Continuation / Homotopy Methods Continuation / Homotopy Methods			Continuation / Homotopy Methods Continuation / Homotopy Methods		
			Outline		
Numerical Optimization Lecture Notes #27 Nonlinear Equations — Continuation / Homotopy Methods Peter Blomgren, (blomgren.peter@gmail.com)			 Continuation / Homotopy Methods Introduction The Homotopy Map & Zero Path Practical Continuation Methods Continuation / Homotopy Methods Robustness Example #2 — Analysis Pros and Cons 		
Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720					
http://termii	nus.sdsu.edu/				
Fall	2018	San Dirgo State University			SAN DIEGO STATE UNIVERSITY
Peter Blomgren, <code>{blomgren.peter@gmail.com}</code>	Nonlinear Eqns. — Continuation / Ho	ототору — (1/20)	Peter Blomgren, (blomgren.peter@gmail.com)	Nonlinear Eqns. — Continuation / Homotopy	— (2/20)
Continuation / Homotopy Methods Continuation / Homotopy Methods	Introduction The Homotopy Map & Zero Path Practical Continuation Methods		Continuation / Homotopy Methods Continuation / Homotopy Methods	Introduction The Homotopy Map & Zero Path Practical Continuation Methods	
Continuation / Homotopy Methods		The Sales Pitch	The Homotopy Map		
The problem with Newton's method : Unless $J(\bar{\mathbf{x}})$ is non-singular in the region of interest — something that is very hard to guarantee <i>a priori</i> — it may converge to a local minimum of the merit function which does not correspond to a solution of the nonlinear system.			We define the homotopy map $\bar{\mathbf{H}}(\bar{\mathbf{x}}, \lambda) = \lambda \bar{\mathbf{r}}(\bar{\mathbf{x}}) + (1 - \lambda)(\bar{\mathbf{x}} - \bar{\mathbf{a}}),$ and note that		
Continuation methods go directly for a solution of $\overline{\mathbf{r}}(\overline{\mathbf{x}}) = 0$ and		$\mathbf{H}(\mathbf{\bar{x}},0)=\mathbf{\bar{x}}-\mathbf{\bar{a}},$	$\mathbf{ar{H}}(\mathbf{ar{x}},1)=\mathbf{ar{r}}(\mathbf{ar{x}}).$		

Now, solving $\mathbf{\bar{H}}(\mathbf{\bar{x}}, \lambda) = 0$ is trivial when $\lambda = 0$, the solution is $\mathbf{\bar{x}}_0^* = \mathbf{\bar{a}}$.

The idea: If we increase λ by "a little," then the root(s) of the equation only move "a little," hence they should be easy to find.

The path from $(\bar{\mathbf{x}}_0^*, \lambda = 0)$ to $(\bar{\mathbf{x}}_1^*, \lambda = 1)$ is known as the **zero path**, it connects the trivial solution to the solution of $\bar{\mathbf{r}}(\bar{\mathbf{x}}) = 0$.

Peter Blomgren, (blomgren.peter@gmail.com) Nonline

easy problem to the full problem.

are more likely to converge to such a solution in difficult cases.

The Idea: First, solve an "easy" problem where the solution is

obvious. Then transform the easy system into the original

system $\mathbf{\bar{r}}(\mathbf{\bar{x}}) = 0$, and track the solution as it moves from the

SAN DIEGO STATE UNIVERSITY

- (3/20)

