Numerical Optimization

Lecture Notes \＃25

Nonlinear Equations－Introduction \＆Local Algorithms

Peter Blomgren，

〈blomgren．peter＠gmail．com〉

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center
San Diego State University San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／
Fall 2018

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Nonlinear Equations

troduction
 A Source of Examples：Gaussian Quadrature Formula Aonlinear Equations vs．Unconstrained Optimization

Often we are asked to find values of the model parameters so that the model satisfies a number of fixed relationships－In the special case when we have n parameters and n relationships，we get a system of nonlinear equations．
We can formulate this problem mathematically as

$$
\overline{\mathbf{r}}(\overline{\mathbf{x}})=\overline{\mathbf{0}},
$$

where $\overline{\mathbf{r}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a vector function，i．e．for $\overline{\mathbf{x}} \in \mathbb{R}^{n}$

$$
\overline{\mathbf{r}}(\overline{\mathbf{x}})=\left[\begin{array}{c}
r_{1}(\overline{\mathbf{x}}) \\
r_{2}(\overline{\mathbf{x}}) \\
\vdots \\
r_{n}(\overline{\mathbf{x}})
\end{array}\right] .
$$

（1）Nonlinear Equations
－Introduction
－A Source of Examples：Gaussian Quadrature Formulas
－Nonlinear Equations vs．Unconstrained Optimization
（2）Nonlinear Equations．．．
－Challenges
－Algorithms
－Newton＇s Method for Nonlinear Equations
（3）
Nonlinear Equations．．．．．．
－Inexact Newton Methods
－Broyden＇s Method
－Tensor Methods

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Nonlinear Equations

Nonlinear Equations Nonlinear Equation Nonlinear Equations．

troduction

A Source of Examples：Gaussian Quadrature Formulas Nonlinear Equations vs．Unconstrained Optimization

Nonlinear Equations：Introduction

A system of nonlinear equations

$$
\overline{\mathbf{r}}(\overline{\mathbf{x}})=\left[\begin{array}{c}
r_{1}(\overline{\mathbf{x}}) \\
r_{2}(\overline{\mathbf{x}}) \\
\vdots \\
r_{n}(\overline{\mathbf{x}})
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

may have
－No solutions．
－A unique solution．
－Many（possibly infinitely many）solutions．

In the process of finding the solution（s），or $\boldsymbol{r o o t}(\mathrm{s})$ ，to systems of nonlinear equations we can reuse many of the ideas discussed in the context of unconstrained minimization．

One approach is to solve the least－squares－problem

$$
\overline{\mathbf{x}}^{*}=\underset{\overline{\mathbf{x}} \in \mathbb{R}^{n}}{\arg \min }\left[\frac{1}{2} \sum_{i=1}^{n} r_{i}^{2}(\overline{\mathbf{x}})\right],
$$

which clearly has a minimum at $\overline{\mathbf{x}}^{*}$ if $\overline{\mathbf{r}}\left(\overline{\mathbf{x}}^{*}\right)=0$ ．
The connection between least squares problems and the solution of nonlinear equations is quite strong．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Nonlinear Equations
$-(5 / 35)$

$$
\begin{array}{cl}
\hline \text { Nonlinear Equations } & \text { Introduction } \\
\text { Nonlinear Equations... } & \text { A Source of Examples: Gaussian Quadrature Formulas } \\
\text { Nonlinear Equations..... } & \text { Nonlinear Equations vs. Unconstrained Optimization }
\end{array}
$$

Nonlinear Equations－Example \＃1：Gaussian Quadrature
1 of 3
Suppose we want to find an optimal two－point formula：

$$
\int_{-1}^{1} f(x) d x=c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right) .
$$

