# Numerical Optimization

> Peter Blomgren, \( \text{blomgren.peter@gmail.com} \)

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720
http://terminus.sdsu.edu/

Fall 2018



#### Outline

- Nonlinear Least Squares Problems
  - Introduction
  - Example / Background
- Special Case: Linear Least Squares
  - Quick Review / Crash Course



In least squares problems, the objective function f has a special form

$$f(\mathbf{\bar{x}}) = \frac{1}{2} \sum_{j=1}^{m} r_j(\mathbf{\bar{x}})^2, \quad \mathbf{\bar{x}} \in \mathbb{R}^n$$

we refer to each  $r_j$  as a **residual**. We assume, for now, that  $m \ge n$  so that we have more residuals than dimensions (independent variables). [OVER-DETERMINED]

The least squares formulation is useful for fitting model parameters to data and has applications in a wide range of fields: chemistry, physics, engineering, finance, economics, etc.

It answers the question "What model (in a certain class) best fits the observed data?"



The least-squares-objective has a special form, which makes it easier to solve than general non-linear minimization problems:

We assemble the **residual vector** 

$$\bar{\mathbf{r}}(\bar{\mathbf{x}}) = [r_1(\bar{\mathbf{x}}), r_2(\bar{\mathbf{x}}), \ldots, r_m(\bar{\mathbf{x}})]^T.$$

Hence, the objective can be written as

$$f(\bar{\mathbf{x}}) = \frac{1}{2}\bar{\mathbf{r}}(\bar{\mathbf{x}})^T\bar{\mathbf{r}}(\bar{\mathbf{x}}) = \frac{1}{2}||\bar{\mathbf{r}}(\bar{\mathbf{x}})||_2^2.$$

We are going to express the derivatives of  $f(\bar{\mathbf{x}})$  in terms of the **Jacobian** of  $\bar{\mathbf{r}}(\bar{\mathbf{x}})$ , which is the  $m \times n$  matrix of first partial derivatives defined by

$$J(\overline{\mathbf{x}}) = \left[\frac{\partial r_j(\overline{\mathbf{x}})}{\partial x_i}\right]_{\substack{j=1,2,\ldots,m\\i=1,2,\ldots,n}}^{j=1,2,\ldots,m}$$



## Nonlinear Least Squares Problems: Introduction

With the Jacobian notation we can write

$$\nabla f(\bar{\mathbf{x}}) = \sum_{j=1}^{m} r_j(\bar{\mathbf{x}}) \nabla r_j(\bar{\mathbf{x}}) = J(\bar{\mathbf{x}})^T \bar{\mathbf{r}}(\bar{\mathbf{x}})$$

$$\nabla^2 f(\bar{\mathbf{x}}) = \sum_{j=1}^{m} \nabla r_j(\bar{\mathbf{x}}) \nabla r_j(\bar{\mathbf{x}})^T + \sum_{j=1}^{m} r_j(\bar{\mathbf{x}}) \nabla^2 r_j(\bar{\mathbf{x}})$$

$$= J(\bar{\mathbf{x}})^T J(\bar{\mathbf{x}}) + \sum_{j=1}^{m} r_j(\bar{\mathbf{x}}) \nabla^2 r_j(\bar{\mathbf{x}})$$

Usually  $J(\bar{\mathbf{x}})$  can be computed explicitly without too much work. This gives us a way to get the gradient  $\nabla f(\bar{\mathbf{x}})$ . Further, this gives us the first "half" of the Hessian  $\nabla^2 f(\bar{\mathbf{x}})$  for "free," i.e. without computing any second derivatives.

In many applications, the second part of the Hessian is small. When this happens we can exploit this by approximating  $\nabla^2 f(\bar{\mathbf{x}}) \approx J(\bar{\mathbf{x}})^T J(\bar{\mathbf{x}})$  so that we have a good approximation of the Hessian, without computing any second derivatives!!!



All our previously defined minimization algorithms can be applied to the least squares problem

$$\min_{\bar{\mathbf{x}} \in \mathbb{R}^n} f(\bar{\mathbf{x}}) = \frac{1}{2} \min_{\bar{\mathbf{x}} \in \mathbb{R}^n} \|\bar{\mathbf{r}}(\bar{\mathbf{x}})\|_2^2$$

In essence, we just take our old algorithms, and change them to exploit the special structure of the gradient and Hessian.

