Numerical Optimization

Lecture Notes #28 Constrained Optimization

Peter Blomgren, \(\text{blomgren.peter@gmail.com} \)

Department of Mathematics and Statistics

Dynamical Systems Group

Computational Sciences Research Center

San Diego State University

San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Fall 2018

Peter Blomgren, \langle blomgren.peter@gmail.com \rangle

Lecture Notes #28 Constrained Optimization

— (1/22)

Constrained Optimization Some Approaches KKT First Order Necessary Conditions Second Order Conditions

Introduction

We have spent a lots of effort on the Unconstrained Optimization problem, we now take a very quick look at the fundamentals of Constrained Optimization — we will quickly realize that things get quite "interesting!"

Problem 0: Constrained Optimization

$$\min_{ec{x} \in \mathbb{R}^n} f(ec{x})$$
 subject to $\left\{ egin{array}{l} c_i(ec{x}) = 0, & i \in \mathcal{E} \ c_i(ec{x}) \geq 0, & i \in \mathcal{I} \end{array}
ight.$

where $i \in \mathcal{E}$ are the equality constraints, and $i \in \mathcal{I}$ the inequality constraints.

The smoothness (or lack thereof) for the objective $f(\vec{x})$ and the constraint functions $c_i(\vec{x})$ will impact the difficulty of solving the problem.

— (3/22)

Outline

- Constrained Optimization
 - KKT First Order Necessary Conditions
 - Second Order Conditions
- 2 Some Approaches
 - Problems and Algorithms

Peter Blomgren, (blomgren.peter@gmail.com)

Lecture Notes #28 Constrained Optimization

— (2/22)

Constrained Optimization Some Approaches KKT First Order Necessary Conditions Second Order Conditions

The Feasible Set

With the following definition of all allowable points:

Definition (The Feasible Set)

Let

$$\Omega = \{\vec{x} \in \mathbb{R}^n : c_i(\vec{x}) = 0 \ \forall i \in \mathcal{E}, \text{ and } c_i(\vec{x}) > 0 \ \forall i \in \mathcal{I}\}$$

We can rewrite the problem more compactly as

Problem 1: Constrained Optimization

$$\min_{\vec{x} \in \Omega} f(\vec{x}).$$

Our goal is to state necessary and sufficient conditions for optimality.

Definition (Local Solution)

A point \vec{x}^* is a local solution of Problem 1 if $\vec{x}^* \in \Omega$ and there is a neighborhood \mathcal{N} of \vec{x}^* such that $f(\vec{x}) > f(\vec{x}^*) \ \forall \vec{x} \in \mathcal{N} \cap \Omega$.

Definition (Strict Local Solution)

A point \vec{x}^* is a strict local solution of Problem 1 if $\vec{x}^* \in \Omega$ and there is a neighborhood \mathcal{N} of \vec{x}^* such that $f(\vec{x}) > f(\vec{x}^*)$ $\forall \vec{x} \in \mathcal{N} \cap \Omega$.

Definition (Isolated Local Solution)

A point \vec{x}^* is an isolated local solution of Problem 1 if $\vec{x}^* \in \Omega$ and there is a neighborhood \mathcal{N} of \vec{x}^* such that \vec{x}^* is the only local solution in $\mathcal{N} \cap \Omega$.

Peter Blomgren, (blomgren.peter@gmail.com)

Lecture Notes #28 Constrained Optimization

— (5/22)

Constrained Optimization Some Approaches KKT First Order Necessary Conditions Second Order Conditions

The Active Set

Definition (Active Set)

The active set $\mathcal{A}(\vec{x})$ at any feasible \vec{x} consists of the equality constraint indices from \mathcal{E} and the indices of the inequality constraint indices from \mathcal{I} for which $c_i(\vec{x}) = 0$, *i.e.*

$$\mathcal{A}(\vec{x}) = \mathcal{E} \cup \{ i \in \mathcal{I} : c_i(\vec{x}) = 0 \}.$$

At a feasible point \vec{x} , the inequality constraint $i \in \mathcal{I}$ is said to be active if $c_i(\vec{x}) = 0$ and inactive if $c_i(\vec{x}) > 0$.

Smoothness

It is usually (always?) advantageous to express constraints and objectives in as smooth a way as possible; e.g. we can replace single non-smooth conditions. like

ns
$$\|\vec{x}\|_1 = |x_1| + |x_2| \le 1$$

with several smooth constraints

$$s#1 x_1 + x_2 \le 1$$

$$s#2 x_1 - x_2 \le 1$$

$$s#3 -x_1 + x_2 \le 1$$

$$s\#4 -x_1 -x_2 \le 1$$

Peter Blomgren, (blomgren.peter@gmail.com)

Lecture Notes #28 Constrained Optimization

-(6/22)

Constrained Optimization Some Approaches KKT First Order Necessary Conditions Second Order Conditions

Linear Independence Constraint Qualification

Definition (LICQ: Linear Independence Constraint Qualification) Give a the point \vec{x} and the active set $\mathcal{A}(\vec{x})$, we say that the linear independence constrain qualification (LICQ) holds if the set of active constraint gradients

$$\{\nabla c_i(\vec{x}), i \in \mathcal{A}(\vec{x})\}\$$

is linearly independent.