Since we have 4 parameters to play with $\left\{x_{1}, x_{2}, c_{1}, c_{2}\right\}$ ，we can generate a formula that is exact up to polynomial of degree 3 ．We get the following 4 equations：

$$
\begin{aligned}
& \int_{-1}^{1} 1 d x=2=c_{1}+c_{2} \\
& \int_{-1}^{1} x d x=0=c_{1} x_{1}+c_{2} x_{2} \\
& \int_{-1}^{1} x^{2} d x=\frac{2}{3}=c_{1} x_{1}^{2}+c_{2} x_{2}^{2} \\
& \int_{-1}^{1} x^{3} d x=0=c_{1} x_{1}^{3}+c_{2} x_{2}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& r_{0}(\circ)=c_{1}+c_{2}-2 \\
& r_{1}(\circ)=c_{1} x_{1}+c_{2} x_{2} \\
& r_{2}(\circ)=c_{1} x_{1}^{2}+c_{2} x_{2}^{2}-\frac{2}{3} \\
& r_{3}(\circ)=c_{1} x_{1}^{3}+c_{2} x_{2}^{3}
\end{aligned}
$$

There are some key differences between solving nonlinear equations and solving general nonlinear least squares problems：
－In nonlinear equations，the number of equations（ m in the least squares formulation）equals the number of variables（ $\overline{\mathbf{x}} \in \mathbb{R}^{n}$ ）， whereas in the typical least－squares situation $m \gg n$ ．
－For nonlinear equations，at the optimum $\overline{\mathbf{r}}\left(\overline{\mathbf{x}}^{*}\right)=0$ ，whereas the minimum value of a general least squares problem is not required to reach zero
－Often，the equations $r_{i}(\overline{\mathbf{x}})=0$ represent physical or economical constraints，such as conservation laws or consistency principles， which must hold exactly in order for the solution to be mean－ ingful．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Nonlinear Equations

ntroduction

Nonlinear Equations
Nonlinear Equations．．．
Nonlinear Equation
Source of Examples：Gaussian Quadrature Formulas Nonlinear Equations vs．Unconstrained Optimization

2 of 3
Hence，we are looking for the vector
$\overline{\mathbf{s}}^{*}=\left[\begin{array}{c}c_{1}^{*} \\ c_{2}^{*} \\ x_{1}^{*} \\ x_{2}^{*}\end{array}\right], \quad$ for which $\quad \overline{\mathbf{r}}\left(\overline{\mathbf{s}}^{*}\right)=\left[\begin{array}{c}c_{1}^{*}+c_{2}^{*}-2 \\ c_{1}^{*} x_{1}^{*}+c_{2}^{*} x_{2}^{*} \\ c_{1}^{*}\left[x_{1}^{*}\right]^{2}+c_{2}^{*}\left[x_{2}^{*}\right]^{2}-\frac{2}{3} \\ c_{1}^{*}\left[x_{1}^{*}\right]^{3}+c_{2}^{*}\left[x_{2}^{*}\right]^{3}\end{array}\right]=0$
In this instance，the solution is given by

$$
\begin{aligned}
& c_{1}^{*}=1 \\
& c_{2}^{*}=1 \\
& x_{1}^{*}=-\frac{\sqrt{3}}{3} \\
& x_{2}^{*}=\frac{\sqrt{3}}{3}
\end{aligned}
$$

If we want a 3 －point formula ac－ curate to up to 5th degree poly－ nomials，we get a system with 6 unknowns containing nonlinear terms of the type $c_{i} x_{i}^{5} \ldots$

We can use the following 8 parameters to model the behavior of an aircraft：

	x_{1}	The roll of the aircraft
思	x_{2}	The pitch of the aircraft
㤩	x_{3}	The yaw of the aircraft
	x_{4}	The incremental angle of attack
	x_{5}	The side－slip angle
3	x_{6}	Deflection of the elevator
y_{0}^{0}	x_{7}	Deflection of the aileron
0	x_{8}	Deflection of the rudder

x_{1} through x_{5} describe the state of the aircraft，and x_{6} through x_{8} are the controls．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Nonlinear Equations

Nonlinear Equations
 Nonlinear Equation

Nonlinear Equations．．．

ntroduction

Source of Examples：Gaussian Quadrature Formula Nonlinear Equations vs．Unconstrained Optimization