Prior to hammering out all the gory details, lets take a closer look at the origins of nonlinear least-squares problems.



Least Squares Fitting: Background / Example #1

1 of 3

**Example:** We study the effect of a certain medication on a patient. Blood is drawn at certain times  $\{t_j\}$  after the patient takes a dose — the concentration of the medication in the patient's blood-stream  $\{y_j\}$  is measured.

We think that the following **model** is a good description of the process

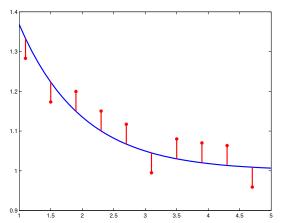
$$\Phi(\overline{\mathbf{x}};\,\mathbf{t}) = \mathbf{x}_1 + \mathbf{x}_2\mathbf{t} + \mathbf{e}^{-\mathbf{x}_3\mathbf{t}}$$

Here,  $x_1$ ,  $x_2$ , and  $x_3$  are the **parameters** of the model (to be determined), and t indicates time.

We seek to determine the parameters so that the discrepancy between the concentrations predicted by the model  $\{\Phi(\bar{\mathbf{x}}; t_j)\}$ , and the observed concentrations  $\{y_j\}$  are minimized in the least squares sense.



# Least Squares Fitting: Background / Example #1



**Figure:** An illustration of the discrepancy between the model (solid blue line), and the measurements (red dots). The size of the deviation is indicated by the solid red vertical lines.



2 of 3

The least-squares error is measured by the objective

$$f(\mathbf{\bar{x}}) = \frac{1}{2} \sum_{j=1}^{m} \left[ y_j - \Phi(\mathbf{\bar{x}}; t_j) \right]^2$$

Note that at this point  $\{t_j, y_j, \}_{j=1}^m$  are known, and the values  $\overline{\mathbf{x}}$  are unknown.

By solving the least-squares-problem

$$ar{\mathbf{x}}^* = rg\min_{ar{\mathbf{x}} \in \mathbb{R}^n} f(ar{\mathbf{x}})$$

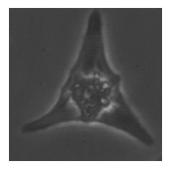
we find the model

$$\Phi(\bar{x}^*; t_i) = x_1^* + x_2^*t + e^{-x_3^*t}$$

which best fits the measurements.



### Least Squares Fitting: Background / Example #2



**Figure:** Neonatal cardiocyte.

Possible model for Ca<sup>2+</sup> ion concentration in a cardiocyte during the relaxation phase:

$$c(t) = A e^{-\alpha t} + B e^{-\beta t}.$$



## Least Squares Fitting: Background

The previous example (#1) is an instance of what is known as a **fixed-regressor model** in statistics. It assumes that the times  $\{t_j\}$  at which we draw blood are known to high accuracy, while the observations  $\{y_j\}$  contain "random" errors due to equipment limitations and/or human error.

The least-squares objective is by far not the only way to measuring the discrepancy, we could use

$$\sum_{j=1}^{m} \left[ y_j - \Phi(\bar{\mathbf{x}}; t_j) \right]^{16}, \text{ or } \sum_{j=1}^{m} \left| y_j - \Phi(\bar{\mathbf{x}}; t_j) \right|, \text{ or } \max_{j=1,2,\ldots,m} \left| y_j - \Phi(\bar{\mathbf{x}}; t_j) \right|$$

However, the sum-of-squares measure is

- (i) easier to work with
- (ii) (usually) the correct choice for statistical reasons...



## Least Squares Fitting: Background — Statistics (Handwaving)

1 of 3

Close your eyes if you are a real statistician!

Let  $\epsilon_j$  denote the discrepancy at measurement #j, i.e.

$$\epsilon_j = y_j - \Phi(\mathbf{\bar{x}}; t_j)$$

In many cases it is reasonable to assume that the  $\epsilon_j$  are **independent** and **identically distributed** ("iid"), with a variance  $\sigma^2$  and probability density function  $g_{\sigma}(\cdot)$ .

