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In least squares problems, the objective function f has a special
form

1
f(x) =3 ri(x)?, xcR”

j=1

we refer to each r; as a residual. We assume, for now, that m > n
so that we have more residuals than dimensions (independent
variables). [OVER-DETERMINED]

The least squares formulation is useful for fitting model parameters
to data and has applications in a wide range of fields: chemistry,
physics, engineering, finance, economics, etc.

It answers the question “What model (in a certain class) best
fits the observed data?”
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The least-squares-objective has a special form, which makes it
easier to solve than general non-linear minimization problems:

We assemble the residual vector
r(x) = [rn(X), n(X), ...

Hence, the objective can be written as

(X))

(%) = 27 () TF(®) = o [[FR) 3

We are going to express the derivatives of f(X) in terms of the
Jacobian of ¥(x), which is the m x n matrix of first partial
derivatives defined by
- Ir(x) i
0= 52 >
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With the Jacobian notation we can write

VFR) = > r(®VhE) =J&THE)
=1
V(R = D VREVLET +> 5®)V5()
j=1 j=1
= JRTIE+ D RV
j=1

Usually J(X) can be computed explicitly without too much work. This
gives us a way to get the gradient V£(X). Further, this gives us the first
“half” of the Hessian V2f(X) for “free,” i.e. without computing any
second derivatives.

In many applications, the second part of the Hessian is small. When this
happens we can exploit this by approximating V2f(X) ~ J(X) J(X) so

All our previously defined minimization algorithms can be applied
to the least squares problem

O .
min £(X) = 5 min [[F()|2

In essence, we just take our old algorithms, and change them to
exploit the special structure of the gradient and Hessian.

Prior to hammering out all the gory details, lets take a closer look
at the origins of nonlinear least-squares problems.

that we have a good approximation of the Hessian, without
computing any second derivatives!!! PR PR
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Example: We study the effect of a certain medication on a 14
patient. Blood is drawn at certain times {t;} after the patient
takes a dose — the concentration of the medication in the sl |
patient’s blood-stream {y;} is measured.
We think that the following model is a good description of the 12} ]
process
z- —x3t
(D(X, t) =Xx1 +Xot+e 3 (RIS 1
Here, x1, x2, and x3 are the parameters of the model (to be
determined), and ¢ indicates time. 1t 3
We seek to determine the parameters so that the discrepancy
between the concentrations predicted by the model {®(X; t;)}, and a5z 25 s 85 4 45 s
the observed concentrations {y_/} are minimized in the least Figure: An illustration of the discrepancy between the model (solid blue line), and the
n measurements (red dots). The size of the deviation is indicated by the solid gy
squares sense smusnm red vertical Iines. SANDSTATI
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Least Squares Fitting: Background / Example #3 30f 3 Least Squares Fitting: Background / Example #2
The least-squares error is measured by the objective
1 m 2
iR = 5 |y - o 1)
Jj=1
Note that at this point {t;, y;, }7_; are known, and the values X are
unknown.
By solving the least-squares-problem
Figure: Neonatal cardiocyte.
X" = arg min f(X)
XERN . . . . .
Possible model for Ca?* ion concentration in a cardiocyte during
we find the model the relaxation phase:
DX t) = xF + x5t + e Nt _ _
(X5 45) =1 +xat + c(t)=Ae®t + Be Pt
which best fits the measurements.
Rl Alternative Ideas: “Exponential Peeling.” Rl
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The previous example (#1) is an instance of what is known as a
fixed-regressor model in statistics. It assumes that the times {t;}
at which we draw blood are known to high accuracy, while the
observations {y;} contain “random” errors due to equipment
limitations and/or human error.

The least-squares objective is by far not the only way to measuring
the discrepancy, we could use

m m

> [yj - O(x; tj)} 16, or »

j=1 Jj=1

yj — ®(x; t;)|, or = max
j=1,2

yeeny

yi — ®(X; tj)
m

However, the sum-of-squares measure is

(i)  easier to work with
(ii)  (usually) the correct choice for statistical reasons...
SR
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” Close your eyes if you are a real statistician! ‘

Let ¢; denote the discrepancy at measurement #;, i.e.
=y — ®X 1)

In many cases it is reasonable to assume that the ¢; are independent
and identically distributed (“iid”), with a variance o2 and probability
density function g,(+).

This assumption will often be true, e.g. when the model
accurately reflects the actual process, and when the errors do
not contain a “systematic” component.

Under this assumption, the likelihood of a particular set of observations
{y;} given that the actual parameter vector is X is given by:

p: %,0) =[] ()
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” Close your eyes if you are a real statistician! H

Since the observations {y;} are known, the most likely value of X is
obtained by maximizing p(¥; X, o) with respect to X. The resulting value
X* is called the maximum likelihood estimate of the parameters.

