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Recall: Our Problem is the “Easy Case”

We have been looking at local methods for the unconstrained,
continuous, deterministic problem

min
x̄∈Rn

f (x̄)

where, most of the time, the objective f (x̄) is convex (or locally
convexified).

Easier Harder

Unconstrained Constrained
Continuous Variables Discrete Variables
Local Optimization Global Optimization
Deterministic Stochastic
Convex Non-Convex

Table: Summary of some factors impacting the difficulty of the optimization problem.
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Solving the Problem

We would like to find the global minimizer, i.e. a solution to the
unconstrained optimization — a point x̄∗ ∈ R

n such that

f (x̄∗) ≤ f (x̄, ) ∀x̄ ∈ R
n.

One of the first things we realized was that in general we cannot
achieve this goal. Instead we solve a sequence of local minimization
problems

min
x̄∈Rn

mk(x̄), where mk(x̄) ≈ f (x̄) for x̄ ≈ x̄k .

Our goal is to generate a sequence of points {x̄k}
∞
k=0 which converge to

a local minimum x̄∗, where f (x̄∗) ≤ f (x̄), ∀x̄ ∈ N(x̄∗).

We have required our sequences to be strictly monotone, i.e.

f (x̄0) > f (x̄1) > · · · > f (x̄k) > f (x̄k+1) > · · · ≥ f (x̄∗)
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What We Have Studied

We have spent the last 20 lectures looking for robust, efficient,
and accurate methods for

finding the next iterate x̄k+1,

using information about the objective at the current point x̄k .

In some cases — Conjugate Gradient (Truncated Newton)
methods, and quasi-Newton methods — we also implicitly or
explicitly use information about the objective at earlier iterates x̄j ,
j < k .

We have looked at a significant number of methods; the purpose
of this lecture is to review them and put them into a somewhat
unified context.
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Unconstrained Optimization: A Rough Roadmap

min m_k(x)linesearch trustregion

Steepest

Descent

Coordinate

Descent

Newton

Methods

CG−Newton

(Truncated Newton)

quasi−Newton

BFGS / DFP

Cauchy

Point

Dogleg 2D−Subspace

Minimization

Nearly

Exact

Newton

Methodsquasi−Newton

BFGS / DFP SR1

CG−Newton

Steihaug’s

Method

Figure: A very rough breakdown of the types of methods we have studied.
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Line Search vs. Trust-Region

Line search based algorithms reduce the n-dimensional optimization
problem to a one-dimensional problem

min
x̄∈Rn

f (x̄) ⇒ αk = argmin
α>0

f(x̄k + αp̄k),

where p̄k is a chosen search direction; x̄k+1 = x̄k + αk p̄k .

Trust region based methods use a different approach. Using information
gathered about the objective f , a simpler model function is generated.

A model function mk(x̄) approximates the behavior of f (x̄) in a
neighborhood of x̄k , e.g. Taylor expansion

mk(x̄k + p̄) = f (x̄k) + p̄T∇f (x̄k) +
1

2
p̄THk p̄, where Hk ≈ ∇2f (x̄k).

Then the solution of the sub-problem gives x̄k+1 = x̄k + p̄k :

p̄k = argmin
p̄∈N(x̄k)

mk(x̄k + p̄), where N(x̄k) is the trust region.
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Line Search Methods: Subproblem #1 — The Search Direction

Line search methods break down into two major subproblems, which can
be solved in a number of ways.

[1] Identifying the search direction p̄k .

[a] Steepest Descent: p̄k = −∇f (x̄k).

[b] Coordinate Descent: p̄k = −ē[1+(k mod n)].

[c] “Pure” Newton Step: p̄k = −[∇2f (x̄k)]
−1∇f (x̄k).

[d] Modified Newton Step: p̄k = −[∇2f (x̄k) + Ek ]
−1∇f (x̄k).

[c2] Truncated (CG) Newton Step:
p̄k ≈ −[∇2f (x̄k)]

−1∇f (x̄k) (CG-solver for lin. sys.)

[d2] Truncated (CG) Modified Newton Step:
p̄k ≈ −[∇2f (x̄k) + Ek ]

−1∇f (x̄k).

[e] Quasi-Newton Step: p̄k = −B−1
k ∇f (x̄k), where we have an update

formula for B−1
k — e.g. DFP, BFGS, or the restricted Broyden class.
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Line Search Methods: Subproblem #2 — The Step Length 1 of 2

[2] Identifying the step length αk .

Conditions needed to guarantee convergence:

[c1] Wolfe Conditions — requires more than just descent; i.e.

sufficient descent at each step.

[c2] Strong Wolfe Conditions — slightly stronger than the Wolfe
conditions; gives more descent than the Wolfe conditions in
some cases.

[c3] Goldstein conditions — similar to the Wolfe conditions.
Often used in Newton-type methods, but not well suited for
quasi-Newton methods.
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Line Search Methods: Subproblem #2 — The Step Length 2 of 2

[2] Identifying the step length αk .

Methods for finding αk :

[m1] Backtracking line-search (satisfies∗ the Wolfe conditions, without
explicitly checking the second condition.)

[m2] Line-search with quadratic / cubic interpolation.

The Initial Step Length α
(0)
k :

[s1] As we get close to the optimum x̄∗ we must test α
(0)
k = 1 first.

This is required in order to achieve maximal convergence rate for
the overall method.

