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Introduction

We have spent a lots of effort on the Unconstrained Optimization
problem, we now take a very quick look at the fundamentals of
Constrained Optimization — we will quickly realize that things get
quite “interesting!”

Problem 0: Constrained Optimization

¢i(X)=0, ieé&
i(X) >0, iel

XeRn

min f(X) subject to {

where i € £ are the equality constraints, and i € Z the inequality
constraints.

The smoothness (or lack thereof) for the objective f(X) and the
constraint functions ¢;(x) will impact the difficulty of solving the
problem.
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The Feasible Set

With the following definition of all allowable points:

Definition (The Feasible Set)

Let

Q={XeR": ¢(R)=0Vie&, and ¢;(%) >0 Vi € I}

We can rewrite the problem more compactly as

Problem 1: Constrained Optimization

in f(x).
e

Our goal is to state necessary and sufficient conditions for .
optimality.
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Local Solution

Definition (Local Solution)

A point x* is a local solution of Problem 1 if X* € Q and there is a
neighborhood N of X* such that f(X) > f(x*) Vx € N N Q.

Definition (Strict Local Solution)

A point X* is a strict local solution of Problem 1 if x* € Q and
there is a neighborhood A of X* such that f(X) > f(X*)
VXeNNQ.

Definition (Isolated Local Solution)

A point X* is an isolated local solution of Problem 1 if X* € Q and
there is a neighborhood A of x* such that x* is the only local
solution in /N Q.
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Smoothness

It is usually (always?) advantageous to express constraints and
objectives in as smooth a way as possible; e.g. we can replace
single non-smooth conditions, like

ns [I¥]l = bl + bl < 1
with several smooth constraints
s#HL x1+x <1
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The Active Set

Definition (Active Set)

The active set A(X) at any feasible X consists of the equality
constraint indices from £ and the indices of the inequality
constraint indices from Z for which ¢;(xX) =0, i.e.

AF) =EU{ieT : ¢(X)=0}.

At a feasible point X, the inequality constraint i € Z is said to be
active if ¢j(X) = 0 and inactive if ¢;(x) > 0.
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Linear Independence Constraint Qualification

Definition (LICQ: Linear Independence Constraint Qualification)

Give a the point X and the active set A(X), we say that the linear
independence constrain qualification (LICQ) holds if the set of
active constraint gradients

{Vai(x), i € A(X)}

is linearly independent.
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The Lagrangian Function

Our final building block before stating the first order conditions for
optimality is the:

Definition (The Lagrangian Function, £(X, X))

The Lagrange multipliers, A;, are used to “pull” the solution back
to the feasible set.
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KKT First Order Necessary Conditions

Theorem (KKT:FONC — First Order Necessary Conditions)

Suppose that X* is a local solution to Problem 1, that the functions f
and ¢; are continuously differentiable, and that the LICQ holds at x*.
Then there is a Lagrange multiplier vector ¢, with components \;(x*),
i € £UT, such that the following conditions are satisfied at (X*, X*):

Vieé&
VieT
VieTl
ieTUE.

The Karush—-Kuhn—Tucker conditions.
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KKT First Order Necessary Conditions (compact form)

Theorem (KKT:FONC — Compact Form)

Suppose that X* is a local solution to Problem 1, that the
functions f and c; are continuously differentiable, and that the
LICQ holds at x*. Then there is a Lagrange multiplier vector e,
with components \j(x*), i € £ UZ, such that the following
conditions are satisfied at (X*, X*):

0=V3L(X,X) = V()= > XVq(x).
ic A(R*)
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Strict Complementarity

Definition (Strict Complementarity)

Given a local solution X* of Problem 1, and a vector \* satisfying
the KKT:FONC, we say that the strict complementarity condition
holds if exactly one of A¥ or c;(X*) is zero for each index i € Z. In
other words, we have ¥ > 0 Vi € Z N A(X*).

We sweep the proof of KKT:FONC under our infinitely stretchable
rug. Not because it is not important (it is!), but we are somewhat
short on time.
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Linearized Feasible Directions

Definition (Set of Linearized Feasible Directions)

Given a feasible point X and the active constrain set A(X), the set
of linearized feasible directions is

- ITT ~(2) — .
F(X) = { d such that d"V¢i(X) 8, Vie&

dTVc(%) >0, Vie AX)NT
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Second Order Conditions

Second order conditions will help determine the impact of
directions w € F(x*) for which w' Vf(x*) =0, i.e. directions
which are “locally flat.”

From this point on we need the functions f and ¢; to be twice
continuously differentiable.
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Critical Cone

Given F(X*), and some Lagrange multiplier vector \* satisfying
KKT:FONC, we define:

Definition (Critical Cone)

C(X X)) ={we F(X*) : Va(x)Tw=0,Vi € A(X)NZ with A =0}.
Or equivalently

Ve(x)Tw=0, Vie€
we C(X X)) e ! Va(x)Tw=0, VieAX*
Tw >0, ViecAX*

)N T with A > 0
)N T with A* =0

The critical cone C(x*, X*) contains the directions from F(X*) for which
it is not clear from first derivative information whether f will increase or
decrease. s Do STAT
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Second Order Necessary Conditions

Theorem (Second Order Necessary Conditions)

Suppose that X* is a local solution of Problem 1, and that the
LICQ condition is satisfied. Let \* be the Lagrange multiplier
vector for which the KKT:FONC are satisfied. Then

wTV2.L(X, X)W > 0, Yw € C(X*, X*).

Interpretation: The Hessian of the Lagrangian has non-negative
curvature along critical directions.
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Second Order Sufficient Conditions

Theorem (Second Order Sufficient Conditions)

Suppose that for some feasible point X* € R" there is a Langrange
multiplier vector X* such that KKT:FONC are satisfied. Suppose
also that

wTV2.L(X, X)W > 0, Yw € C(x*,X*), w # 0.

Then X* is a strict local solution for Problem 1.

Much remains to be said; however, everything grows out of these
fundamental definitions and theorems; leveraging special cases,
weakening and strengthening conditions, and looking for
alternatives. .
S/ l)\
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Some Approaches

@ Linear Programming — The Simplex Method

f and ¢; linear functions

Leonid Kantorovich, 1939 — Linear Programming.
George Datzig, 1947 — The Simplex Method.

John von Neumann, 1947 — Theory of Duality.

The worst case complexity for The Simplex Method is
exponential, but it is remarkably efficient in practice.

[

¢ © ¢ @
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Some Approaches

@ Interior Point Methods, Primal-Dual Methods

@ ¢; are strict inequalities.

@ Better theoretical behavior than The Simplex Method.

@ Leonid Khachiyan, 1979 — The Ellipsoid Method (polynomial
runtime, O(n®L))

o Narendra Karmarkar, 1984 — Projective Algorithm,
O(n%*5L2 -log L - loglog L), where n is the number of variables
and L is the number of bits of input to the algorithm.
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Some Approaches

@ Quadratic Programming

Special case: Exploit the structure of the problem:
Quadratic Objective, Linear Constraints

Active Set methods

Interior Point methods

Gradient Projection methods

Appears as sub-problems for: Sequential Quadratic
Programming, Penalty/Augmented Lagrangian Methods, and
Interior Point Methods.

¢ © © ¢ ¢ @
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Some Approaches

o Penalty / Augmented Lagrangian Methods

o Constraints are represented by additions to the objective

@ Quadratic Penalty Terms — add the square of the constraint
discrepancies: intuitive, fairly simple to implement

@ Non-smooth Penalty Terms — f1 and £y penalty functions

@ Method of Multipliers — estimated for the Lagrange
multipliers are used.
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