Nonlinear Equations－Example \＃2：Aircraft Stability

Sideslip Angle［Wikipedia］

The sideslip angle relates the rotation of the aircraft centerline from the relative wind．In flight dynamics it is given the shorthand notation（ β ） and is usually assigned to be＂positive＂when the relative wind is coming from the right of the nose of the airplane．The sideslip angle is essentially the directional angle of attack of the airplane．It is the primary parameter in stability considerations．

Figure：For more information on Aerodynamics（the theories of flight），visit http：／／www．centennialofflight．gov／essay＿cat／9．htm at the＂History of Flight＂website presented by the U．S．Centennial of Flight Commission．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Nonlinear Equations

> Nonlinear Equations
> Nonlinear Equations...

Introduction
A Source of Examples：Gaussian Quadrature Formulas
Nonlinear Equations vs．Unconstrained Optimization

Nonlinear Equations－Unconstrained Optimization
Differences
－To get quadratic convergence for solution of nonlinear equa－ tions（NLEs），we only need information about the first order derivatives（since the small－residual case applies at the solution）， whereas for general unconstrained optimization（UCO）problems we need second order information．
－Therefore，quasi－Newton methods plays a smaller role in the solution of NLEs．
－In UCO，the objective function is the natural merit function （which indicates progress toward the optimum）．In NLEs，there are various ways of selecting the merit function．
－For UCO，line－search and trust－region methods are equally important（successful）solution strategies．However，in the NLE case the trust－region approach tends to be more successful．

Using these 8 parameters，we can describe the force－balance equilibrium for an aircraft using the following model with 5 equations and 8 unknowns：

$$
\overline{\mathbf{F}}(\overline{\mathbf{x}})=A \overline{\mathbf{x}}+\overline{\boldsymbol{\Phi}}(\overline{\mathbf{x}})=0
$$

Where A is a 5×8 matrix，and $\bar{\Phi}(\overline{\mathbf{x}})$ the nonlinear term：

$$
\overline{\boldsymbol{\Phi}}(\overline{\mathbf{x}})=\left[\begin{array}{c}
-0.727 x_{2} x_{3}+8.39 x_{3} x_{4}-684.4 x_{4} x_{5}+63.5 x_{4} x_{2} \\
0.949 x_{1} x_{3}+0.173 x_{1} x_{5} \\
-0.716 x_{1} x_{2}-1.578 x_{1} x_{4}+1.132 x_{4} x_{2} \\
-x_{1} x_{5} \\
x_{1} x_{4}
\end{array}\right]
$$

For each setting of the controls $\left[x_{6}, x_{7}, x_{8}\right]^{T}$ we can solve for the behavior $\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]^{\top}$ of the aircraft．
$[\text { link }]^{\substack{\text { SNinitges } \\ \text { UNiverin }}}$
Peter Blomgren，〈blomgren．peter＠gmail．com〉 Nonlinear Equations
$-(14 / 35)$

> Nonlinear Equations Nonlinear Equations... Nonlinear Equations....
Challenges
Algorithms
Newton＇s Method for Nonlinear Equations

Nonlinear Equations：An Added Difficulty
Non－Uniqueness， 1 of 2
Ponder the one－dimensional nonlinear equation problem

$$
r(x)=\sin (5 x)-x=0
$$

$r^{2}(x)$

We notice that this nonlinear problem has three solutions（roots） －$\{0, \pm 0.519148 \ldots\}$ ．

This is not really news－in unconstrained optimization，we can have several local minima（stationary points）．

In the optimization case we can distinguish the points by looking at the value of the objective－thus qualifying what stationary point is a＂better＂solution．

However，for nonlinear equations，we cannot distinguish the roots －they are all of the same＂mathematical quality．＂This means that we must be careful when we construct our models，so that they do not allow for non－physical solutions．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Nonlinear Equations