San Diego Stat. University

Continuation / Homotopy Methods Continuation / Homotopy Methods	Introduction The Homotopy Map & Zero Path		Continuation / Homotopy Methods Continuation / Homotopy Methods	Introduction The Homotopy Map & Zero Path Practical Continuation Methods	
A Simple Zero Path	Practical Continuation Methods		Problems	and Solutions	
A naive implementation of the homotopy method works if there is a unique solution $\overline{\mathbf{H}}(\overline{\mathbf{x}}_{\lambda}^{*}, \lambda) = 0, \forall \lambda \in [0, 1]$, and we get a fairly simple zero path: $\mathbf{I}_{\mathbf{x}} = \mathbf{I}_{\mathbf{x}} + \mathbf{I}_{\mathbf{x}}$			Unfortunately, we immediately run into trouble when there is more than one root of $H(\bar{\mathbf{x}}, \lambda) = 0$ for some range of λ .		
			 Figure: Here the zero path connects (x		
Peter Blomgren, <code>{blomgren.peter@gmail.com}</code>	Nonlinear Eqns. — Continuation / Homotopy	— (5/20)	Peter Blomgren, {blomgren.peter@gmail.com}	Nonlinear Eqns. — Continuation / Homotopy — (6/20)	
Continuation / Homotopy Methods Continuation / Homotopy Methods	Introduction The Homotopy Map & Zero Path Practical Continuation Methods		Continuation / Homotopy Methods Continuation / Homotopy Methods	Introduction The Homotopy Map & Zero Path Practical Continuation Methods	
Practical Continuation Methods		1 of 4	Practical Continuation Methods	2 of 4	

We can model the zero path by letting both $\bar{\mathbf{x}}$ and λ be functions of an independent variable s, that represents the arc length along the path.

Initial point	$(ar{\mathbf{x}}(0),\lambda(0))=(a,0)$	
Zero path	$ar{H}(ar{x}(s),\lambda(s))=0,orall s\geq0.$	
Terminal point	$(ar{\mathtt{x}}(s^{ ext{stop}}),\lambda(s^{ ext{stop}}))=(ar{\mathtt{x}}^*,1),$	$\overline{\mathbf{r}}(\mathbf{ar{x}}^*)=0$

We differentiate the zero path condition with respect to *s*, and get

$$\frac{\partial}{\partial \mathbf{\bar{x}}} \mathbf{\bar{H}}(\mathbf{\bar{x}}(s), \lambda(s)) \mathbf{\bar{x}}_{s} + \frac{\partial}{\partial \lambda} \mathbf{\bar{H}}(\mathbf{\bar{x}}(s), \lambda(s)) \lambda_{s} = 0$$

where $\mathbf{\bar{x}}_s = \frac{d\mathbf{\bar{x}}}{ds}$, and $\lambda_s = \frac{d\lambda}{ds}$.

 $\frac{\partial}{\partial \bar{x}}$ should be interpreted as the gradient operator in the $\bar{\mathbf{x}}$ -coordinates, $\nabla_{\bar{\mathbf{x}}}$.

Ê SAN DIEGO STAT UNIVERSITY

Peter Blomgren, (blomgren.peter@gmail.com)

lies in the **null space** of the $n \times (n+1)$ matrix

Nonlinear Egns. — Continuation / Homotopy

(1)

SAN DIEGO S

- (8/20)

since

$$\left[\frac{\partial}{\partial \bar{\mathbf{x}}} \bar{\mathbf{H}}(\bar{\mathbf{x}}(s), \lambda(s)) \mid \frac{\partial}{\partial \lambda} \bar{\mathbf{H}}(\bar{\mathbf{x}}(s), \lambda(s)) \right] \left[\frac{\bar{\mathbf{x}}_s}{\lambda_s} \right] = 0$$

The vector $(\bar{\mathbf{x}}_s, \lambda_s)$ is the **tangent vector** to the zero path, and it

 $\left[\begin{array}{c}\frac{\partial}{\partial \bar{\mathbf{x}}}\bar{\mathbf{H}}(\bar{\mathbf{x}}(s),\lambda(s)) & \frac{\partial}{\partial \lambda}\bar{\mathbf{H}}(\bar{\mathbf{x}}(s),\lambda(s))\end{array}\right]$

If this matrix has full rank, its null space has dimension 1. In order to complete the definition of $(\bar{\mathbf{x}}_s, \lambda_s)$, we normalize its length so that

$$\|\bar{\mathbf{x}}_s\|^2 + |\lambda_s|^2 = 1, \quad \forall s$$

this ensures that *s* is the true arc length along the path.

