p}} = \{\bar{\mathbf{e}}_1, \bar{\mathbf{e}}_2, \dots, \bar{\mathbf{e}}_n\}$. The computational cost can be significant, for instance a single division operation w/y induces approximately $2n$ multiplications and n additions in the gradient calculation.

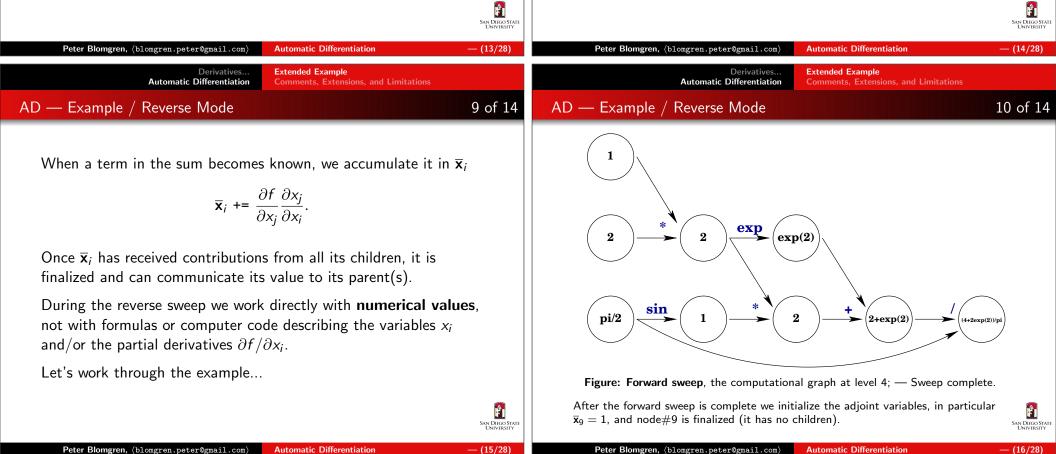
— (11/28)

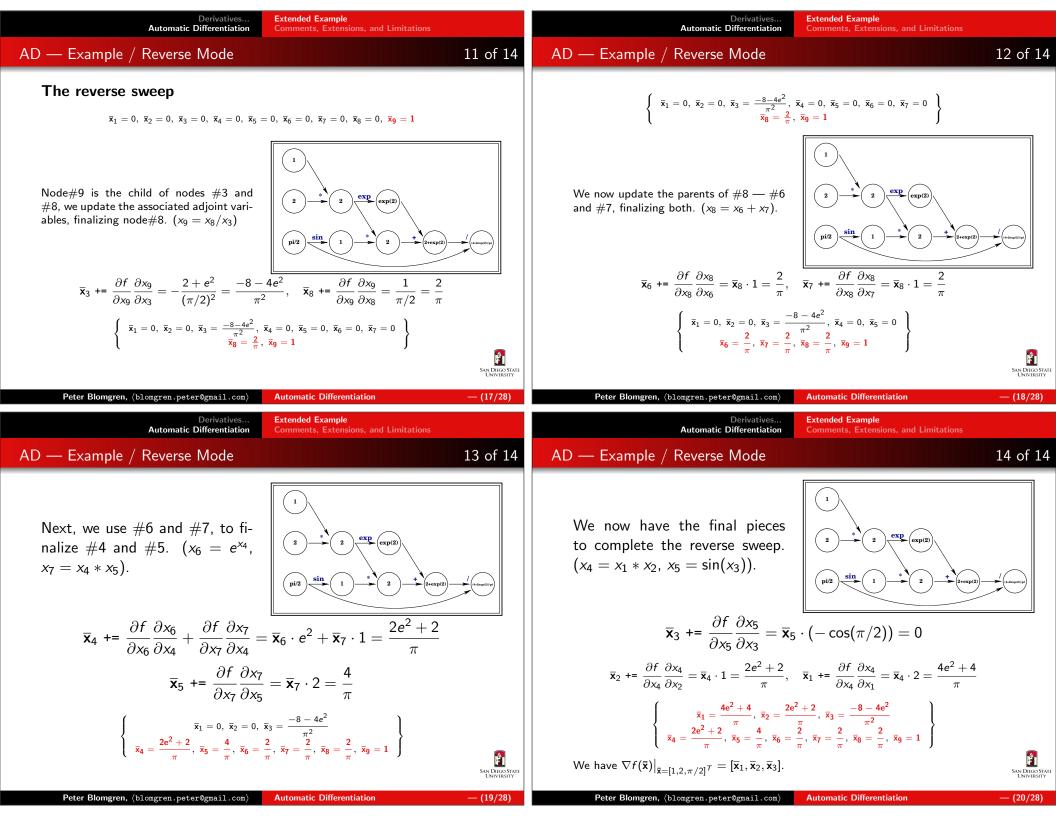
— (12/28)

AD — Example / Forward Mode

An exact bound on the increase in computation (especially for a complicated expression) is hard to obtain [WORST-CASE Bounds are not very useful here], since we have to take into account the cost of storing and retrieving the extra quantities $D_{\bar{\mathbf{e}}_i} x_i$.

