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Nonlinear Equations: Introduction 1 of 3

Often we are asked to find values of the model parameters so that
the model satisfies a number of fixed relationships — In the
special case when we have n parameters and n relationships, we
get a system of nonlinear equations.

We can formulate this problem mathematically as

r̄(x̄) = 0̄,

where r̄ : Rn → R
n is a vector function, i.e. for x̄ ∈ R

n

r̄(x̄) =




r1(x̄)
r2(x̄)
...

rn(x̄)


 .
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Nonlinear Equations: Introduction 2 of 3

A system of nonlinear equations

r̄(x̄) =




r1(x̄)
r2(x̄)
...

rn(x̄)


 =




0
0
...
0


 ,

may have

• No solutions.

• A unique solution.

• Many (possibly infinitely many) solutions.
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Nonlinear Equations: Introduction 3 of 3

In the process of finding the solution(s), or root(s), to systems of
nonlinear equations we can reuse many of the ideas discussed in
the context of unconstrained minimization.

One approach is to solve the least-squares-problem

x̄∗ = argmin
x̄∈Rn

[
1

2

n∑

i=1

r2i (x̄)

]
,

which clearly has a minimum at x̄∗ if r̄(x̄∗) = 0.

The connection between least squares problems and the solution of
nonlinear equations is quite strong.
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Nonlinear Equations — Least Squares Differences

There are some key differences between solving nonlinear equations
and solving general nonlinear least squares problems:

• In nonlinear equations, the number of equations (m in the least
squares formulation) equals the number of variables (x̄ ∈ R

n),
whereas in the typical least-squares situation m ≫ n.

• For nonlinear equations, at the optimum r̄(x̄∗) = 0, whereas
the minimum value of a general least squares problem is not
required to reach zero.

• Often, the equations ri (x̄) = 0 represent physical or economical
constraints, such as conservation laws or consistency principles,
which must hold exactly in order for the solution to be mean-
ingful.
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Nonlinear Equations — Example #1: Gaussian Quadrature 1 of 3

Suppose we want to find an optimal two-point formula:
∫ 1

−1

f (x) dx = c1f (x1) + c2f (x2).

Since we have 4 parameters to play with {x1, x2, c1, c2}, we can generate
a formula that is exact up to polynomial of degree 3. We get the
following 4 equations:
∫ 1

−1

1 dx = 2 = c1 + c2

∫ 1

−1

x dx = 0 = c1x1 + c2x2

∫ 1

−1

x2 dx = 2
3 = c1x

2
1 + c2x

2
2

∫ 1

−1

x3 dx = 0 = c1x
3
1 + c2x

3
2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

r0(◦) = c1 + c2 − 2

r1(◦) = c1x1 + c2x2

r2(◦) = c1x
2
1 + c2x

2
2 − 2

3

r3(◦) = c1x
3
1 + c2x

3
2
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Nonlinear Equations — Example #1: Gaussian Quadrature 2 of 3

Hence, we are looking for the vector

s̄∗ =




c∗1
c∗2
x∗1
x∗2


 , for which r̄(̄s∗) =




c∗1 + c∗2 − 2
c∗1x

∗
1 + c∗2x

∗
2

c∗1 [x
∗
1 ]

2 + c∗2 [x
∗
2 ]

2 − 2
3

c∗1 [x
∗
1 ]

3 + c∗2 [x
∗
2 ]

3


 = 0

In this instance, the solution is given by

c∗1 = 1
c∗2 = 1

x∗1 = −
√
3

3

x∗2 =

√
3

3

If we want a 3-point formula ac-
curate to up to 5th degree poly-
nomials, we get a system with
6 unknowns containing nonlinear
terms of the type cix

5
i ...
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Nonlinear Equations — Example #(1 + ǫ): Gaussian Quadrature 3 of 3

We can generate infinitely many examples of nonlinear equations by
looking for the optimal (Gaussian Quadrature) placements and weight for
k points:

∫ 1

−1

f (x) dx =
k∑

j=1

cj f (xj)

We can generate a numerical integration rule which is exact for
polynomials up to degree (2k − 1) by solving the system of (2k)
equations and (2k) unknowns (~c ∈ R

k , ~x ∈ R
k):

r (k)n (~c , ~x) =






k∑

j=1

cjx
n
j


−

[
1− (−1)n+1

n + 1

]
 ; n = 0, . . . , (2k − 1).
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Nonlinear Equations — Example #2: Aircraft Stability 1 of 3

We can use the following 8 parameters to model the behavior of an
aircraft:

S
t
a
t
e

x1 The roll of the aircraft
x2 The pitch of the aircraft
x3 The yaw of the aircraft
x4 The incremental angle of attack
x5 The side-slip angle