When the discrepancies are assumed to be normally distributed, we have
@=— -
€)= ——=exp | —=
8o Pmo? p 252

so that

[y — ¢ )

1 m
—; S =2 21—m/2 -
P5:5.0) = 2o e <3

” Close your eyes if you are a real statistician! ‘

Summary (Statistical motivation)

When the discrepancies are assumed to be independent, identically
distributed with a normal distribution function, the maximum
likelihood estimate is obtained by minimizing the sum of the
squares.

These assumptions on {¢;} are very common, but do not describe
the only situation for which the minimizer of the sum-of-squares

o2 makes statistical sense.
Disclaimer: With apologies to all real statisticians out there...
It is clear that p(¥; X, o) is maximized when the sum-of-squares
Zm [ L CD()_( t)]2 is minimized SAN DIEGO STATE SAN DIEGO STATE
=11 iy . VRS Ve
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When each function rj(X) is linear, the Jacobian J is constant, and
we have

- 1 _ - -
F(%) = 5llJ% + Foll3, Fo = F(0).
the gradient and Hessian are also simple expressions

VFR)=JT(Ux+T0), V3 (x)=JTJ.
The objective is convex; solving for the stationary point
V£ (X*) = 0 gives the system of equations

JTIx = —J7¥,

this system of equations is known as the normal equations.
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The linear least squares problem is of interest since many models used in
practice ®(X; t) are linear.

The linear least squares problem is really a question of numerical linear
algebra (Math 543, and Math 541), but given its importance it is worth
taking a quick look at three algorithms for finding the solution.

We assume:

e m > n. (OVER-DETERMINED: More measurements than parameters)
e J has full column rank.

The Cholesky factorization RTR = JTJ (where R is n x n upper
triangular, and J is m x n) is guaranteed to exist when these assumptions
are true.
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Approach #1: Direct solution of the Normal Equations.

e Compute the coefficient matrix J7J and the right-hand-side
—J7v.

e Compute the Cholesky factorization RT R = cholesky(J'J) of
the symmetric matrix J7 J.

e Perform a forward and backward substitution with the Cholesky
factors to recover the solution X*.

This approach has one significant disadvantage. — The condition
number of JT J

A e JTJ O max J 2
cond(JTJ) _ w = cond(J)z _ {gmin((J))]

The relative error of the computed solution is (usually) proportional to
the condition number, the fact that cond(J7 J) = cond(J)? is very bad
news indeed when J is ill-conditioned.

Note: J7 J is essentially a Hilbert matrix.

In the worst case scenario, the Cholesky factorization may break down
due to roundoff errors when when J is ill-conditioned!

Approach #2: QR-factorization of / — JI1 = QR, where Q is

orthonormal, and R upper triangular

Since the Euclidean norm is invariant under orthogonal transformations,
we have

[JX +TFoll2 = | U(JX +TFo)]|2

for any m x m orthogonal matrix U.

is the square of the condition number of J.
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Suppose we perform (Math 543) a QR-factorization with column
pivoting on the matrix J to obtain

1] (@ o][£]-on

M is an n X n permutation matrix (= orthogonal)
@ is m x m orthogonal

Q1 is the first n columns of Q.

Q> is the remaining (m — n) columns of Q.

R is n x n upper triangular

n-q|

where

SAN DIEGO STATE
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This gives us

2

.
R+ Rl3 = H[gﬂ(JnnTHro)

IHGEN

= [|IR(NT%)

2

2

Ql F0 ]
Q2 F0

2
+ QT3 +11Q3Foll3

The second part is unaffected by X, but setting the first term to zero
minimizes ||JX + ¥ol|3, i.e. we find

x* = -NR Q]

In practice, RZ = —Q, ¥y is solved by backward substitution, and then
% =3z
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The .QR—based approach _does .not square th.e condition num.ber of J. The Hits on scholar.google. com.
relative error of the solution will be proportional to a value in the range

[cond(J), cond(J)?], usually <cond(J)?, rather than cond(J)? for the Search Term 1/2004 1172007 _ 11/2009 1172010

direct solution of the normal equations. Principal.Component.Analysis 46,500 178,000 436,000 603,000

. . . Singular.Value.Decomposition 19,800 71,200 103,000 135,000

In most situations, the QR-based approach is the way to go. Karhunen.Loeve 638 11,900 16,800 20,200