The Lagrangian Function

Our final building block before stating the first order conditions for optimality is the:

Definition (The Lagrangian Function, $\mathcal{L}(\vec{x}, \vec{\lambda})$)

$$\mathcal{L}(ec{x},ec{\lambda}) = f(ec{x}) - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(ec{x})$$

The Lagrange multipliers, λ_i , are used to "pull" the solution back to the feasible set.

Peter Blomgren, (blomgren.peter@gmail.com)

Lecture Notes #28 Constrained Optimization

-(9/22)

Constrained Optimization Some Approaches

KKT First Order Necessary Conditions Second Order Conditions

KKT First Order Necessary Conditions (compact form)

Theorem (KKT:FONC — Compact Form)

Suppose that \vec{x}^* is a local solution to Problem 1, that the functions f and c; are continuously differentiable, and that the LICQ holds at \vec{x}^* . Then there is a Lagrange multiplier vector $\vec{\lambda}^*$. with components $\lambda_i(\vec{x}^*)$, $i \in \mathcal{E} \cup \mathcal{I}$, such that the following conditions are satisfied at $(\vec{x}^*, \vec{\lambda}^*)$:

$$0 = \nabla_{\vec{x}} \mathcal{L}(\vec{x}, \vec{\lambda}) = \nabla f(\vec{x}^*) - \sum_{i \in \mathcal{A}(\vec{x}^*)} \lambda_i^* \nabla c_i(\vec{x}^*).$$

KKT First Order Necessary Conditions

Theorem (KKT:FONC — First Order Necessary Conditions)

Suppose that \vec{x}^* is a local solution to Problem 1, that the functions f and c_i are continuously differentiable, and that the LICO holds at \vec{x}^* . Then there is a Lagrange multiplier vector $\vec{\lambda}^*$, with components $\lambda_i(\vec{x}^*)$, $i \in \mathcal{E} \cup \mathcal{I}$, such that the following conditions are satisfied at $(\vec{x}^*, \vec{\lambda}^*)$:

$$egin{aligned}
abla_{ec{x}}\mathcal{L}(ec{x},ec{\lambda}) &= 0, \\
c_i(ec{x}^*) &= 0, & \forall i \in \mathcal{E} \\
c_i(ec{x}^*) &\geq 0, & \forall i \in \mathcal{I} \\
\lambda_i^* &\geq 0, & \forall i \in \mathcal{I} \\
\lambda_i^* c_i(ec{x}^*) &= 0, & i \in \mathcal{I} \cup \mathcal{E}.
\end{aligned}$$

The Karush-Kuhn-Tucker conditions.

Peter Blomgren, (blomgren.peter@gmail.com)

Lecture Notes #28 Constrained Optimization

Constrained Optimization Some Approaches KKT First Order Necessary Conditions

Second Order Conditions

Strict Complementarity

Definition (Strict Complementarity)

Given a local solution \vec{x}^* of Problem 1, and a vector $\vec{\lambda}^*$ satisfying the KKT:FONC, we say that the strict complementarity condition holds if exactly one of λ_i^* or $c_i(\vec{x}^*)$ is zero for each index $i \in \mathcal{I}$. In other words, we have $\lambda_i^* > 0 \ \forall i \in \mathcal{I} \cap \mathcal{A}(\vec{x}^*)$.

We sweep the proof of KKT:FONC under our infinitely stretchable rug. Not because it is not important (it is!), but we are somewhat short on time.

(12/22)

Linearized Feasible Directions

Definition (Set of Linearized Feasible Directions)

Given a feasible point \vec{x} and the active constrain set $\mathcal{A}(\vec{x})$, the set of linearized feasible directions is

$$\mathcal{F}(ec{x}) = \left\{ egin{aligned} ec{d} & ext{ such that } & ec{d}^T
abla c_i(ec{x}) = 0, & orall i \in \mathcal{E} \ ec{d}^T
abla c_i(ec{x}) \geq 0, & orall i \in \mathcal{A}(ec{x}) \cap \mathcal{I} \end{aligned}
ight.
ight.$$

Peter Blomgren, (blomgren.peter@gmail.com)

Peter Blomgren, (blomgren.peter@gmail.com)

Lecture Notes #28 Constrained Optimization

Constrained Optimization Some Approaches

KKT First Order Necessary Conditions **Second Order Conditions**

Lecture Notes #28 Constrained Optimization

Critical Cone

Given $\mathcal{F}(\vec{x}^*)$, and some Lagrange multiplier vector λ^* satisfying KKT:FONC, we define:

Definition (Critical Cone)

$$\mathcal{C}(\vec{x}^*,\vec{\lambda}^*) = \{ \ \vec{w} \in \mathcal{F}(\vec{x}^*) \ : \ \nabla c_i(\vec{x}^*)^T \vec{w} = 0, \forall i \in \mathcal{A}(\vec{x}^*) \cap \mathcal{I} \ \text{with} \ \lambda_i^* = 0 \ \}.$$