This assumption will often be true, e.g. when the model accurately reflects the actual process, and when the errors do not contain a "systematic" component.

Under this assumption, the likelihood of a particular set of observations  $\{y_j\}$  given that the actual parameter vector is  $\overline{\mathbf{x}}$  is given by:

$$ho(\mathbf{ar{y}};\,\mathbf{ar{x}},\sigma)=\prod_{j=1}^m g_\sigma(\epsilon_j)$$



Least Squares Fitting: Background — Statistics (Handwaving)

2 of 3

Close your eyes if you are a real statistician!

Since the observations  $\{y_j\}$  are known, the *most likely* value of  $\bar{\mathbf{x}}$  is obtained by maximizing  $p(\bar{\mathbf{y}}; \bar{\mathbf{x}}, \sigma)$  with respect to  $\bar{\mathbf{x}}$ . The resulting value  $\bar{\mathbf{x}}^*$  is called the **maximum likelihood estimate** of the parameters.

When the discrepancies are assumed to be normally distributed, we have

$$g_{\sigma}(\overline{\epsilon}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\epsilon^2}{2\sigma^2}\right)$$

so that

$$p(\mathbf{\bar{y}}; \mathbf{\bar{x}}, \sigma) = [2\pi\sigma^2]^{-m/2} \exp\left(-\frac{1}{2} \sum_{j=1}^m \frac{[y_j - \Phi(\mathbf{\bar{x}}; t_j)]^2}{\sigma^2}\right)$$

It is clear that  $p(\bar{\mathbf{y}}; \bar{\mathbf{x}}, \sigma)$  is maximized when the sum-of-squares  $\sum_{i=1}^{m} [y_j - \Phi(\bar{\mathbf{x}}; t_j)]^2$  is minimized.



Least Squares Fitting: Background — Statistics (Handwaving)

3 of 3

Close your eyes if you are a real statistician!

Summary (Statistical motivation)

When the discrepancies are assumed to be independent, identically distributed with a normal distribution function, the maximum likelihood estimate is obtained by minimizing the sum of the squares.

These assumptions on  $\{\epsilon_j\}$  are very common, but do **not** describe the **only** situation for which the minimizer of the sum-of-squares makes statistical sense.

Disclaimer: With apologies to all real statisticians out there...



When each function  $r_j(\bar{\mathbf{x}})$  is linear, the Jacobian J is constant, and we have

$$f(\overline{\mathbf{x}}) = \frac{1}{2} \|J\overline{\mathbf{x}} + \overline{\mathbf{r}}_0\|_2^2, \quad \overline{\mathbf{r}}_0 = \overline{\mathbf{r}}(0).$$

the gradient and Hessian are also simple expressions

$$\nabla f(\overline{\mathbf{x}}) = J^T (J\overline{\mathbf{x}} + \overline{\mathbf{r}}_0), \quad \nabla^2 f(\overline{\mathbf{x}}) = J^T J.$$

The objective is convex; solving for the stationary point  $\nabla f(\mathbf{\bar{x}}^*) = 0$  gives the system of equations

$$J^T J \bar{\mathbf{x}^*} = -J^T \bar{\mathbf{r}}_0,$$

this system of equations is known as the normal equations.



The linear least squares problem is of interest since many models used in practice  $\Phi(\bar{\mathbf{x}}; t)$  are linear.

The linear least squares problem is really a question of numerical linear algebra (Math 543, and Math 541), but given its importance it is worth taking a quick look at three algorithms for finding the solution.

#### We assume:

- $m \ge n$ . (OVER-DETERMINED: More measurements than parameters)
- J has full column rank.

The Cholesky factorization  $R^TR = J^TJ$  (where R is  $n \times n$  upper triangular, and J is  $m \times n$ ) is guaranteed to exist when these assumptions are true



## **Approach** #1: Direct solution of the Normal Equations.

- Compute the coefficient matrix  $J^TJ$  and the right-hand-side  $-J^T\overline{\mathbf{r}}_0$ .
- Compute the Cholesky factorization  $R^T R = \text{cholesky}(J^T J)$  of the symmetric matrix  $J^T J$ .
- Perform a forward and backward substitution with the Cholesky factors to recover the solution  $\bar{\mathbf{x}}^*$ .

