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Introduction

We have spent a lots of effort on the Unconstrained Optimization
problem, we now take a very quick look at the fundamentals of
Constrained Optimization — we will quickly realize that things get
quite “interesting!”

Problem 0: Constrained Optimization

min
~x∈Rn

f (~x) subject to

{
ci (~x) = 0, i ∈ E
ci (~x) ≥ 0, i ∈ I

where i ∈ E are the equality constraints, and i ∈ I the inequality
constraints.

The smoothness (or lack thereof) for the objective f (~x) and the
constraint functions ci (~x) will impact the difficulty of solving the
problem.
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The Feasible Set

With the following definition of all allowable points:

Definition (The Feasible Set)

Let

Ω = {~x ∈ Rn : ci (~x) = 0 ∀i ∈ E , and ci (~x) ≥ 0 ∀i ∈ I}

We can rewrite the problem more compactly as

Problem 1: Constrained Optimization

min
~x∈Ω

f (~x).

Our goal is to state necessary and sufficient conditions for
optimality.
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Local Solution

Definition (Local Solution)

A point ~x∗ is a local solution of Problem 1 if ~x∗ ∈ Ω and there is a
neighborhood N of ~x∗ such that f (~x) ≥ f (~x∗) ∀~x ∈ N ∩ Ω.

Definition (Strict Local Solution)

A point ~x∗ is a strict local solution of Problem 1 if ~x∗ ∈ Ω and
there is a neighborhood N of ~x∗ such that f (~x) > f (~x∗)
∀~x ∈ N ∩ Ω.

Definition (Isolated Local Solution)

A point ~x∗ is an isolated local solution of Problem 1 if ~x∗ ∈ Ω and
there is a neighborhood N of ~x∗ such that ~x∗ is the only local
solution in N ∩ Ω.
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Smoothness

It is usually (always?) advantageous to express constraints and
objectives in as smooth a way as possible; e.g. we can replace
single non-smooth conditions, like

ns ‖~x‖1 = |x1|+ |x2| ≤ 1

with several smooth constraints

s#1 x1 + x2 ≤ 1

s#2 x1 − x2 ≤ 1

s#3 −x1 + x2 ≤ 1

s#4 −x1 − x2 ≤ 1
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The Active Set

Definition (Active Set)

The active set A(~x) at any feasible ~x consists of the equality
constraint indices from E and the indices of the inequality
constraint indices from I for which ci (~x) = 0, i.e.

A(~x) = E ∪ { i ∈ I : ci (~x) = 0 }.

At a feasible point ~x , the inequality constraint i ∈ I is said to be
active if ci (~x) = 0 and inactive if ci (~x) > 0.
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Linear Independence Constraint Qualification

Definition (LICQ: Linear Independence Constraint Qualification)

Give a the point ~x and the active set A(~x), we say that the linear
independence constrain qualification (LICQ) holds if the set of
active constraint gradients

{∇ci (~x), i ∈ A(~x)}

is linearly independent.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Lecture Notes #28 Constrained Optimization — (8/22)



Constrained Optimization
Some Approaches

KKT First Order Necessary Conditions
Second Order Conditions

The Lagrangian Function

Our final building block before stating the first order conditions for
optimality is the:

Definition (The Lagrangian Function, L(~x , ~λ))

L(~x , ~λ) = f (~x)−
∑

i∈E∪I
λici (~x)

The Lagrange multipliers, λi , are used to “pull” the solution back
to the feasible set.
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KKT First Order Necessary Conditions

Theorem (KKT:FONC — First Order Necessary Conditions)

Suppose that ~x∗ is a local solution to Problem 1, that the functions f
and ci are continuously differentiable, and that the LICQ holds at ~x∗.
Then there is a Lagrange multiplier vector ~λ∗, with components λi (~x

∗),
i ∈ E ∪ I, such that the following conditions are satisfied at (~x∗, ~λ∗):

∇~xL(~x , ~λ) = 0,
ci (~x

∗) = 0, ∀i ∈ E
ci (~x

∗) ≥ 0, ∀i ∈ I
λ∗
i ≥ 0, ∀i ∈ I

λ∗
i ci (~x

∗) = 0, i ∈ I ∪ E .

The Karush–Kuhn–Tucker conditions.
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KKT First Order Necessary Conditions (compact form)

Theorem (KKT:FONC — Compact Form)

Suppose that ~x∗ is a local solution to Problem 1, that the
functions f and ci are continuously differentiable, and that the
LICQ holds at ~x∗. Then there is a Lagrange multiplier vector ~λ∗,
with components λi (~x

∗), i ∈ E ∪ I, such that the following
conditions are satisfied at (~x∗, ~λ∗):

0 = ∇~xL(~x , ~λ) = ∇f (~x∗)−
∑

i∈A(~x∗)

λ∗
i ∇ci (~x

∗).
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Strict Complementarity

Definition (Strict Complementarity)

Given a local solution ~x∗ of Problem 1, and a vector ~λ∗ satisfying
the KKT:FONC, we say that the strict complementarity condition
holds if exactly one of λ∗

i or ci (~x
∗) is zero for each index i ∈ I. In

other words, we have λ∗
i > 0 ∀i ∈ I ∩ A(~x∗).