Or equivalently

$$\vec{w} \in C(\vec{x}^*, \vec{\lambda}^*) \Leftrightarrow \begin{cases} \nabla c_i(\vec{x}^*)^T \vec{w} = 0, & \forall i \in \mathcal{E} \\ \nabla c_i(\vec{x}^*)^T \vec{w} = 0, & \forall i \in \mathcal{A}(\vec{x}^*) \cap \mathcal{I} \text{ with } \lambda_i^* > 0 \\ \nabla c_i(\vec{x}^*)^T \vec{w} \ge 0, & \forall i \in \mathcal{A}(\vec{x}^*) \cap \mathcal{I} \text{ with } \lambda_i^* = 0 \end{cases}$$

The critical cone $C(\vec{x}^*, \vec{\lambda}^*)$ contains the directions from $\mathcal{F}(\vec{x}^*)$ for which it is not clear from first derivative information whether f will increase or decrease.

Second Order Conditions

Second order conditions will help determine the impact of directions $\vec{w} \in \mathcal{F}(\vec{x}^*)$ for which $\vec{w}^T \nabla f(\vec{x}^*) = 0$, *i.e.* directions which are "locally flat."

From this point on we need the functions f and c_i to be twice continuously differentiable.

Peter Blomgren, (blomgren.peter@gmail.com)

Lecture Notes #28 Constrained Optimization

Constrained Optimization Some Approaches KKT First Order Necessary Conditions Second Order Conditions

Second Order Necessary Conditions

Theorem (Second Order Necessary Conditions)

Suppose that \vec{x}^* is a local solution of Problem 1, and that the LICQ condition is satisfied. Let $\vec{\lambda}^*$ be the Lagrange multiplier vector for which the KKT:FONC are satisfied. Then

$$\vec{w}^T \nabla^2_{\vec{z}\vec{z}} \mathcal{L}(\vec{x}, \vec{\lambda}) \vec{w} \geq 0, \ \forall \vec{w} \in C(\vec{x}^*, \vec{\lambda}^*).$$

Interpretation: The Hessian of the Lagrangian has non-negative curvature along critical directions.

Second Order Sufficient Conditions

Theorem (Second Order Sufficient Conditions)

Suppose that for some feasible point $\vec{x}^* \in \mathbb{R}^n$ there is a Langrange multiplier vector $\vec{\lambda}^*$ such that KKT:FONC are satisfied. Suppose also that

$$\vec{w}^T \nabla^2_{\vec{x}\vec{x}} \mathcal{L}(\vec{x}, \vec{\lambda}) \vec{w} > 0, \ \forall \vec{w} \in C(\vec{x}^*, \vec{\lambda}^*), \ \vec{w} \neq \vec{0}.$$

Then \vec{x}^* is a strict local solution for Problem 1.

Much remains to be said; however, everything grows out of these fundamental definitions and theorems; leveraging special cases, weakening and strengthening conditions, and looking for alternatives.

Peter Blomgren, (blomgren.peter@gmail.com)

Lecture Notes #28 Constrained Optimization — (17/22)

Constrained Optimization
Some Approaches

Problems and Algorithms

Some Approaches

• Interior Point Methods, Primal-Dual Methods

- c_i are strict inequalities.
- Better theoretical behavior than The Simplex Method.
- Leonid Khachiyan, 1979 The Ellipsoid Method (polynomial runtime, $\mathcal{O}(n^6L)$)
- Narendra Karmarkar, 1984 Projective Algorithm, $\mathcal{O}(n^{3.5}L^2 \cdot \log L \cdot \log \log L)$, where n is the number of variables and L is the number of bits of input to the algorithm.

• Linear Programming — The Simplex Method

- f and c_i linear functions
- Leonid Kantorovich, 1939 Linear Programming.
- George Datzig, 1947 The Simplex Method.
- John von Neumann, 1947 Theory of Duality.
- The worst case complexity for The Simplex Method is exponential, but it is remarkably efficient in practice.

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

Lecture Notes #28 Constrained Optimization

tion — (18/22)

Constrained Optimization
Some Approaches

Problems and Algorithms

Some Approaches

Some Approaches

Quadratic Programming

- Special case: Exploit the structure of the problem:
- Quadratic Objective, Linear Constraints
- Active Set methods
- Interior Point methods
- Gradient Projection methods
- Appears as sub-problems for: Sequential Quadratic Programming, Penalty/Augmented Lagrangian Methods, and Interior Point Methods.

Constrained Optimization Some Approaches Probler	ms and Algorithms			Constrained Optimization Some Approaches	Problems and Algorithms	
Some Approaches			Index			
 ◆ Penalty / Augmented Lagrangia ◆ Constraints are represented by ac ◆ Quadratic Penalty Terms — add discrepancies: intuitive, fairly sim ◆ Non-smooth Penalty Terms — ℓ₁ ◆ Method of Multipliers — estimate multipliers are used. 	Iditions to the objective the square of the constraint uple to implement ℓ_0 penalty functions					
		A.				

— (21/22)

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

Lecture Notes #28 Constrained Optimization

Lecture Notes #28 Constrained Optimization

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