This approach has one significant disadvantage. — The condition number of  $J^TJ$ 

$$\operatorname{cond}(J^T J) = \frac{|\lambda|_{\max}(J^T J)}{|\lambda|_{\min}(J^T J)} = \operatorname{cond}(J)^2 = \left[\frac{\sigma_{\max}(J)}{\sigma_{\min}(J)}\right]^2$$

is the square of the condition number of J.



The relative error of the computed solution is (usually) proportional to the condition number, the fact that  $cond(J^TJ) = cond(J)^2$  is very bad news indeed when J is ill-conditioned.

**Note:**  $J^TJ$  is essentially a Hilbert matrix.

In the worst case scenario, the Cholesky factorization may break down due to roundoff errors when when J is ill-conditioned!

**Approach #2: QR-factorization of** J —  $J\Pi = QR$ , where Q is orthonormal, and R upper triangular

Since the Euclidean norm is invariant under orthogonal transformations, we have

$$||J\mathbf{\bar{x}} + \mathbf{\bar{r}}_0||_2 = ||U(J\mathbf{\bar{x}} + \mathbf{\bar{r}}_0)||_2$$

for any  $m \times m$  orthogonal matrix U.



Suppose we perform (Math 543) a QR-factorization with column pivoting on the matrix J to obtain

$$\mathsf{J}\mathsf{\Pi} = \mathsf{Q} \left[ \begin{array}{c} R \\ 0 \end{array} \right] = \left[ \begin{array}{c} Q_1 & Q_2 \end{array} \right] \left[ \begin{array}{c} R \\ 0 \end{array} \right] = \mathsf{Q}_1 \mathsf{R}_1$$

where

 $\Pi$  is an  $n \times n$  permutation matrix ( $\Rightarrow$  orthogonal)

Q is  $m \times m$  orthogonal

 $Q_1$  is the first n columns of Q.

 $Q_2$  is the remaining (m-n) columns of Q.

R is  $n \times n$  upper triangular



## Special Case: Linear Least Squares

This gives us

$$\begin{aligned} \|J\overline{\mathbf{x}} + \overline{\mathbf{r}}_0\|_2^2 &= \left\| \begin{bmatrix} Q_1^T \\ Q_2^T \end{bmatrix} (J\Pi\Pi^T\overline{\mathbf{x}} + \overline{\mathbf{r}}_0) \right\|_2^2 \\ &= \left\| \begin{bmatrix} R \\ 0 \end{bmatrix} (\Pi^T\overline{\mathbf{x}}) + \begin{bmatrix} Q_1^T\overline{\mathbf{r}}_0 \\ Q_2^T\overline{\mathbf{r}}_0 \end{bmatrix} \right\|_2^2 \\ &= \left\| \mathbf{R} (\Pi^T\overline{\mathbf{x}}) + \mathbf{Q}_1^T\overline{\mathbf{r}}_0 \right\|_2^2 + \|\mathbf{Q}_2^T\overline{\mathbf{r}}_0\|_2^2 \end{aligned}$$

The second part is unaffected by  $\bar{\mathbf{x}}$ , but setting the first term to zero minimizes  $\|J\bar{\mathbf{x}} + \bar{\mathbf{r}}_0\|_2^2$ , *i.e.* we find

$$\boldsymbol{\bar{\mathsf{x}}}^* = -\boldsymbol{\mathsf{\Pi}}\,\boldsymbol{\mathsf{R}}^{-1}\boldsymbol{\mathsf{Q}}_1^{\mathsf{T}}\boldsymbol{\bar{\mathsf{r}}}_0$$

In practice,  $R\bar{\mathbf{z}} = -Q_1^T\bar{\mathbf{r}}_0$  is solved by backward substitution, and then  $\bar{\mathbf{x}}^* = \Pi \bar{\mathbf{z}}$ .



The QR-based approach does not square the condition number of J. The relative error of the solution will be proportional to a value in the range  $[\operatorname{cond}(J), \operatorname{cond}(J)^2]$ , usually  $\ll \operatorname{cond}(J)^2$ , rather than  $\operatorname{cond}(J)^2$  for the direct solution of the normal equations.