C
o
n
t
r
o
l
s

x6 Deflection of the elevator
x7 Deflection of the aileron
x8 Deflection of the rudder

x1 through x5 describe the state of the aircraft, and x6 through x8
are the controls.
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2
of 3
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Nonlinear Equations — Example #2: Aircraft Stability 1 2
3
of 3

Sideslip Angle [Wikipedia]

The sideslip angle relates the rotation of the aircraft centerline from the
relative wind. In flight dynamics it is given the shorthand notation (β)
and is usually assigned to be ”positive” when the relative wind is coming
from the right of the nose of the airplane. The sideslip angle is essentially
the directional angle of attack of the airplane. It is the primary parameter
in stability considerations.
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Nonlinear Equations — Example #2: Aircraft Stability 2 of 3

Figure: For more information on Aerodynamics (the theories of flight), visit
http://www.centennialofflight.gov/essay cat/9.htm at the “History of
Flight” website presented by the U.S. Centennial of Flight Commission.
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Nonlinear Equations — Example #2: Aircraft Stability 3 of 3

Using these 8 parameters, we can describe the force-balance equilibrium
for an aircraft using the following model with 5 equations and 8
unknowns:

F̄(x̄) = Ax̄+ Φ̄(x̄) = 0

Where A is a 5× 8 matrix, and Φ̄(x̄) the nonlinear term:

Φ̄(x̄) =




−0.727x2x3 + 8.39x3x4 − 684.4x4x5 + 63.5x4x2
0.949x1x3 + 0.173x1x5

−0.716x1x2 − 1.578x1x4 + 1.132x4x2
−x1x5
x1x4




For each setting of the controls [x6, x7, x8]
T we can solve for the behavior

[x1, x2, x3, x4, x5]
T of the aircraft. [link]
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Nonlinear Equations — Unconstrained Optimization Differences

• To get quadratic convergence for solution of nonlinear equa-
tions (NLEs), we only need information about the first order
derivatives (since the small-residual case applies at the solution),
whereas for general unconstrained optimization (UCO) problems
we need second order information.

• Therefore, quasi-Newton methods plays a smaller role in the
solution of NLEs.

• In UCO, the objective function is the natural merit function
(which indicates progress toward the optimum). In NLEs, there
are various ways of selecting the merit function.

• For UCO, line-search and trust-region methods are equally
important (successful) solution strategies. However, in the NLE
case the trust-region approach tends to be more successful.
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Nonlinear Equations: An Added Difficulty Non-Uniqueness, 1 of 2

Ponder the one-dimensional nonlinear equation problem

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

r(x) = sin(5x)− x = 0 r2(x)

We notice that this nonlinear problem has three solutions (roots)
— {0, ±0.519148 . . . }.
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Nonlinear Equations: An Added Difficulty Non-Uniqueness, 2 of 2

This is not really news — in unconstrained optimization, we can
have several local minima (stationary points).

In the optimization case we can distinguish the points by looking
at the value of the objective — thus qualifying what stationary
point is a “better” solution.

However, for nonlinear equations, we cannot distinguish the roots
— they are all of the same “mathematical quality.” This means
that we must be careful when we construct our models, so that
they do not allow for non-physical solutions.
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Nonlinear Equations: Algorithms

We will look at the following solution strategies for nonlinear
equations:

• Newton’s method

• Broyden’s quasi-Newton method

• Inexact Newton methods

• Tensor methods

We look at local convergence properties (convergence rate), and
address global convergence (how robust is the method(s) with
respect to starting “far away” from the solution).
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Assumptions and Language

We make the assumption that the Jacobian J(x̄) = ∇r̄(x̄) exists
and is continuous.

In a couple of results we must assume (the stronger condition)
that the Jacobian is Lipschitz continuous, i.e.

‖J(x̄)− J(ȳ)‖ ≤ βL‖x̄− ȳ‖, for some βL > 0

A solution x̄∗ ∈ R
n satisfying r̄(x̄∗) = 0 is said to be

a degenerate solution if J(x̄∗) is singular
a non-degenerate solution if J(x̄∗) is not singular
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Newton’s Method for Nonlinear Equations Introduction

As usual, our discussion is based on Taylor’s theorem. The
version of the theorem that is relevant to this discussion takes the
form

Theorem

Suppose that r̄ : Rn → R
n is continuously differentiable in some

convex open set D and that x̄ and x̄+ p̄ are vectors in D. Then we

have that

r̄(x̄+ p̄) = r̄(x̄) +

∫ 1

0
J(x̄+ tp̄)p̄ dt

We can define a linear model Mk(p̄) of r̄(x̄k + p̄) by
approximating the integral term in Taylor’s theorem by J(x̄k)p̄, i.e.

