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The Feasible Set

We have spent a lots of effort on the Unconstrained Optimization
problem, we now take a very quick look at the fundamentals of
Constrained Optimization — we will quickly realize that things get
quite “interesting!”

Problem 0: Constrained Optimization

min (X
Ie]IR" (X)

: ci(x

subject to { ’(ﬁ)

ci(X

where i/ € £ are the equality constraints, and i € Z the inequality
constraints.

The smoothness (or lack thereof) for the objective f(X) and the
constraint functions ¢;(X) will impact the difficulty of solving the
problem.
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With the following definition of all allowable points:

Definition (The Feasible Set)
Let

Q={XeR": ¢(X)=0Vieé&, and ¢j(X) >0Viec I}

We can rewrite the problem more compactly as

Problem 1: Constrained Optimization

in f(X).
i ()

Our goal is to state necessary and sufficient conditions for
optimality.
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Local Solution Smoothness

Definition (Local Solution)

A point X* is a local solution of Problem 1 if x* € Q and there is a
neighborhood A of X* such that f(x) > f(x*) VX € N N Q.

It is usually (always?) advantageous to express constraints and
objectives in as smooth a way as possible; e.g. we can replace
‘ single non-smooth conditions, like

Lo . . X|l{ = <
Definition (Strict Local Solution) wri]tsh |s’:\|/|;ral l);ic—;flxirrstiaints

A point X* is a strict local solution of Problem 1 if X* € Q and
s#L x1 +x <1

there is a neighborhood A of X* such that f(X) > f(X*)

VX e NNQ. ) SH#2 x1 —xp <1
s#3 —x1+x <1
Definition (Isolated Local Solution) sH#4 —x; —xp < 1

A point X* is an isolated local solution of Problem 1 if xX* € Q and
there is a neighborhood N of X* such that x* is the only local

solution in N’ N Q.
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The Active Set Linear Independence Constraint Qualification

Definition (Active Set)

The active set A(X) at any feasible X consists of the equality
constraint indices from £ and the indices of the inequality
constraint indices from Z for which ¢;(X) =0, i.e.

Definition (LICQ: Linear Independence Constraint Qualification)

Give a the point X and the active set A(X), we say that the linear
independence constrain qualification (LICQ) holds if the set of
active constraint gradients

AR)=EU{ieT : ¢(X)=0}. {Vei(X), i € A(X)}

is linearly independent.

At a feasible point X, the inequality constraint / € Z is said to be
active if ¢j(X) = 0 and inactive if ¢;j(xX) > 0.
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KKT First Order Necessary Conditions

Our final building block before stating the first order conditions for
optimality is the:

Definition (The Lagrangian Function, £(X, X))

LEX) =F(%)— Y Neil(X)

ieEUT

The Lagrange multipliers, \;, are used to “pull” the solution back
to the feasible set.

Theorem (KKT:FONC — First Order Necessary Conditions)

Suppose that X* is a local solution to Problem 1, that the functions f
and c; are continuously differentiable, and that the LICQ holds at X*.
Then there is a Lagrange multiplier vector \*, with components \;(x*),
i € UL, such that the following conditions are satisfied at (X*, X*):

Viz ()_(,X):O,
C,'()?*):O, Vie&
C,'()_(*)ZO, Viel

\i>0, Viel
AN(R) =0, i€TUE.
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The Karush—Kuhn—Tucker conditions.
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KKT First Order Necessary Conditions (compact form)

Strict Complementarity

Theorem (KKT:FONC — Compact Form)

Suppose that X* is a local solution to Problem 1, that the
functions f and c; are continuously differentiable, and that the
LICQ holds at xX*. Then there is a Lagrange multiplier vector X*
with components \;(x*), i € £ UZ, such that the following
conditions are satisfied at (X*, X*):

0=V3L(XX) = V&)= > XVe(x).
i€ A(R*)
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Definition (Strict Complementarity)

Given a local solution X* of Problem 1, and a vector \* satisfying
the KKT:FONC, we say that the strict complementarity condition
holds if exactly one of A\¥ or ¢;(x*) is zero for each index i € Z. In
other words, we have ¥ > 0 Vi € Z N A(X").