Nonlinear Equations
 Nonlinear Equations

Challenges
 Algorithms

Algorithms Nethod for Nonlinear Equations
Assumptions and Language

We make the assumption that the Jacobian $J(\overline{\mathbf{x}})=\nabla \overline{\mathbf{r}}(\overline{\mathbf{x}})$ exists and is continuous．

In a couple of results we must assume（the stronger condition） that the Jacobian is Lipschitz continuous，i．e．

$$
\|J(\overline{\mathbf{x}})-J(\overline{\mathbf{y}})\| \leq \beta_{L}\|\overline{\mathbf{x}}-\overline{\mathbf{y}}\|, \quad \text { for some } \beta_{L}>0
$$

A solution $\overline{\mathbf{x}}^{*} \in \mathbb{R}^{n}$ satisfying $\overline{\mathbf{r}}\left(\overline{\mathbf{x}}^{*}\right)=0$ is said to be

a degenerate solution	if $J\left(\overline{\mathbf{x}}^{*}\right)$ is singular
a non－degenerate solution	if $J\left(\overline{\mathbf{x}}^{*}\right)$ is not singular

Challenges
Newton＇s Method for Nonlinear Equations
Nonlinear Equations：Algorithms

We will look at the following solution strategies for nonlinear equations：
－Newton＇s method
－Broyden＇s quasi－Newton method
－Inexact Newton methods
－Tensor methods
We look at local convergence properties（convergence rate），and address global convergence（how robust is the method（s）with respect to starting＂far away＂from the solution）．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Nonlinear Equations

```
Nonlinear Equations
Nonlinear Equation
Nonlinear Equations．
```


Challenges
 Newton＇s Method for Nonlinear Equations

Newton＇s Method for Nonlinear Equations
As usual，our discussion is based on Taylor＇s theorem．The version of the theorem that is relevant to this discussion takes the form

Theorem
Suppose that $\overline{\mathbf{r}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuously differentiable in some convex open set \mathcal{D} and that $\overline{\mathbf{x}}$ and $\overline{\mathbf{x}}+\overline{\mathbf{p}}$ are vectors in \mathcal{D} ．Then we have that

$$
\overline{\mathbf{r}}(\overline{\mathbf{x}}+\overline{\mathbf{p}})=\overline{\mathbf{r}}(\overline{\mathbf{x}})+\int_{0}^{1} J(\overline{\mathbf{x}}+t \overline{\mathbf{p}}) \overline{\mathbf{p}} d t
$$

We can define a linear model $M_{k}(\overline{\mathbf{p}})$ of $\overline{\mathbf{r}}\left(\overline{\mathbf{x}}_{k}+\overline{\mathbf{p}}\right)$ by approximating the integral term in Taylor＇s theorem by $J\left(\overline{\mathbf{x}}_{k}\right) \overline{\mathbf{p}}$ ，i．e．

$$
M_{k}(\overline{\mathbf{p}}) \stackrel{\text { def }}{=} \overline{\mathbf{r}}\left(\overline{\mathbf{x}}_{k}\right)+J\left(\overline{\mathbf{x}}_{k}\right) \overline{\mathbf{p}} .
$$

Nonlinear Equations
Equation
Nonlinear Equations

Challenges
Newton's Method for Nonlinear Equations

Nonlinear Equations
Nonlinear Equations

Challenges
Newton's Method for Nonlinear Equations

With continuity of the Jacobian we have

$$
\left\|\int_{0}^{1}[J(\overline{\mathbf{x}}+t \overline{\mathbf{p}})-J(\overline{\mathbf{x}})] \overline{\mathbf{p}} d t\right\|=o(\|\overline{\mathbf{p}}\|) .
$$

with Lipschitz continuity we get the stronger result

$$
\left\|\int_{0}^{1}[J(\overline{\mathbf{x}}+t \overline{\mathbf{p}})-J(\overline{\mathbf{x}})] \overline{\mathbf{p}} d t\right\|=\mathcal{O}\left(\|\overline{\mathbf{p}}\|^{2}\right) .
$$

The "pure" form of Newton's method chooses the step $\overline{\mathbf{p}}_{k}$ to be the vector for which $M\left(\overline{\mathbf{p}}_{k}\right)=0$, i.e.

$$
\overline{\mathbf{p}}_{k}=-J\left(\overline{\mathbf{x}}_{k}\right)^{-1} \overline{\mathbf{r}}\left(\overline{\mathbf{x}}_{k}\right) .
$$

Peter Blomgren, 〈blomgren. peter@gmail.com〉 Nonlinear Equations

> Nonlinear Equations
> Nonlinear Equations...