Mk(p̄)
def
= r̄(x̄k) + J(x̄k)p̄.
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Error in the Model 1 of 2

The difference between the model and r̄(x̄k + p̄) is

r̄(x̄k + p̄)−Mk(p̄) =

∫ 1

0

[
J(x̄+ tp̄)− J(x̄)

]
p̄ dt

since (by assumption) the Jacobian is continuous, we have

lim
‖p̄‖→0

‖J(x̄+ tp̄)− J(x̄)‖ = 0, ∀t ∈ [0, 1]

therefore
∥∥∥∥
∫ 1

0

[
J(x̄+ tp̄)− J(x̄)

]
p̄ dt

∥∥∥∥ ≤
∫ 1

0

∥∥∥∥J(x̄+ tp̄)−J(x̄)

∥∥∥∥ · ‖p̄‖ dt = o(‖p̄‖)
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Error in the Model 2 of 2

With continuity of the Jacobian we have

∥∥∥∥
∫ 1

0

[
J(x̄+ tp̄)− J(x̄)

]
p̄ dt

∥∥∥∥ = o(‖p̄‖).

with Lipschitz continuity we get the stronger result

∥∥∥∥
∫ 1

0

[
J(x̄+ tp̄)− J(x̄)

]
p̄ dt

∥∥∥∥ = O
(
‖p̄‖2

)
.

The “pure” form of Newton’s method chooses the step p̄k to be
the vector for which M(p̄k) = 0, i.e.

p̄k = −J(x̄k)
−1r̄(x̄k).
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“Big Oh” — O(·) and “Small Oh” — o(·)

Definition

Let f and g be two functions from a subset X of the real numbers to the
real numbers. Assume that g takes positive values. We say f = O(g)
(“f is Big-Oh of g”) if there is a real constant A such that
|f (x)| < A|g(x)| for all x ∈ X .

Definition

If X is a half-open interval [r ,∞), or some subset of such an interval,
and f = O(g) on this X , then we sometimes say f = O(g) as x → ∞.
Similarly, if X is an interval like (0, r ] then we might say f = O(g) as
x → 0.

Definition

We say that f = o(g) as x → x0 (“f is Little-Oh of g as x goes to x0”)
if the limit as x → x0 of f /g is zero.
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Newton’s Method for Nonlinear Equations Algorithm

Algorithm: Newton’s Method

Given a starting point x̄0
k = 0

while( ‖̄r(x̄k)‖ > ǫ )

J(x̄k)p̄k = −r̄(x̄k) (solve for p̄k) [1]

x̄k+1 = x̄k + p̄k [add α-search for improved stability]

end( k = k + 1 )

• Newton’s method for unconstrained optimization can be derived
from this algorithm by application to ∇f (x̄) = 0.

• When J(x̄k) is non-singular, then [1] is equivalent to
J(x̄k)

T J(x̄k)p̄
GN
k = −J(x̄k)

T r̄(x̄k), which gives the Gauss-
Newton direction for non-linear least squares.
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Newton’s Method for Nonlinear Equations Properties & Problems

• Assuming that the iterate x̄k is close to a non-degenerate root
x̄∗, Newton’s method has local super-linear convergence when
the Jacobian is a continuous function of x̄, and local quadratic
convergence of the Jacobian is Lipschitz continuous.

• When ‖x̄0 − x̄∗‖ is large, the “pure” Newton algorithm can behave
erratically. When J(x̄k) is singular, the Newton step is not even defined.

• When n is large it may be expensive to compute the Newton step p̄k .

• The root x̄∗ may be degenerate, i.e. J(x̄∗) may be singular. E.g.

r(x) = x2 has a single degenerate root x∗ = 0. For any non-zero
starting point x0, the sequence of iterates is given by xk = x0/2

k ,
which converges to the solution but only at a linear rate.
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Modifications & Improvements: Inexact Newton Methods

Instead of solving the linear system

J(x̄k)p̄k = −r̄(x̄k)

exactly, inexact Newton methods use search directions p̄k which
satisfy the condition

‖̄r(x̄k) + J(x̄k)p̄k‖ ≤ ηk ‖̄r(x̄k)‖ ηk ∈ [0, η], η ∈ [0, 1),

where {ηk} is the forcing sequence.

The convergence properties of inexact Newton methods depend
only on the forcing sequence, not on the particular method used to
get p̄k .
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Inexact Newton Methods: Comments

Usually inexact Newton methods are based on iterative techniques
for solving the linear system

J(x̄k)p̄k = −r̄(x̄k).

Here, since J(x̄k) is not symmetric positive definite, we cannot
directly apply the conjugate gradient method.
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Inexact Newton Methods: Local Convergence

Theorem

Suppose that r̄ is continuously differentiable in a convex open set

D ⊂ R
n. Let x̄∗ ∈ D be a non-degenerate solution of r̄(x̄) = 0, and

let {x̄k} be the sequence of iterates generated by the inexact

Newton iteration. Then when x̄k ∈ D is sufficiently close to x̄∗, the
following are true:

(i) If η is sufficiently small, then the convergence of {x̄k} is linear.
(ii) If ηk → 0, then the convergence of {x̄k} is superlinear.