We sweep the proof of KKT:FONC under our infinitely stretchable
rug. Not because it is not important (it is!), but we are somewhat
short on time.
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Linearized Feasible Directions Second Order Conditions

Second order conditions will help determine the impact of
directions w € F(X*) for which wTVf(x*) = 0, i.e. directions
which are “locally flat.”

Definition (Set of Linearized Feasible Directions)

Given a feasible point X and the active constrain set A(X), the set
of linearized feasible directions is

. y d'Ve(x)=0, Vie&
F(X) = | dsuch that - v ; Z From this point on we need the functions f and ¢; to be twice
d'Vei(xX) >0, Vie AX)NZ . poin : i
continuously differentiable.
S‘“Bﬂfﬁé‘” SABBE‘Y‘"
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Critical Cone Second Order Necessary Conditions

Given F(x*), and some Lagrange multiplier vector \* satisfying
KKT:FONC, we define:

Theorem (Second Order Necessary Conditions)
Definition (Critical Cone)

Suppose that x* is a local solution of Problem 1, and that the
LICQ condition is satisfied. Let \* be the Lagrange multiplier
C(x*, X)) ={we F(X) : Vg(x*)Tw=0,Vi € A(X)NZ with \* =0}. vector for which the KKT:FONC are satisfied. Then
Or equivalently VT/’TV%)?[,()?, X)W» >0, VW e C()—(**,X*)‘ )
Ve(x*)Tw =0, Vie€&
we C(X X)) e { Va(x)Tw=0, Vie AX)NT with A >0
Ve(x)TW >0, Vie AR)NT with A =0 Interpretation: The Hessian of the Lagrangian has non-negative

curvature along critical directions.

The critical cone C(X*, X*) contains the directions from F(X*) for which
it is not clear from first derivative information whether f will increase or -

decrease.
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Second Order Sufficient Conditions Some Approaches

Theorem (Second Order Sufficient Conditions)
. C n .

5upp.os_e that for some feasible point X* € R ther.e is a Langrange o Linear Programming — The Simplex Method
multiplier vector \* such that KKT:FONC are satisfied. Suppose o Fand o linear functions
also that @ Leonid Kantorovich, 1939 — Linear Programming.

VT oD L oo . o - o George Datzig, 1947 — The Simplex Method.

w' Ve L(X, \)w >0, Yw € C(X*,\"), w # 0. o John von Neumann, 1947 — Theory of Duality.

s ) ] e The worst case complexity for The Simplex Method is

Then X* is a strict local solution for Problem 1. exponential, but it is remarkably efficient in practice.

Much remains to be said; however, everything grows out of these
fundamental definitions and theorems; leveraging special cases,
weakening and strengthening conditions, and looking for
alternatives.
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@ Interior Point Methods, Primal-Dual Methods ® Quadratic Programming

Special case: Exploit the structure of the problem:

Quadratic Objective, Linear Constraints

Active Set methods

Interior Point methods

Gradient Projection methods

Appears as sub-problems for: Sequential Quadratic
Programming, Penalty/Augmented Lagrangian Methods, and
Interior Point Methods.

@ ¢; are strict inequalities.

o Better theoretical behavior than The Simplex Method.

o Leonid Khachiyan, 1979 — The Ellipsoid Method (polynomial
runtime, O(n®L))

o Narendra Karmarkar, 1984 — Projective Algorithm,
O(n3>L2 -log L - loglog L), where n is the number of variables
and L is the number of bits of input to the algorithm.

¢ & ¢ ¢ ¢ ¢
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Problems and Algorithms

Some Approaches Index

@ Penalty / Augmented Lagrangian Methods

o Constraints are represented by additions to the objective

e Quadratic Penalty Terms — add the square of the constraint
discrepancies: intuitive, fairly simple to implement

o Non-smooth Penalty Terms — {1 and {y penalty functions

o Method of Multipliers — estimated for the Lagrange
multipliers are used.
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