[s2] Further away from x̄∗ we would like some clever heuristic so that,

e.g. α
(0)
k ∼ αk−1.
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Line Search Methods: Rules of Thumb 1 of 2

Since the cost of quasi-Newton methods (super-linear
convergence) are essentially the same as the cost of steepest
descent (linear convergence) — evaluation of the objective and its
gradient — steepest descent should never be used.

Coordinate descent should only be used if evaluation of the
gradient is very expensive, and the independent variables are
loosely coupled. — The stronger the coupling of the variables, the
worse the performance.

Newton methods (quadratic convergence) are preferred when
evaluation of the Hessian ∇2f (x̄) is reasonably cheap, and the
solution of the linear system ∇2f (x̄)p̄k = −∇f (x̄) can be
computed efficiently. Otherwise quasi-Newton methods are
preferred.
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Line Search Methods: Rules of Thumb 2 of 2

The overall performance of Newton methods sometimes benefit
greatly from an inexact solution of the linear system. A tolerance
terminated CG-solution (truncated Newton) is a good choice, as
long as the tolerance is chosen carefully in order to retain overall
quadratic convergence.

The line search requires p̄k to be a descent direction, this cannot
be guaranteed if ∇2f (x̄) is indefinite. In order to guarantee
convergence for Newton and truncated Newton methods, the
Hessian must be modified Hk = ∇2f (x̄) + Ek , so that Hk is
Symmetric Positive Definite.

For quasi-Newton methods, BFGS is the preferred method in the
line-search context.
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Trust-Region Methods

The trust-region sub-problem

p̄k = argmin
p̄∈Rn

mk(p̄), such that p̄ ∈ Tk
usually
= {p̄ ∈ R

n : ‖p̄‖ ≤ ∆k},

where

mk(p̄) = f (x̄k) +∇f (x̄k)
T p̄+

1

2
p̄TBk p̄,

is a locally constrained minimization problem which (from a
line-search-centric standpoint) gives both the direction and step
length simultaneously.

There are several ways of approaching the (approximate, but
sufficiently good) solution of the trust-region sub-problem.
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Trust-Region Methods: The Sub-Problem 1 of 4

[1] The Cauchy Point, sufficient for global convergence

[a] The minimization of the quadratic model in the steepest de-
scent direction. p̄sk = argminp̄∈Tk

f (x̄k) + ∇f (x̄k)
T p̄, then find

τk = argminτ>0 mk(τ p̄
s
k), such that (τ p̄sk) ∈ Tk .

[2] Improvements to the Cauchy Point

[a] Dogleg Method: Minimize the objective over the path:
x̄k → p̄U → p̄B subject to the trust-region constraint. Here
p̄U is the unconstrained minimizer of the model in the steepest
descent direction, and p̄B the full step −B−1

k ∇f (x̄k).

[b] 2D Subspace: search for the minimizer of mk(p̄) in the subspace
(plane) spanned by the steepest descent direction and the full step,
i.e.

p̄k = argmin
p̄∈span{∇f (x̄k ),B

−1
k

∇f (x̄k )}

mk(p̄)
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Trust-Region Methods: The Sub-Problem 2 of 4

[2] Improvements to the Cauchy Point

[c] Note that the Cauchy point “lives” on the dogleg path,
hence the dogleg method will do as well, or better than the
Cauchy point. Further, the dogleg path is contained in the
2D subspace, hence the 2D-subspace minimization will do as
well, or better than the dogleg method.

[d] For problems with few independent variables, the sub-problem
can be solved nearly exactly by a Newton iteration on the
parameter λk which makes Bk + λk I symmetric positive
semi-definite, and for which p̄k = [Bk + λk I ]

−1∇f (x̄k) either
lies on the trust-region boundary, or λ = 0.
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Trust-Region Methods: The Sub-Problem 3 of 4

[2] Improvements to the Cauchy Point

[e] If we relax the requirement on an exact solution of the simplified
(dogleg, 2D subspace, nearly exact) subproblem, we can apply a
truncated (CG) solver in the solution of the linear systems.

[3] The Hessian Approximation Bk

[a] If/when Bk is an “honest” attempt at approximating the Hessian
∇2f (x̄k):

[α] The Cauchy point method should not be used — only linearly
convergent.

[β] Dogleg OK if ∇2f (x̄k) always is positive semidefinite.

[γ] When ∇2f (x̄k) is indefinite, 2D-subspace (with Hessian modifi-
cation Hk = ∇2f (x̄k) + λI ), nearly exact solution, or truncated
Newton (Steihaug’s method) works.
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Trust-Region Methods: The Sub-Problem 4 of 4

[3] The Hessian Approximation Bk

[aβγ] If done correctly convergence rate is quadratic.

[b] Bk is updated by a quasi-Newton update-formula.

[α] Use BFGS update if it is known that the objective is convex, i.e.
∇2f (x̄k) is SPD.

[β] Use SR1 update if ∇2f (x̄k) is indefinite, since the SR1 update can
capture this behavior.

[γ] Super-linear convergence-rate is expected of quasi-Newton meth-
ods.

Warning: In all cases (trust-region and line-search): Always be careful
with tolerances and bounds in the hierarchy of sub-problems to be
solved. One small mistake can easily break the expected quadratic or
super-linear convergence, and give linear convergence (or worse).
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