. . . Canonical.Correlation.Analysis 2,420 10,400 14,100 19,600

However, if/when we require maximal robustness and/or want to extract Empirical. Orthogonal.(Function|Functions) 2,040 10,100 12,400 15,400

more information about the sensitivity of the solution to errors in J or ¥y Proper.Orthogonal.Decomposition 977 3,490 5,160 7,820

we can bring out the big hammer — 11/2011 11/2012  11/2013  11/2014

Principal.Component.Analysis 672,000 874,000 1,140,000 1,340,000

Approach #3: Singular Value Decomposition (SVD) of J. Singular.Value.Decomposition 158,000 178,000 219,000 256,000

] ) Karhunen.Loeve 21,700 23,700 27,300 29,300

The SVD [mathematics] is known by many names: the Proper Orthog- Canonical.Correlation.Analysis 22,600 25,100 29,200 32,600

onal Decomposition (POD), the Karhunen-Loéve (KL-) Decomposition Empirical.Orthogonal.(Function|Functions) 16,800 19,600 22,800 25,700

[signal analysis], Principal Component Analysis (PCA) [statistics], Proper.Orthogonal. Decomposition 7,850 9,340 12,500 15,200

Empirical Orthogonal Functions, etc...

SAN DIEGO STATE
UNIVERSITY

Table: The many names, faces, and close relatives of the Singular Value Decomposition...
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Hits on scholar.google. com. The SVD of J is given by (Math 543)
Search Term 1172011  11/2012 11/2013  11/2014 - S T S T T
Principal.Component.Analysis 672,000 874,000 1,140,000 1,340,000 J=U 0 V= Ul U2 0 Vi= U]SV
Singular.Value.Decomposition 158,000 178,000 219,000 256,000
Karhunen.Loeve 21,700 23,700 27,300 29,300
Canonical.Correlation.Analysis 22,600 25,100 29,200 32,600 where
Empirical.Orthogonal.(Function|Functions) 16,800 19,600 22,800 25,700 U - th |
Proper.Orthogonal.Decomposition 7,850 9,340 12,500 15,200 Is-m X m-or _Ogona
11/2016  11/2017 11/2018 11/20nn Ui contains the first n columns of U
P-rmC|pa|.Component.Ana-I}{sm 1,800,000 1,940,000 2,170,000 U2 contains the remaining (m _ n) columns of U
Singular.Value.Decomposition 337,000 407,000 441,000 i
Karhunen. Loeve 33,400 38000 41,900 V' is n X n orthogonal
Cano.n.ical.Correlation.AnaIys.is . 42,200 49,500 54,200 S is n x n diagonal, with elements 0y > 0 > --- > 0, > 0.
Empirical.Orthogonal.(Function|Functions) 32,400 38,000 40,700
Proper.Orthogonal.Decomposition 18,800 22,400 24,600 Note that JTJ _ \/52 \/T, so that the columns of V are

Table: The many names, faces, and close relatives of the Singular Value Decomposition...
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eigenvectors of JT J with eigenvalues o2
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Now,

2

- - S _ ul .-
enls = (|5 ] v | g |

= |S(VTR) + UTTol[3 + [[UT o[

2

Again, we find the optimum by setting the first contribution to
zero, I.e.

_T_

Vi,

n
=VSTIUR = )
i=1 !

where u; and v; are the ith columns of U and V/, respectively.

SAN DIEGO STATE
UNIVERSITY

The expression for the optimum,

gives us information about the sensitivity of X*. When o; is small,
X* is particularly sensitive to perturbations that affect ﬁ,-TFo.

This information is useful when o,/01 < 1 (J nearly
rank-deficient).
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Summary: Three Methods for J7 Jx* = —JT¥,.

All three approaches are useful under the right circumstances

e Cholesky-based algorithm is particularly useful when m > n,
in this case it is practical to store JTJ, but not J. When
J is rank-deficient or ill-conditioned diagonal pivoting must
be implemented to limit the propagation of round-off errors.
(This approach to be used sparingly)

e In the QR-approach with column pivoting, ill-conditioning
usually causes the elements in the lower right-hand corner of
the matrix R to be much smaller than the other elements. The
strategy produces a solution to a nearby problem in which J
is slightly perturbed. (This is the preferred every-day approach)

i
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e The SVD-approach is the most robust and reliable for ill-
conditioned problems. When J is actually rank deficient, some
of the singular values o; are exactly zero. Any vector of the form

- T_
- u; ro -
X = E L — 4+ g TiV;

Oij .
%0 #0) i:(c;=0)

(for any values 7;) is a minimizer of the least-squares problem.
Usually the minimum-norm (7; = 0) solution is desirable.
(When J is rank-deficient, this is the only approach of the three
that works)

With these results in our tool-box, we are ready to attack the
solution of the non-linear least squares problem next time.
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