Challenges
 Algorithms

Newton's Method for Nonlinear Equations
Newton's Method for Nonlinear Equations

Algorithm: Newton's Method
Given a starting point $\overline{\mathbf{x}}_{0}$

$$
\begin{align*}
& \mathrm{k}=0 \\
& \text { while } \left.\left(\| \overline{\mathbf{r}}_{\mathrm{\mathbf{x}}}^{k}\right) \|>\epsilon\right) \\
& \left.\quad J\left(\overline{\mathbf{x}}_{k}\right) \overline{\mathbf{p}}_{k}=-\overline{\mathbf{r}}\left(\overline{\mathbf{x}}_{k}\right) \text { (solve for } \overline{\mathbf{p}}_{k}\right) \tag{1}\\
& \quad \overline{\mathbf{x}}_{k+1}=\overline{\mathbf{x}}_{k}+\overline{\mathbf{p}}_{k} \\
& \text { end }(\mathrm{k}=\mathrm{k}+1 \text {) }
\end{align*}
$$

- Newton's method for unconstrained optimization can be derived from this algorithm by application to $\nabla f(\overline{\mathbf{x}})=0$.
- When $J\left(\overline{\mathbf{x}}_{k}\right)$ is non-singular, then [1] is equivalent to $J\left(\overline{\mathbf{x}}_{k}\right)^{T} J\left(\overline{\mathbf{x}}_{k}\right) \overline{\mathbf{p}}_{k}^{G N}=-J\left(\overline{\mathbf{x}}_{k}\right)^{T} \overline{\mathbf{r}}\left(\overline{\mathbf{x}}_{k}\right)$, which gives the GaussNewton direction for non-linear least squares.
[add α-search for improved stability] $\overline{\mathbf{x}}^{*}$ ，Newton＇s method has local super－linear convergence when the Jacobian is a continuous function of $\overline{\mathbf{x}}$ ，and local quadratic convergence of the Jacobian is Lipschitz continuous．
－When $\left\|\overline{\mathbf{x}}_{0}-\overline{\mathbf{x}}^{*}\right\|$ is large，the＂pure＂Newton algorithm can behave erratically．When $J\left(\overline{\mathbf{x}}_{k}\right)$ is singular，the Newton step is not even defined．
－When n is large it may be expensive to compute the Newton step $\overline{\mathbf{p}}_{k}$ ．
－The root $\overline{\mathrm{x}}^{*}$ may be degenerate，i．e．$J\left(\overline{\mathrm{x}}^{*}\right)$ may be singular．E．g． $r(x)=x^{2}$ has a single degenerate root $x^{*}=0$ ．For any non－zero starting point x_{0} ，the sequence of iterates is given by $x_{k}=x_{0} / 2^{k}$ ， which converges to the solution but only at a linear rate．

Peter Blomgren，〈blomgren．peter＠gmail．com〉
Nonlinear Equations

> | Nonlinear Equations | Inexact Newton Methods |
| :---: | :---: |
| Nonlinear Equations... | Broyden's Method |
| Nonlinear Equations..... | Tensor Methods |

Nonlinear Equations
Nonlinear Equations．．．．．．
Inexact Newton Methods：Comments

Usually inexact Newton methods are based on iterative techniques for solving the linear system

$$
J\left(\overline{\mathbf{x}}_{k}\right) \overline{\mathbf{p}}_{k}=-\overline{\mathbf{r}}\left(\overline{\mathbf{x}}_{k}\right) .
$$