#### In most situations, the QR-based approach is the way to go.

However, if/when we require maximal robustness and/or want to extract more information about the sensitivity of the solution to errors in J or  $\overline{\mathbf{r}}_0$ we can bring out the big hammer —

### Approach #3: Singular Value Decomposition (SVD) of J.

The SVD [mathematics] is known by many names: the Proper Orthogonal Decomposition (POD), the Karhunen-Loève (KL-) Decomposition [signal analysis], Principal Component Analysis (PCA) [statistics], Empirical Orthogonal Functions, etc...



Special Case: Linear Least Squares

 $7\frac{1}{2}$  of 12

Hits on scholar.google.com.

| Search Term                               | 1/2004  | 11/2007 | 11/2009   | 11/2010   |
|-------------------------------------------|---------|---------|-----------|-----------|
| Principal.Component.Analysis              | 46,500  | 178,000 | 436,000   | 603,000   |
| Singular.Value.Decomposition              | 19,800  | 71,200  | 103,000   | 135,000   |
| Karhunen.Loeve                            | 638     | 11,900  | 16,800    | 20,200    |
| Canonical.Correlation.Analysis            | 2,420   | 10,400  | 14,100    | 19,600    |
| Empirical.Orthogonal.(Function Functions) | 2,940   | 10,100  | 12,400    | 15,400    |
| Proper.Orthogonal.Decomposition           | 977     | 3,490   | 5,160     | 7,820     |
|                                           | 11/2011 | 11/2012 | 11/2013   | 11/2014   |
| Principal.Component.Analysis              | 672,000 | 874,000 | 1,140,000 | 1,340,000 |
| Singular.Value.Decomposition              | 158,000 | 178,000 | 219,000   | 256,000   |
| Karhunen.Loeve                            | 21,700  | 23,700  | 27,300    | 29,300    |
| Canonical.Correlation.Analysis            | 22,600  | 25,100  | 29,200    | 32,600    |
| Empirical.Orthogonal.(Function Functions) | 16,800  | 19,600  | 22,800    | 25,700    |
| Proper.Orthogonal.Decomposition           | 7,850   | 9,340   | 12,500    | 15,200    |

Table: The many names, faces, and close relatives of the Singular Value Decomposition...



Special Case: Linear Least Squares

 $7\frac{3}{4}$  of 12

Hits on scholar.google.com.

| Search Term                               | 11/2011   | 11/2012   | 11/2013   | 11/2014   |
|-------------------------------------------|-----------|-----------|-----------|-----------|
| Principal.Component.Analysis              | 672,000   | 874,000   | 1,140,000 | 1,340,000 |
| Singular.Value.Decomposition              | 158,000   | 178,000   | 219,000   | 256,000   |
| Karhunen.Loeve                            | 21,700    | 23,700    | 27,300    | 29,300    |
| Canonical.Correlation.Analysis            | 22,600    | 25,100    | 29,200    | 32,600    |
| Empirical.Orthogonal.(Function Functions) | 16,800    | 19,600    | 22,800    | 25,700    |
| Proper Orthogonal Decomposition           | 7,850     | 9,340     | 12,500    | 15,200    |
|                                           | 11/2016   | 11/2017   | 11/2018   | 11/20nn   |
| Principal.Component.Analysis              | 1,800,000 | 1,940,000 | 2,170,000 |           |
| Singular.Value.Decomposition              | 337,000   | 407,000   | 441,000   |           |
| Karhunen.Loeve                            | 33,400    | 38,000    | 41,900    |           |
| Canonical.Correlation.Analysis            | 42,200    | 49,500    | 54,200    |           |
| Empirical.Orthogonal.(Function Functions) | 32,400    | 38,000    | 40,700    |           |
| Proper.Orthogonal.Decomposition           | 18,800    | 22,400    | 24,600    |           |

Table: The many names, faces, and close relatives of the Singular Value Decomposition...