Introduction Introduction Continuation / Homotopy Methods Continuation / Homotopy Methods The Homotopy Map & Zero Path The Homotopy Map & Zero Path Continuation / Homotopy Methods... Continuation / Homotopy Methods... **Practical Continuation Methods** Practical Continuation Methods 3 of 4 Practical Continuation Methods Practical Continuation Methods 4 of 4 We must now choose the sign (direction) of the tangent vector, so Now that we have an initial condition that it points "forward" along the zero path. Usually, as long as we restrict the change in tangent direction by $(\bar{\mathbf{x}},\lambda)(0) = (\bar{\mathbf{a}},0)$ $\pi/2$ between iterations, we are safe. The following algorithm identifies the tangent direction as and the tangent vector (think "Ordinary Differential described above: **Equation!!!"** [MATH 542]) Compute a vector in the null space by QR-factorization with column pivoting $\frac{d}{ds}(\mathbf{\bar{x}},\lambda)(s) = (\mathbf{\bar{x}}_s,\lambda_s).$ $Q^{T} \begin{bmatrix} \frac{\partial}{\partial \mathbf{\bar{x}}} \mathbf{\bar{H}}(\mathbf{\bar{x}}(s), \lambda(s)) & \frac{\partial}{\partial \lambda} \mathbf{\bar{H}}(\mathbf{\bar{x}}(s), \lambda(s)) \end{bmatrix} \Pi = \begin{bmatrix} R & \mathbf{\bar{w}} \end{bmatrix}$ where $Q \in \mathbb{R}^{n \times n}$ orthogonal, $R \in \mathbb{R}^{n \times n}$ upper triangular, $\Pi \in \mathbb{R}^{(n+1) \times (n+1)}$ we can apply any off-the shelf method for solving this ODE (e.g. permutation matrix, and $\bar{\mathbf{w}} \in \mathbb{R}^n$. Set Matlab's ode23 or ode45), and stop the solution when $\lambda(s) = 1$. $\bar{\mathbf{v}} = \Pi \begin{bmatrix} R^{-1}\bar{\mathbf{w}} \\ -1 \end{bmatrix}, \qquad (\bar{\mathbf{x}}_s, \lambda_s) = \pm \frac{\bar{\mathbf{v}}}{\|\bar{\mathbf{v}}\|} \quad (\text{sign as above}).$ JIEGO STAT SAN DIEGO UNIVERS Nonlinear Eqns. — Continuation / Homotopy **— (9/20)** Nonlinear Eqns. — Continuation / Homotopy Peter Blomgren, (blomgren.peter@gmail.com) Peter Blomgren, (blomgren.peter@gmail.com) -(10/20)Introduction Introduction Continuation / Homotopy Methods **Continuation / Homotopy Methods** The Homotopy Map & Zero Path The Homotopy Map & Zero Path Continuation / Homotopy Methods... Continuation / Homotopy Methods... Practical Continuation Methods Practical Continuation Methods Example #1 — Continuation for $f(x) = \sin(5x) - x$ Example #1b: Several Paths for $f(x) = x^2 - 1$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 04 0.6 **Figure:** We apply the continuation scheme described to the scalar objective f(x) = $\sin(5x) - x$, *i.e.* we use the homotopy map $H^{(a)}(x,\lambda) = \lambda(\sin(5x) - x) + (1-\lambda)(x-a)$. Depending on the starting value *a* we get convergence to one of the three roots: a = 0 $\rightsquigarrow x^* = 0, a > 0 \rightsquigarrow x^* \approx 0.52$, and $a < 0 \rightsquigarrow x^* \approx -0.52$ Êı **Figure:** Zero-paths for a = 0, SAN DIEGO STA UNIVERSITY -0.01. and a = 0.01. 02 03 04 05

Peter Blomgren, blomgren.peter@gmail.com

Nonlinear Egns. — Continuation / Homotopy

(12/20)

Peter Blomgren, (blomgren.peter@gmail.com) Nonlinear Egns. — Continuation / Homotopy

^{- (11/20)}

