Numerical Optimization

Lecture Notes \＃27

Nonlinear Equations－Continuation／Homotopy Methods

Peter Blomgren，

〈blomgren．peter＠gmail．com〉

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego，CA 92182－7720 http：／／terminus．sdsu．edu／

Fall 2018

Peter Blomgren，〈blomgren．peter＠gmail．com〉
Nonlinear Eqns．－Continuation／Homotopy

Introduction
The Homotopy Map \＆Zero Path
Practical Continuation Methods

The Sales Pitch

The problem with Newton＇s method：Unless $J(\overline{\mathbf{x}})$ is non－singular in the region of interest－something that is very hard to guarantee a priori－it may converge to a local minimum of the merit function which does not correspond to a solution of the nonlinear system．

Continuation methods go directly for a solution of $\overline{\mathbf{r}}(\overline{\mathbf{x}})=0$ and are more likely to converge to such a solution in difficult cases．

The Idea：First，solve an＂easy＂problem where the solution is obvious．Then transform the easy system into the original system $\overline{\mathbf{r}}(\overline{\mathbf{x}})=0$ ，and track the solution as it moves from the easy problem to the full problem．
（1）Continuation／Homotopy Methods
－Introduction
－The Homotopy Map \＆Zero Path
－Practical Continuation Methods
（2）Continuation／Homotopy Methods．．．
－Robustness
－Example \＃2－Analysis
－Pros and Cons

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Nonlinear Eqns．－Continuation／Homotopy－（2／20）

Continuation／Homotopy Methods
Introduction
The Homotopy Map \＆Zero Path
Practical Continuation Methods

The Homotopy Map

We define the homotopy map

$$
\overline{\mathbf{H}}(\overline{\mathbf{x}}, \lambda)=\lambda \overline{\mathbf{r}}(\overline{\mathbf{x}})+(1-\lambda)(\overline{\mathbf{x}}-\overline{\mathbf{a}}),
$$

and note that

$$
\overline{\mathbf{H}}(\overline{\mathbf{x}}, 0)=\overline{\mathbf{x}}-\overline{\mathbf{a}}, \quad \overline{\mathbf{H}}(\overline{\mathbf{x}}, 1)=\overline{\mathbf{r}}(\overline{\mathbf{x}}) .
$$

Now，solving $\overline{\mathbf{H}}(\overline{\mathbf{x}}, \lambda)=0$ is trivial when $\lambda=0$ ，the solution is $\overline{\mathbf{x}}_{0}^{*}=\overline{\mathbf{a}}$ ．
The idea：If we increase λ by＂a little，＂then the roots）of the equation only move＂a little，＂hence they should be easy to find．
The path from（ $\overline{\mathbf{x}}_{0}^{*}, \lambda=0$ ）to（ $\overline{\mathbf{x}}_{1}^{*}, \lambda=1$ ）is known as the zero path，it connects the trivial solution to the solution of $\overline{\mathbf{r}}(\overline{\mathbf{x}})=0$ ．

Unfortunately，we immediately run into trouble when there is more than one root of $H(\overline{\mathbf{x}}, \lambda)=0$ for some range of λ ．

Figure：Here the zero path connects $\left(\bar{x}_{0}, 0\right)$ and $\left(\bar{x}_{1}, 1\right)$ ，but if we try to follow the path by monotonically increasing λ ，we will fail at the first turning point．
In practical continuation methods，we must allow λ to decrease， and sometimes even leave the interval $[0,1] \ldots$

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Nonlinear Eqns．－Continuation／Homotopy－（6／20）

> Continuation / Homotopy Methods
> Continuation / Homotopy Methods...

> Introduction
> The Homotopy Map \& Zero Path
> Practical Continuation Methods

Practical Continuation Methods
The vector $\left(\bar{x}_{s}, \lambda_{s}\right)$ is the tangent vector to the zero path，and it lies in the null space of the $n \times(n+1)$ matrix

$$
\left[\begin{array}{cc}
\frac{\partial}{\partial \overline{\mathbf{x}}} \overline{\mathbf{H}}(\overline{\mathbf{x}}(s), \lambda(s)) & \frac{\partial}{\partial \lambda} \overline{\mathbf{H}}(\overline{\mathbf{x}}(s), \lambda(s)) \tag{1}
\end{array}\right]
$$

since

$$
\left[\left.\frac{\partial}{\partial \overline{\mathbf{x}}} \overline{\mathbf{H}}(\overline{\mathbf{x}}(s), \lambda(s)) \right\rvert\, \frac{\partial}{\partial \lambda} \overline{\mathbf{H}}(\overline{\mathbf{x}}(s), \lambda(s))\right]\left[\begin{array}{c}
\overline{\mathbf{x}}_{s} \\
\lambda_{s}
\end{array}\right]=0
$$

If this matrix has full rank，its null space has dimension 1．In order to complete the definition of（ $\overline{\mathrm{x}}_{s}, \lambda_{s}$ ），we normalize its length so that

$$
\left\|\overline{\mathbf{x}}_{s}\right\|^{2}+\left|\lambda_{s}\right|^{2}=1, \quad \forall s
$$

this ensures that s is the true arc length along the path．

Now that we have an initial condition

$$
(\overline{\mathbf{x}}, \lambda)(0)=(\overline{\mathbf{a}}, 0)
$$

and the tangent vector（think＂Ordinary Differential Equation！！！＂［MATH 542］）

$$
\frac{d}{d s}(\overline{\mathbf{x}}, \lambda)(s)=\left(\overline{\mathbf{x}}_{s}, \lambda_{s}\right) .
$$

we can apply any off－the shelf method for solving this ODE（e．g．
Matlab＇s ode23 or ode45），and stop the solution when $\lambda(s)=1$ ．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Nonlinear Eqns．－Continuation／Homotopy－（10／20）