The SVD of J is given by (Math 543)

$$J = U \begin{bmatrix} S \\ 0 \end{bmatrix} V^T = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} S \\ 0 \end{bmatrix} V^T = \mathbf{U_1} \mathbf{S} \mathbf{V}^T$$

#### where

U is  $m \times m$  orthogonal

 $\mathit{U}_1$  contains the first  $\mathit{n}$  columns of  $\mathit{U}$ 

 $U_2$  contains the remaining (m-n) columns of U

V is  $n \times n$  orthogonal S is  $n \times n$  diagonal, w

*S* is  $n \times n$  diagonal, with elements  $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n > 0$ .

Note that  $J^TJ = VS^2V^T$ , so that the columns of V are eigenvectors of  $J^TJ$  with eigenvalues  $\sigma_i^2$ .



## Special Case: Linear Least Squares

Now,

$$\begin{aligned} \|J\overline{\mathbf{x}} + \overline{\mathbf{r}}_0\|_2^2 &= \left\| \begin{bmatrix} S \\ 0 \end{bmatrix} (V^T \overline{\mathbf{x}}) + \begin{bmatrix} U_1^T \\ U_2^T \end{bmatrix} \overline{\mathbf{r}}_0 \right\|_2^2 \\ &= \|\mathbf{S}(\mathbf{V}^T \overline{\mathbf{x}}) + \mathbf{U}_1^T \overline{\mathbf{r}}_0\|_2^2 + \|\mathbf{U}_2^T \overline{\mathbf{r}}_0\|^2 \end{aligned}$$

Again, we find the optimum by setting the first contribution to zero, *i.e.* 

$$\mathbf{\bar{x}}^* = VS^{-1}U_1^T\mathbf{\bar{r}}_0 = \sum_{i=1}^n \frac{\mathbf{\bar{u}}_i^T\mathbf{\bar{r}}_0}{\sigma_i}\mathbf{\bar{v}}_i,$$

where  $\bar{\mathbf{u}}_i$  and  $\bar{\mathbf{v}}_i$  are the *i*th columns of U and V, respectively.



The expression for the optimum,

$$\bar{\mathbf{x}}^* = \sum_{i=1}^n \frac{\bar{\mathbf{u}}_i^T \bar{\mathbf{r}}_0}{\sigma_i} \bar{\mathbf{v}}_i$$

gives us information about the sensitivity of  $\bar{\mathbf{x}}^*$ . When  $\sigma_i$  is small,  $\bar{\mathbf{x}}^*$  is particularly sensitive to perturbations that affect  $\bar{\mathbf{u}}_i^T \bar{\mathbf{r}}_0$ .

This information is useful when  $\sigma_n/\sigma_1 \ll 1$  (J nearly rank-deficient).



# Summary: Three Methods for $J^T J \bar{\mathbf{x}}^* = -J^T \bar{\mathbf{r}}_0$ .

All three approaches are useful under the right circumstances

- Cholesky-based algorithm is particularly useful when  $m\gg n$ , in this case it is practical to store  $J^TJ$ , but not J. When J is rank-deficient or ill-conditioned diagonal pivoting must be implemented to limit the propagation of round-off errors. (*This approach to be used sparingly*)
- In the QR-approach with column pivoting, ill-conditioning usually causes the elements in the lower right-hand corner of the matrix R to be much smaller than the other elements. The strategy produces a solution to a nearby problem in which J is slightly perturbed. (This is the preferred every-day approach)



• The SVD-approach is the most robust and reliable for ill-conditioned problems. When J is actually rank deficient, some of the singular values  $\sigma_i$  are exactly zero. Any vector of the form

$$\mathbf{\bar{x}}^* = \sum_{i:*\sigma_i \neq 0} \frac{\mathbf{\bar{u}}_i^T \mathbf{\bar{r}}_0}{\sigma_i} + \sum_{i:(\sigma_i = 0)} \tau_i \mathbf{\bar{v}}_i$$

(for any values  $\tau_i$ ) is a minimizer of the least-squares problem. Usually the minimum-norm ( $\tau_i=0$ ) solution is desirable. (When J is rank-deficient, this is the only approach of the three that works)

With these results in our tool-box, we are ready to attack the solution of the non-linear least squares problem next time.



### Index

linear least squares, 15 normal equations, 15