AD/FM can be implemented in terms of a pre-compiler which transforms function evaluation code into augmented code that evaluates derivatives as well. Alternatively operator-overloading (in e.g. C++) can be used to transparently extend data structures and operations to perform the necessary bookkeeping and computations.


AD — Example / Reverse Mode


In reverse mode AD, the function value f is first computed in a forward sweep, then in a second reverse sweep the derivatives of f with respect to each variable x_i (independent and intermediate) are recovered.

We associate an **adjoint variable** $\overline{\mathbf{x}}_i$ with each node in the computational graph. In these adjoint variables we accumulate the partial derivative information $\partial f / \partial x_i$ during the reverse sweep. They are initialized $\overline{\mathbf{x}}_1 = \overline{\mathbf{x}}_2 = \cdots = \overline{\mathbf{x}}_{n-1} = 0$, and $\overline{\mathbf{x}}_n = 1$.

The reverse sweep is built on the chain rule:

$$\overline{\mathbf{x}}_{i} = \frac{\partial f}{\partial x_{i}} = \sum_{j \text{ child of } i} \frac{\partial f}{\partial x_{j}} \frac{\partial x_{j}}{\partial x_{i}}$$

Derivatives Extended Example Comments, Extensions, and Limitations Reverse Mode Automatic Differentiation: Comments	Derivatives Extended Example Automatic Differentiation Comments, Extensions, and Limitations Extending AD to Vector Functions Extending AD to Vector Functions
Main appeal of AD/RM: low computational complexity for scalar functions. Extra arithmetic is at most 4–5 times the "pure" function evaluation.	The idea of automatic differentiation is quite easily extended to vector valued functions,
Main drawback of AD/RM: the entire computational graph must be stored for the reverse sweep. Implementation and access patterns are quite straight-forward, but storage can be a problem:	${\mathcal F}:{\mathbb R}^n o {\mathbb R}^m,$ so that the Jacobian matrix of first derivatives
 If each node can be stored in 20 bytes, then a function that requires one second of evaluation on a 100 megaflop computer may generate a graph which requires 2 Gb of storage! 	$J(\mathbf{\bar{x}}) = \left[\frac{\partial F_j}{\partial x_i}\right]_{\substack{j = 1, 2, \dots, m \\ i = 1, 2, \dots, n}}$
 The storage requirement can be reduced at the cost of extra arithmetics by partial forward and reverse sweeps; re-evaluating portions instead of storing the whole graph. This is known as checkpointing. 	can be formed using automatic differentiation. All we need is additional bookkeeping for the m components of F .
Peter Blomgren, {blomgren.peter@gmail.com} Automatic Differentiation - (21/28)	Peter Blomgren, (blomgren.peter@gmail.com) Automatic Differentiation — (22/28)
Derivatives Extended Example Automatic Differentiation Comments, Extensions, and Limitations	Derivatives Extended Example Automatic Differentiation Comments, Extensions, and Limitations
Extending AD to the Hessian (2 nd Derivatives) Fwd. Mode	Forward-Mode Hessian
The technique can also be adapted to evaluate the Hessian. In	Due to symmetry we only need to compute the $j \le i$ entries H_{ij} , and it is quite clear how to exploit sparsity.
The technique can also be adapted to evaluate the Hessian. In forward mode we need 2 seed vectors $\bar{\mathbf{p}}$ and $\bar{\mathbf{q}}$, and we define $D_{\bar{\mathbf{p}}\bar{\mathbf{q}}}x_i = \bar{\mathbf{p}}^T [\nabla^2 x_i] \bar{\mathbf{q}}$	
forward mode we need 2 seed vectors \bar{p} and \bar{q} , and we define	and it is quite clear how to exploit sparsity. The increase in the number of arithmetic computations compared

SAN DIEGO STATE UNIVERSITY

- (23/28)

In **Newton**-CG algorithms we only need the effect of the Hessian-vector product $\nabla^2 f(\mathbf{\bar{x}})\mathbf{\bar{r}}$, in this case we simply fix the second seed vector $\mathbf{\bar{q}} \equiv \mathbf{\bar{r}}$ and compute the remaining *n* entries

$$\mathbf{\bar{e}}_{j}^{T}\left[\nabla^{2}f(\mathbf{\bar{x}})\right]\mathbf{\bar{r}}=\left[\nabla^{2}f(\mathbf{\bar{x}})\mathbf{\bar{r}}\right]_{j}, \quad j=1,2,\ldots,n$$

using the forward sweep.