Continuation／Homotopy Methods
Continuation／Homotopy Methods．

ntroduction
 he Homotopy Map \＆Zero Path
 Practical Continuation Methods

Example \＃1b：Several Paths for $f(x)=x^{2}-1$

Figure：Zero－paths for $a=0, a=$ -0.01 ，and $a=0.01$ ．

Figure：We apply the continuation scheme described to the scalar objective $f(x)=$ $\sin (5 x)-x$ ，i．e．we use the homotopy map $H^{(a)}(x, \lambda)=\lambda(\sin (5 x)-x)+(1-\lambda)(x-a)$ ． Depending on the starting value a we get convergence to one of the three roots：$a=0$ $\rightsquigarrow x^{*}=0, a>0 \rightsquigarrow x^{*} \approx 0.52$ ，and $a<0 \rightsquigarrow x^{*} \approx-0.52$ ．

The continuation method we have described relies on the $n \times(n+1)$ matrix（1）on slide\＃8，having full rank for all（ $\overline{\mathbf{x}}, \lambda$ ） along the path，so that the tangent vector is well defined．

Theorem
Suppose that r is twice continuously differentiable．Then for almost all vectors $\overline{\mathbf{a}} \in \mathbb{R}^{n}$ ，there is a zero path emanating from（ $\overline{\mathbf{a}}, 0$ ）along which the $n \times(n+1)$ matrix

$$
\left[\begin{array}{cc}
\frac{\partial}{\partial \overline{\mathbf{x}}} \overline{\mathbf{H}}(\overline{\mathbf{x}}(s), \lambda(s)) & \frac{\partial}{\partial \lambda} \overline{\mathbf{H}}(\overline{\mathbf{x}}(s), \lambda(s))
\end{array}\right]
$$

has full rank．If this path is bounded for $\lambda \in[0,1)$ ，then it has an accumulation point $\left(\overline{\mathbf{x}}^{*}, 1\right)$ such that $\overline{\mathbf{r}}\left(\overline{\mathbf{x}}^{*}\right)=0$ ．Furthermore，if the Jacobian $J\left(\overline{\mathbf{x}}^{*}\right)$ is non－singular，the zero path between $(\overline{\mathbf{a}}, 0)$ and $\left(\overline{\mathbf{x}}^{*}, 1\right)$ has finite arc length．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Nonlinear Eqns．－Continuation／Homotopy－（13／20）

Robustness
 Example \＃2－Analysis

Pros and Cons
Analysis of Example \＃2
The homotopy map for $a=-2$ is given by
$H(x, \lambda)=\lambda\left(x^{2}-1\right)+(1-\lambda)(x+2)=\lambda x^{2}+(1-\lambda) x+(2-3 \lambda)$.
For a fixed λ ，the roots of $H(x, \lambda)$ are given by

$$
x=\frac{-(1-\lambda) \pm \sqrt{(1-\lambda)^{2}-4 \lambda(2-3 \lambda)}}{2 \lambda} .
$$

If（when）the term inside the square root is negative，there are no real roots．This occurs in the range

$$
\lambda \in\left(\frac{5-2 \sqrt{3}}{13}, \frac{5+2 \sqrt{3}}{13}\right) \approx(0.118,0.651)
$$

Robustnes

The theorem shows that unless we are＂very unlucky＂in our choice of $\overline{\mathbf{a}}$ ，our continuation algorithms will be well defined，and will either converge to a point $\overline{\mathbf{x}}^{*}$ that is a solution $\overline{\mathbf{r}}\left(\overline{\mathbf{x}}^{*}\right)=0$ ，or will diverge．
Example \＃2：Unbounded Path for $f(x)=x^{2}-1$ ．

Figure：There is no zero path connect－ ing（ $-2,0$ ）and either non－degenerate root $(\pm 1,1)$ ，hence the continuation method fails（the path continues down to $-\infty$ ）．

Peter Blomgren，〈blomgren．peter＠gmail．com〉
Nonlinear Eqns．－Continuation／Homotopy

Robustness

Example \＃2－Analysis
Pros and Cons
Example \＃2b：Bounded Path for $f(x)=x^{2}-1$

Changing the starting point to $a=-0.1$ yields the following path

Figure：In this case there is a zero path connecting $(-0.1,0)$ and the non－degenerate root $(1,1)$ ．

Figure：The path $(-1,0) \rightsquigarrow(-1,1)$ is the only path to the negative root；for starting points $(a<-1,0)$ the path becomes unbounded，and $(a>-1,0) \rightsquigarrow(1,1)$ ．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Nonlinear Eqns．－Continuation／Homotopy－（17／20）

Robustness
Example \＃2－Analysis
Pros and Cons

Robustnes
xample \＃2－Analysis

Example \＃2d：Several Paths for $f(x)=x^{2}-1$

Figure：Zero－paths for $a=-2, a=-1.01, a=-1$ ，and $a=-0.99$ Peter Blomgren，〈blomgren．peter＠gmail．com〉 Nonlinear Eqns．－Continuation／Homotopy

Continuation／Homotopy Methods Continuation／Homotopy Methods．．．

Robustness
xample \＃2－Analysis
Pros and Cons

Index
homotopy map， 4
zero path， 5

The Bad

－High cost－continuation methods require significantly more function and derivative evaluations，and linear algebra opera－ tions than merit－function based methods．

