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Continuation / Homotopy Methods The Sales Pitch

The problem with Newton’s method: Unless J(x̄) is
non-singular in the region of interest — something that is very
hard to guarantee a priori — it may converge to a local
minimum of the merit function which does not correspond to a
solution of the nonlinear system.

Continuation methods go directly for a solution of r̄(x̄) = 0 and
are more likely to converge to such a solution in difficult cases.

The Idea: First, solve an “easy” problem where the solution is
obvious. Then transform the easy system into the original
system r̄(x̄) = 0, and track the solution as it moves from the
easy problem to the full problem.
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The Homotopy Map

We define the homotopy map

H̄(x̄, λ) = λr̄(x̄) + (1− λ)(x̄− ā),

and note that

H̄(x̄, 0) = x̄− ā, H̄(x̄, 1) = r̄(x̄).

Now, solving H̄(x̄, λ) = 0 is trivial when λ = 0, the solution is
x̄∗0 = ā.

The idea: If we increase λ by “a little,” then the root(s) of the
equation only move “a little,” hence they should be easy to find.

The path from (x̄∗0, λ = 0) to (x̄∗1, λ = 1) is known as the zero
path, it connects the trivial solution to the solution of r̄(x̄) = 0.
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A Simple Zero Path

A naive implementation of the homotopy method works if there is
a unique solution H̄(x̄∗λ, λ) = 0, ∀λ ∈ [0, 1], and we get a fairly
simple zero path:

Figure: The zero path — the trajectory of points (x̄, λ) for which
H(x̄, λ) = 0. Here, λ is increasing from 0 to 1 on the horizontal axis,
and the values of x̄k are illustrated on the vertical axis.
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Problems... ...and Solutions

Unfortunately, we immediately run into trouble when there is more
than one root of H(x̄, λ) = 0 for some range of λ.

Figure: Here the zero path connects (x̄0, 0) and (x̄1, 1), but if we try
to follow the path by monotonically increasing λ, we will fail at the first
turning point.

In practical continuation methods, we must allow λ to decrease,
and sometimes even leave the interval [0, 1]...
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Practical Continuation Methods 1 of 4

We can model the zero path by letting both x̄ and λ be functions
of an independent variable s, that represents the arc length along
the path.

Initial point (x̄(0), λ(0)) = (a, 0)

Zero path H̄(x̄(s), λ(s)) = 0, ∀s ≥ 0.

Terminal point (x̄(sstop), λ(sstop)) = (x̄∗, 1), r̄(x̄∗) = 0

We differentiate the zero path condition with respect to s, and get

∂

∂x̄
H̄(x̄(s), λ(s))x̄s +

∂

∂λ
H̄(x̄(s), λ(s))λs = 0,

where x̄s =
d x̄
ds
, and λs =

dλ
ds
.

∂
∂x̄ should be interpreted as the gradient operator in the
x̄-coordinates, ∇x̄.
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Practical Continuation Methods 2 of 4

The vector (x̄s , λs) is the tangent vector to the zero path, and it
lies in the null space of the n × (n + 1) matrix

[

∂

∂x̄
H̄(x̄(s), λ(s))

∂

∂λ
H̄(x̄(s), λ(s))

]

(1)

since
[

∂

∂x̄
H̄(x̄(s), λ(s))

∂

∂λ
H̄(x̄(s), λ(s))

] [

x̄s
λs

]

= 0

If this matrix has full rank, its null space has dimension 1. In order
to complete the definition of (x̄s , λs), we normalize its length so
that

‖x̄s‖2 + |λs |2 = 1, ∀s
this ensures that s is the true arc length along the path.
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Practical Continuation Methods 3 of 4

We must now choose the sign (direction) of the tangent vector, so
that it points “forward” along the zero path.

Usually, as long as we restrict the change in tangent direction by
π/2 between iterations, we are safe.