Here，since $J\left(\bar{x}_{k}\right)$ is not symmetric positive definite，we cannot directly apply the conjugate gradient method．

Instead of solving the linear system

$$
J\left(\overline{\mathbf{x}}_{k}\right) \overline{\mathbf{p}}_{k}=-\overline{\mathbf{r}}\left(\overline{\mathbf{x}}_{k}\right)
$$

exactly，inexact Newton methods use search directions $\overline{\mathbf{p}}_{k}$ which satisfy the condition

$$
\left\|\overline{\mathbf{r}}\left(\overline{\mathbf{x}}_{k}\right)+J\left(\overline{\mathbf{x}}_{k}\right) \overline{\mathbf{p}}_{k}\right\| \leq \eta_{k} \| \overline{\mathbf{r}}^{\left(\overline{\mathbf{x}}_{k}\right) \|} \quad \eta_{k} \in[0, \eta], \quad \eta \in[0,1),
$$

where $\left\{\eta_{k}\right\}$ is the forcing sequence．
The convergence properties of inexact Newton methods depend only on the forcing sequence，not on the particular method used to get $\overline{\mathbf{p}}_{k}$ ．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Nonlinear Equations

```
Nonlinear Equations
Nonlinear Equation
Inexact Newton Methods
Broyden＇s Method
Broyden＇s Method
```

Inexact Newton Methods：Local Convergence

Theorem
Suppose that $\overline{\mathbf{r}}$ is continuously differentiable in a convex open set $\mathcal{D} \subset \mathbb{R}^{n}$ ．Let $\overline{\mathbf{x}}^{*} \in \mathcal{D}$ be a non－degenerate solution of $\overline{\mathbf{r}}(\overline{\mathbf{x}})=0$ ，and let $\left\{\overline{\mathbf{x}}_{k}\right\}$ be the sequence of iterates generated by the inexact
Newton iteration．Then when $\overline{\mathbf{x}}_{k} \in \mathcal{D}$ is sufficiently close to $\overline{\mathbf{x}}^{*}$ ，the following are true：
（i）If η is sufficiently small，then the convergence of $\left\{\overline{\mathbf{x}}_{k}\right\}$ is linear．
（ii）If $\eta_{k} \rightarrow 0$ ，then the convergence of $\left\{\overline{\mathbf{x}}_{k}\right\}$ is superlinear．
（iii）If，in addition，$J(\cdot)$ is Lipschitz continuous on \mathcal{D} and $\eta_{k}=\mathcal{O}\left(\left\|\overline{\mathbf{r}}_{k}\right\|\right)$ ，then the convergence of $\left\{\overline{\mathbf{x}}_{k}\right\}$ is quadratic．

Nonlinear Equations

Nonlinear Equations
Nonlinear Equations．
nexact Newton Methods
Broyden＇s Metho
Tensor Methods

Secant methods（aka quasi－Newton methods），do not require calculation of the Jacobian．－Instead，they maintain an approximation of the Jacobian which gets updated in each iteration．

This sounds quite familiar－compare with the BFGS－method for unconstrained optimization
We present Broyden＇s（the＂B＂in BFGS）method for this approach．

Let $B_{k} \approx J\left(\bar{x}_{k}\right)$ be the Jacobian approximation at iteration k ， assuming it is non－singular we can find the next step

$$
\overline{\mathbf{p}}_{k}=-B_{k}^{-1} \overline{\mathbf{r}}\left(\overline{\mathbf{x}}_{k}\right), \quad \overline{\mathbf{x}}_{k+1}=\overline{\mathbf{x}}_{k}+\alpha_{k} \overline{\mathbf{p}}_{k} .
$$

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Nonlinear Equations

$$
\begin{array}{|c|c}
\hline \text { Nonlinear Equations } & \text { Inexact Newton Methods } \\
\text { Nonlinear Equations... } & \text { Broyden's Method } \\
\text { Nonlinear Equations..... } & \text { Tensor Methods } \\
\hline
\end{array}
$$