(iii) If, in addition, J(·) is Lipschitz continuous on D and

ηk = O(‖̄rk‖), then the convergence of {x̄k} is quadratic.
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Broyden’s Method Secant Methods / quasi-Newton Methods

Secant methods (aka quasi-Newton methods), do not require
calculation of the Jacobian. — Instead, they maintain an
approximation of the Jacobian which gets updated in each
iteration.

This sounds quite familiar — compare with the BFGS-method for
unconstrained optimization

We present Broyden’s (the “B” in BFGS) method for this
approach.

Let Bk ≈ J(x̄k) be the Jacobian approximation at iteration k ,
assuming it is non-singular we can find the next step

p̄k = −B−1
k r̄(x̄k), x̄k+1 = x̄k + αk p̄k .
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Broyden’s Method The Secant Equation

We let s̄k , and ȳk be the differences between successive iterates,
and residuals, respectively:

s̄k = x̄k+1 − x̄k , ȳk = r̄k+1 − r̄k .

From Taylor’s theorem we have the following relation

ȳk =

∫ 1

0
J(x̄k + t s̄k )̄sk dt ≈ J(x̄k+1)̄sk + o(‖s̄k‖).

Hence, we require the updated Jacobian approximation Bk+1 to
satisfy the secant equation

ȳk = Bk+1s̄k.
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Broyden’s Method The Update

The secant equation is a system of n equation, with n2 unknowns, hence
if n > 1 there are many ways to satisfy the equation.

Broyden’s update makes the smallest possible change in the Jacobian
approximation, measured in the Euclidean norm ‖Bk − Bk+1‖, that is
consistent with the secant equation. It takes the form

Bk+1 = Bk +
(ȳk − Bks̄k)̄s

T
k

s̄Tk s̄k
.

Broyden’s algorithm: Given the direction

p̄k = −B−1
k r̄(x̄k)

we perform a line-search in this direction, and then proceed as expected.
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Broyden’s Method Local Convergence

Theorem

Suppose that r̄ is continuously differentiable in a convex open set

D ⊂ R
n. Let x̄∗ ∈ D be a non-degenerate solution of r̄(x̄) = 0. Then

there are positive constants ǫ and δ such that if the starting point x̄0 and

the starting approximate Jacobian B0 satisfy

‖x̄0 − x̄∗‖ ≤ δ, ‖B0 − J(x̄∗)‖ ≤ ǫ

the sequence {x̄k} generated by the Broyden iteration is well-defined and

converges super-linearly to x̄∗.

The second condition is particularly troublesome in practice. A good B0

is critical to the performance of Broyden’s method. B0 = J(x̄0) may be
called for (but may not be sufficiently good).

Bk is dense in general, even when J(x̄k) is sparse; when n is large, this
may cause storage problems.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Nonlinear Equations — (32/35)



Nonlinear Equations
Nonlinear Equations...

Nonlinear Equations......

Inexact Newton Methods
Broyden’s Method
Tensor Methods

Tensor Methods

In tensor methods, the linear model Mk(p̄) used by Newton’s method is
augmented with an extra term. The goal of this term is to capture some
of the non-linear behavior of r̄(x̄), and facilitate faster and more robust
convergence to degenerate roots.

Tensor methods are most successful when

rank(J(x̄∗)) ∈ {n − 1, n − 2}.

The tensor model

M̂k(p̄) = r̄(x̄k) + J(x̄k)p̄+
1

2
Tkp̄p̄,

where Tk is a tensor defined by n3 elements (Tk)ijl . The ith component
of the action of the tensor on two vectors ū, v̄ ∈ R

n is defined by

(Tk ūv̄)i =

n∑

j=1

n∑

l=1

(Tk)ijlujvl .
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Newton’s method inspires us to build the tensor from Hessians, i.e.

(Tk)ijl = [∇2ri (x̄k)]jl .

This is, in most applications, prohibitively expensive.

Another approach is to select (Tk) such that M̂k(p̄) interpolates the
function r̄(x̄k + p̄) at some previous iterates, i.e.

M̂k(x̄k−j − x̄k) = r(x̄k−j), j = 1, 2, . . . , q.

This gives

1

2
Tk s̄jk s̄jk = r̄(x̄k−j)− r̄(x̄k)− J(x̄k )̄sjk , s̄jk = x̄k−j − x̄k ,

which defines the tensor action of the form

Tk ūv̄ =

q∑

j=1

aj (̄s
T
jk ū)(̄s

T
jk v̄), aj ∈ R

n.
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