The following algorithm identifies the tangent direction as
described above:

Compute a vector in the null space by QR-factorization with column pivoting

QT

[

∂

∂x̄
H̄(x̄(s), λ(s))

∂

∂λ
H̄(x̄(s), λ(s))

]

Π =
[

R w̄
]

where Q ∈ R
n×n orthogonal, R ∈ R

n×n upper triangular, Π ∈ R
(n+1)×(n+1)

permutation matrix, and w̄ ∈ R
n. Set

v̄ = Π

[

R−1w̄
−1

]

, (x̄s , λs) = ±
v̄

‖v̄‖
(sign as above).
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Practical Continuation Methods 4 of 4

Now that we have an initial condition

(x̄, λ)(0) = (ā, 0)

and the tangent vector (think “Ordinary Differential
Equation!!!” [Math 542])

d

ds
(x̄, λ)(s) = (x̄s , λs).

we can apply any off-the shelf method for solving this ODE (e.g.
Matlab’s ode23 or ode45), and stop the solution when λ(s) = 1.
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Example #1 — Continuation for f (x) = sin(5x)− x
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Figure: We apply the continuation scheme described to the scalar objective f (x) =
sin(5x)−x , i.e. we use the homotopy map H(a)(x , λ) = λ(sin(5x)−x)+(1−λ)(x−a).
Depending on the starting value a we get convergence to one of the three roots: a = 0
 x∗ = 0, a > 0  x∗ ≈ 0.52, and a < 0  x∗ ≈ −0.52.
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Example #1b: Several Paths for f (x) = x2 − 1
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Figure: Zero-paths for a = 0, a =
−0.01, and a = 0.01.
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Continuation Methods: Robustness 1 of 2

The continuation method we have described relies on the
n × (n + 1) matrix (1) on slide#8, having full rank for all (x̄, λ)
along the path, so that the tangent vector is well defined.

Theorem

Suppose that r is twice continuously differentiable. Then for almost all
vectors ā ∈ R

n, there is a zero path emanating from (ā, 0) along which

the n × (n + 1) matrix

[

∂

∂x̄
H̄(x̄(s), λ(s))

∂

∂λ
H̄(x̄(s), λ(s))

]

has full rank. If this path is bounded for λ ∈ [0, 1), then it has an

accumulation point (x̄∗, 1) such that r̄(x̄∗) = 0. Furthermore, if the

Jacobian J(x̄∗) is non-singular, the zero path between (ā, 0) and (x̄∗, 1)
has finite arc length.
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Continuation Methods: Robustness 2 of 2

The theorem shows that unless we are “very unlucky” in our choice
of ā, our continuation algorithms will be well defined, and will
either converge to a point x̄∗ that is a solution r̄(x̄∗) = 0, or will
diverge.

Example #2: Unbounded Path for f (x) = x2 − 1.
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Figure: There is no zero path connect-
ing (−2, 0) and either non-degenerate
root (±1, 1), hence the continuation
method fails (the path continues down
to −∞).
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Analysis of Example #2

The homotopy map for a = −2 is given by

H(x , λ) = λ(x2 − 1)+ (1− λ)(x +2) = λx2 + (1− λ)x + (2− 3λ).

For a fixed λ, the roots of H(x , λ) are given by

x =
−(1− λ)±

√

(1− λ)2 − 4λ(2− 3λ)

2λ
.

If (when) the term inside the square root is negative, there are no
real roots. This occurs in the range

λ ∈
(

5− 2
√
3

13
,
5 + 2

√
3

13

)

≈ (0.118, 0.651).
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Example #2b: Bounded Path for f (x) = x2 − 1

Changing the starting point to a = −0.1 yields the following path

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

Figure: In this case there is a zero path connecting (−0.1, 0) and the
non-degenerate root (1, 1).
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Example #2c: Several Paths for f (x) = x2 − 1
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Figure: The path (−1, 0)  (−1, 1) is the only path to the negative root; for starting
points (a < −1, 0) the path becomes unbounded, and (a > −1, 0) (1, 1).
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Example #2d: Several Paths for f (x) = x2 − 1
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Figure: Zero-paths for a = −2, a = −1.01, a = −1, and a = −0.99.
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Continuation Methods: Pros and Cons

The Good

• [claim] Generally more reliable than merit-function methods.

The Bad

• High cost — continuation methods require significantly more
function and derivative evaluations, and linear algebra opera-
tions than merit-function based methods.
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