Broyden＇s Method

The secant equation is a system of n equation，with n^{2} unknowns，hence if $n>1$ there are many ways to satisfy the equation．
Broyden＇s update makes the smallest possible change in the Jacobian approximation，measured in the Euclidean norm $\left\|B_{k}-B_{k+1}\right\|$ ，that is consistent with the secant equation．It takes the form

$$
\mathbf{B}_{k+1}=\mathbf{B}_{k}+\frac{\left(\overline{\mathbf{y}}_{\mathrm{k}}-\mathbf{B}_{\mathbf{k}} \overline{\mathbf{s}}_{\mathrm{k}}\right) \overline{\mathbf{s}}_{\mathrm{k}}^{\top}}{\overline{\mathbf{s}}_{\mathrm{k}}^{\top} \overline{\mathbf{s}}_{\mathrm{k}}} .
$$

Broyden＇s algorithm：Given the direction

$$
\overline{\mathbf{p}}_{k}=-B_{k}^{-1} \overline{\mathbf{r}}\left(\overline{\mathbf{x}}_{k}\right)
$$

we perform a line－search in this direction，and then proceed as expected．

We let $\overline{\mathbf{s}}_{k}$ ，and $\overline{\mathbf{y}}_{k}$ be the differences between successive iterates， and residuals，respectively：

$$
\overline{\mathbf{s}}_{k}=\overline{\mathbf{x}}_{k+1}-\overline{\mathbf{x}}_{k}, \quad \overline{\mathbf{y}}_{k}=\overline{\mathbf{r}}_{k+1}-\overline{\mathbf{r}}_{k} .
$$

From Taylor＇s theorem we have the following relation

$$
\overline{\mathbf{y}}_{k}=\int_{0}^{1} J\left(\overline{\mathbf{x}}_{k}+t \overline{\mathbf{s}}_{k}\right) \overline{\mathbf{s}}_{k} d t \approx J\left(\overline{\mathbf{x}}_{k+1}\right) \overline{\mathbf{s}}_{k}+o\left(\left\|\overline{\mathbf{s}}_{k}\right\|\right)
$$

Hence，we require the updated Jacobian approximation B_{k+1} to satisfy the secant equation

$$
\overline{\mathbf{y}}_{\mathrm{k}}=\mathbf{B}_{\mathrm{k}+1} \overline{\mathbf{s}}_{\mathrm{k}} .
$$

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Nonlinear Equations

> | Nonlinear Equations | Inexact Newton Methods |
| :---: | :---: |
| Nonlinear Equations... | Broyden's Method |
| Jonlinear Eauations.... | |

Broyden＇s Method

Theorem

Suppose that $\overline{\mathbf{r}}$ is continuously differentiable in a convex open set $\mathcal{D} \subset \mathbb{R}^{n}$ ．Let $\overline{\mathbf{x}}^{*} \in \mathcal{D}$ be a non－degenerate solution of $\overline{\mathbf{r}}(\overline{\mathbf{x}})=0$ ．Then there are positive constants ϵ and δ such that if the starting point $\overline{\mathbf{x}}_{0}$ and the starting approximate Jacobian B_{0} satisfy

$$
\left\|\overline{\mathbf{x}}_{0}-\overline{\mathbf{x}}^{*}\right\| \leq \delta, \quad\left\|B_{0}-J\left(\overline{\mathbf{x}}^{*}\right)\right\| \leq \epsilon
$$

the sequence $\left\{\overline{\mathrm{x}}_{k}\right\}$ generated by the Broyden iteration is well－defined and converges super－linearly to $\overline{\mathbf{x}}^{*}$ ．

The second condition is particularly troublesome in practice．A good B_{0} is critical to the performance of Broyden＇s method．$B_{0}=J\left(\overline{\mathrm{x}}_{0}\right)$ may be called for（but may not be sufficiently good）．
B_{k} is dense in general，even when $J\left(\bar{x}_{k}\right)$ is sparse；when n is large，this may cause storage problems．
$\begin{array}{cl}\text { Nonlinear Equations } & \text { Inexact Newton Methods } \\ \text { Nonlinear Equations．．．} & \text { Broyden＇s Method }\end{array}$ Nonlinear Equations．．．．．Tensor Methods