At the end of the sweep the terminal node contains the value of

 $D_{\mathbf{\bar{p}\bar{q}}}x_n = \mathbf{\bar{p}}^T \left[\nabla^2 x_i \right] \mathbf{\bar{q}} \equiv \mathbf{\bar{p}}^T \left[\nabla^2 f(\mathbf{\bar{x}}) \right] \mathbf{\bar{q}}$

Each pair $(\mathbf{\bar{p}}, \mathbf{\bar{q}}) = (\mathbf{\bar{e}}_i, \mathbf{\bar{e}}_j)$ gives the H_{ij} entry of the Hessian matrix.

- (24/28)

SAN DIEGO SI UNIVERSIT

Reverse-Mode Hessian

It is also possible to implement evaluation of the Hessian, $\nabla^2 f(\bar{\mathbf{x}})$, or the Hessian-vector product, $\nabla^2 f(\bar{\mathbf{x}})\bar{\mathbf{r}}$, in reverse mode.

Derivatives

Automatic Differentiation

Extended Example

Comments, Extensions, and Limitations

In the latter case, first both $f(\bar{\mathbf{x}})$ and $\nabla f(\bar{\mathbf{x}})^T \bar{\mathbf{r}}$ are propagated during the forward sweep and the values accumulated in $(x_i, D_{\bar{\mathbf{r}}} x_i)$.

Then we apply the reverse sweep to the computed $\nabla f(\bar{\mathbf{x}})^T \bar{\mathbf{r}}$, At the completion of the reverse sweep we have

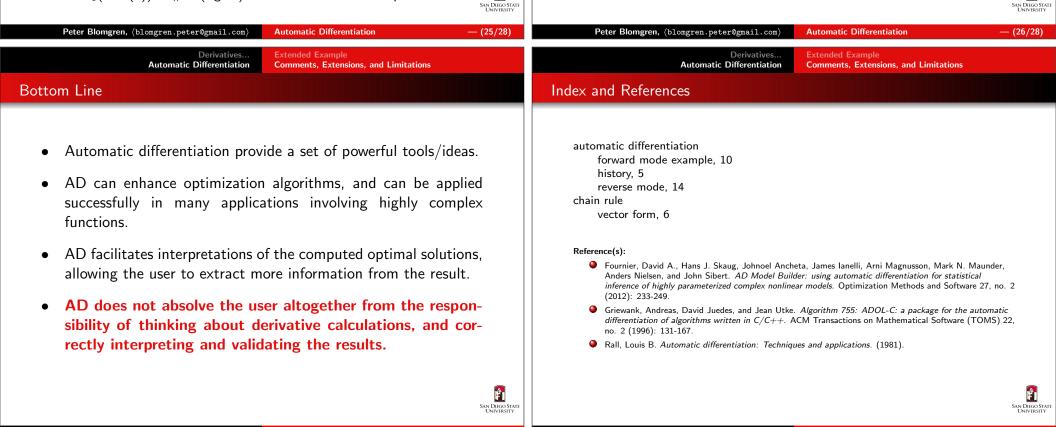
$$\frac{\partial}{\partial x_i} \left[\nabla f(\mathbf{\bar{x}})^T \mathbf{\bar{r}} \right] = \left[\nabla^2 f(\mathbf{\bar{x}}) \mathbf{\bar{r}} \right]_{i=1,2,\dots,n}$$

in the nodes corresponding to the independent variables.

The increase in work over evaluation of \boldsymbol{f} alone is a multiplicative factor not greater than

 $\sim 12 N_c(
abla^2 f(\mathbf{ar{x}}))$

where $N_c(\nabla^2 f(\bar{\mathbf{x}})) = \#$ of (right-)seed vectors used in computation.


1. f(x) depends on the numerical solution of a PDE

In this case $f(\bar{\mathbf{x}})$ may contain truncation errors due to the scheme used to solve the PDE. Even though the truncation errors are small $|\tau(\bar{\mathbf{x}})| < \epsilon$, we cannot control the derivative (gradient) $\tau'(\bar{\mathbf{x}})$, hence errors in AD-computed $f'(\bar{\mathbf{x}})$ can potentially be large.

2. Perverse code

Due to branching (if-statements, etc.) a function evaluation may be equivalent to the following **valid** but nasty piece of code:

if (x == 1.0) then { f = 0.0; } else { f = x - 1.0; } Automatic differentiation would most likely give us f'(1) = 0, which does not seem like a Good IdeaTM.

(27/28)

Ê

(28/28)