We sweep the proof of KKT:FONC under our infinitely stretchable
rug. Not because it is not important (it is!), but we are somewhat
short on time.
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Linearized Feasible Directions

Definition (Set of Linearized Feasible Directions)

Given a feasible point ~x and the active constrain set A(~x), the set
of linearized feasible directions is

F(~x) =

{
~d such that

~dT∇ci (~x) = 0, ∀i ∈ E
~dT∇ci (~x) ≥ 0, ∀i ∈ A(~x) ∩ I

}
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Second Order Conditions

Second order conditions will help determine the impact of
directions ~w ∈ F(~x∗) for which ~wT∇f (~x∗) = 0, i.e. directions
which are “locally flat.”

From this point on we need the functions f and ci to be twice
continuously differentiable.
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Critical Cone

Given F(~x∗), and some Lagrange multiplier vector λ∗ satisfying
KKT:FONC, we define:

Definition (Critical Cone)

C (~x∗, ~λ∗) = { ~w ∈ F(~x∗) : ∇ci (~x
∗)T ~w = 0, ∀i ∈ A(~x∗)∩I with λ∗

i = 0 }.

Or equivalently

~w ∈ C (~x∗, ~λ∗) ⇔





∇ci (~x
∗)T ~w = 0, ∀i ∈ E

∇ci (~x
∗)T ~w = 0, ∀i ∈ A(~x∗) ∩ I with λ∗

i > 0

∇ci (~x
∗)T ~w ≥ 0, ∀i ∈ A(~x∗) ∩ I with λ∗

i = 0

The critical cone C (~x∗, ~λ∗) contains the directions from F(~x∗) for which
it is not clear from first derivative information whether f will increase or
decrease.
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Second Order Necessary Conditions

Theorem (Second Order Necessary Conditions)

Suppose that ~x∗ is a local solution of Problem 1, and that the
LICQ condition is satisfied. Let ~λ∗ be the Lagrange multiplier
vector for which the KKT:FONC are satisfied. Then

~wT∇2
~x~xL(~x , ~λ)~w ≥ 0, ∀~w ∈ C (~x∗, ~λ∗).

Interpretation: The Hessian of the Lagrangian has non-negative
curvature along critical directions.
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Second Order Sufficient Conditions

Theorem (Second Order Sufficient Conditions)

Suppose that for some feasible point ~x∗ ∈ Rn there is a Langrange
multiplier vector ~λ∗ such that KKT:FONC are satisfied. Suppose
also that

~wT∇2
~x~xL(~x , ~λ)~w > 0, ∀~w ∈ C (~x∗, ~λ∗), ~w 6= ~0.

Then ~x∗ is a strict local solution for Problem 1.

Much remains to be said; however, everything grows out of these
fundamental definitions and theorems; leveraging special cases,
weakening and strengthening conditions, and looking for
alternatives.
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Linear Programming — The Simplex Method
f and ci linear functions
Leonid Kantorovich, 1939 — Linear Programming.
George Datzig, 1947 — The Simplex Method.
John von Neumann, 1947 — Theory of Duality.
The worst case complexity for The Simplex Method is
exponential, but it is remarkably efficient in practice.
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Interior Point Methods, Primal-Dual Methods
ci are strict inequalities.
Better theoretical behavior than The Simplex Method.
Leonid Khachiyan, 1979 — The Ellipsoid Method (polynomial
runtime, O(n6L))
Narendra Karmarkar, 1984 — Projective Algorithm,
O(n3.5L2 · log L · log log L), where n is the number of variables
and L is the number of bits of input to the algorithm.
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Quadratic Programming
Special case: Exploit the structure of the problem:
Quadratic Objective, Linear Constraints
Active Set methods
Interior Point methods
Gradient Projection methods
Appears as sub-problems for: Sequential Quadratic
Programming, Penalty/Augmented Lagrangian Methods, and
Interior Point Methods.
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Penalty / Augmented Lagrangian Methods
Constraints are represented by additions to the objective
Quadratic Penalty Terms — add the square of the constraint
discrepancies: intuitive, fairly simple to implement
Non-smooth Penalty Terms — ℓ1 and ℓ0 penalty functions
Method of Multipliers — estimated for the Lagrange
multipliers are used.
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