Tensor Methods

Nonlinear Equations Nonlinear Equatio
Nonlinear Equation

Inexact Newton Method

Tensor Methods

In tensor methods，the linear model $M_{k}(\overline{\mathbf{p}})$ used by Newton＇s method is augmented with an extra term．The goal of this term is to capture some of the non－linear behavior of $\overline{\mathbf{r}}(\overline{\mathbf{x}})$ ，and facilitate faster and more robust convergence to degenerate roots．
Tensor methods are most successful when

$$
\operatorname{rank}\left(J\left(\overline{\mathbf{x}}^{*}\right)\right) \in\{n-1, n-2\}
$$

The tensor model

$$
\widehat{M}_{k}(\overline{\mathbf{p}})=\overline{\mathbf{r}}\left(\overline{\mathbf{x}}_{k}\right)+J\left(\overline{\mathbf{x}}_{k}\right) \overline{\mathbf{p}}+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{T}_{k} \overline{\mathbf{p}} \overline{\mathbf{p}}
$$

where T_{k} is a tensor defined by n^{3} elements $\left(T_{k}\right)_{i j l}$ ．The i th component of the action of the tensor on two vectors $\overline{\mathbf{u}}, \overline{\mathbf{v}} \in \mathbb{R}^{n}$ is defined by

$$
\left(T_{k} \overline{\mathbf{u}} \overline{\mathbf{v}}\right)_{i}=\sum_{j=1}^{n} \sum_{l=1}^{n}\left(T_{k}\right)_{i j l} u_{j} v_{l}
$$

Peter Blomgren，〈blomgren．peter＠gmail．com〉
Nonlinear Equations

Tensor Methods

Newton＇s method inspires us to build the tensor from Hessians，i．e．

$$
\left(T_{k}\right)_{i j l}=\left[\nabla^{2} r_{i}\left(\overline{\mathbf{x}}_{k}\right)\right]_{j l}
$$

This is，in most applications，prohibitively expensive．
Another approach is to select $\left(T_{k}\right)$ such that $\widehat{M}_{k}(\overline{\mathbf{p}})$ interpolates the function $\overline{\mathbf{r}}\left(\overline{\mathbf{x}}_{k}+\overline{\mathbf{p}}\right)$ at some previous iterates，i．e．

$$
\widehat{M}_{k}\left(\overline{\mathbf{x}}_{k-j}-\overline{\mathbf{x}}_{k}\right)=r\left(\overline{\mathbf{x}}_{k-j}\right), \quad j=1,2, \ldots, q
$$

This gives

$$
\frac{1}{2} T_{k} \overline{\mathbf{s}}_{j k} \overline{\mathbf{s}}_{j k}=\overline{\mathbf{r}}\left(\overline{\mathbf{x}}_{k-j}\right)-\overline{\mathbf{r}}\left(\overline{\mathbf{x}}_{k}\right)-J\left(\overline{\mathbf{x}}_{k}\right) \overline{\mathbf{s}}_{j k}, \quad \overline{\mathbf{s}}_{j k}=\overline{\mathbf{x}}_{k-j}-\overline{\mathbf{x}}_{k},
$$

which defines the tensor action of the form

$$
T_{k} \overline{\mathbf{u}} \overline{\mathbf{v}}=\sum_{j=1}^{q} a_{j}\left(\overline{\mathbf{s}}_{j k}^{T} \overline{\mathbf{u}}\right)\left(\overline{\mathbf{s}}_{j k}^{T} \overline{\mathbf{v}}\right), \quad a_{j} \in \mathbb{R}^{n} .
$$

algorithm

Newton＇s method， 24
Broyden＇s method
update formula， 31

Inexact Newton Methods
Tensor Methods

> Nonlinear Equations
> Nonlinear Equations...
> Nonlinear Equations.....

Index

