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Recap: Iterative “Nearly Exact” Solution of the Subproblem

Recap & Introduction Eits ol eliss

Recap: — Iterative “Nearly Exact” Solution of the Subproblem

Last time we looked at nearly exact solution of the subproblem

_neuTn mi(p) = m|n f(Xk) +p' VF(Xe) + pTka
pPE Ik

This approach is viable for problems with few degrees of freedom, e.g.
Ty CR?, n “small.” Where “small” means that the unitary
diagonalization Qk/\kaT = By is computable in a “reasonable” amount
of time.

From a theoretical characterization of the exact problem, we derived an
algorithm which finds a nearly exact solution at a cost per iteration
approximately three times that of dogleg and 2D-subspace minimization.

The scheme was based on a 1-D Newton iteration (with some clever
tricks), and some careful analysis of special (hard) cases.
DRI
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Recap: Iterative “Nearly Exact” Solution of the Subproblem

Recap & Introduction Quick Lookahead

On Today's Menu

We wrap up the first pass of Trust Region methods —

— We briefly discuss global convergence properties for trust region methods.

We look at some theorems, but leave the proofs as “exercises.”
—  For second order (By # V2f(Xx)) models we can show convergence
to a stationary point.

—  For trust-region Newton methods (Bx = V2f(Xx)) models we can
show convergence to a point where the second order necessary
conditions hold.

We look at modifications for poorly scaled problems, as well as the use
of non-spherical trust regions.

Theorem (Second Order Necessary Conditions)

Ifx* is a local minimizer of f and V>f is continuous in an open
neighborhood of X*, then V£(X*) = 0 and V2f(X*) is positive
semi-definite. meosi
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Global Convergence Tool #1 — A Lemma: The Cauchy Point
Global Convergence... Tool #2 — A Theorem

Enhancements Recall: The Trust Region Algorithm

Global Convergence: Tool #1 — A Lemma

Recall: The trust-region subproblem is

. _ 1
i = arg min my(p) = arg min f(Xx) + p’ VF(Xk) + p T Byp.
Bl <Ak Ipll<Ax

The following lemma gives us a lower bound for the decrease in the
model at the Cauchy point:

Lemma (Cauchy point descent)

The Cauchy point p§, satisfies

_ IVF&)]
me(0) — m(B5) > 1V mm[ k,”BkH].

SAN DIEGO STATE
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Global Convergence Tool #1 — A Lemma: The Cauchy Point

Global Convergence... Tool #2 — A Theorem
Enhancements Recall: The Trust Region Algorithm
Proof of Lemma The Cauchy Point
We recall the explicit expressions for the Cauchy point (from
lecture 7)
Ay
'—)C = —Tk 7_Vf(>‘(k)
s V&I
where
{ 1 if VF(Xk)TBkVF(Xc) <0
Tk = ; V(&)1 ;
min (1, W) otherwise
0.95| ! ‘

i i i

Figure: The three possible scenarios for selection of 7.
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Global Convergence Tool #1 — A Lemma: The Cauchy Point

Global Convergence... Tool #2 — A Theorem
Enhancements Recall: The Trust Region Algorithm
Proof of Lemma Caset#l
Case#l (Vf(X()BkVF(X) <0):
In this scenario mx(pS) — m(0) = o
V(%) ) _ .
= my my(0) o
( IV
= —A||IVF(xQ)| + 1A72w(>'< YT BV F(x )05 5
I Y | 21 A NSt
<0
< AV
. ViF(x
< v min (a0, )
[ Bkl
Hence,
a —c - ) IV (%) I 1 - ) IV £ () o
(@) — me(B5) > | V(i) | min (Ak, B )zgnwm)n min <Ak, B )

SAN DIEGO STATE
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Global Convergence Tool #1 — A Lemma: The Cauchy Point

Global Convergence... Tool #2 — A Theorem
Enhancements Recall: The Trust Region Algorithm
Proof of Lemma Case#2
% % IVl .
Case#2 (Vf(Xx)B(Vf(X) >0, and ASTGTBYE) S 1

In this scenario the Cauchy point is in the interior of the trust region, and

mi(Bi) — mi(0) =

IV F(xe)I* 1 IV F (%) I* ST <
— = f BV f
VIR T BV AR | 2 (VIR () T o) BV
1 VAR
2VI(xk) T Bk V£(Xk)
1 VARG VAR
T 2Bl IVxI? 2 ||Bl |
1 f(x = i %
< ~Lywrtaimn (a0, I7EN) (
2 l| Bx|| _
Use the minus sign to flip the inequality, and we're there! SRR
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Global Convergence Tool #1 — A Lemma: The Cauchy Point

Global Convergence... Tool #2 — A Theorem
Enhancements Recall: The Trust Region Algorithm
Proof of Lemma Case#3
% % IV F () .
Case#3 (Vf(Xx)BkVf(x) >0, and AR EBYE) D¢

We note that in this scenario Vf(Xx) By VF(Xk) < w, and
mi(Bi) — mi(0) =

C B o E B G R0 TB (R
V()] TR VFRIP T T
Ll M VFRIIP
< —A||VF - k
= AV S vimar A
1 _ 0.9
= SV |
1 V(% A
< Il min (4, SR
2 1B o
S l)\
Use the minus sign to flip the inequality, and we're there! O
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Global Convergence Tool #1 — A Lemma: The Cauchy Point
Global Convergence... Tool #2 — A Theorem
Enhancements Recall: The Trust Region Algorithm

Global Convergence: Tool #2 — A Theorem

Theorem

Let px be any vector, ||pk|| < Ak, such that

mi(0) — mi (i) > ca(mic(0) — mi(p5))

then

mi(8) = mi(i) = 2 VF(Re)]| min {A,ﬂ |Vf(>'<k)||} |

[ Bl

Both the dogleg, and 2-D subspace minimization algorithms (as well as
Steihaug’s algorithm) fall into this category, with ¢, = 1, since they all
produce px which give at least as much descent as the Cauchy point, i.e.
my(Px) < mi(p5)-

We are going to use this result to show convergence for the trust region

SAN DIEGO STATE

algorithm (see next slide). TS
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Global Convergence
Global Convergence...
Enhancements

The Trust Region Algorithm

Tool #1 — A Lemma: The Cauchy Point
Tool #2 — A Theorem
Recall: The Trust Region Algorithm

Algorithm: Trust Region

[1] Set k=1, A >0, Ag € (0,A), and n € [0, £
[ 2] While optimality condition not satisfied

[ 31 Get py (approximate solution)

[ 4] Evaluate py

[5] if p <1

[
[
[

6] Dy = 344
7] else
8] if pg > 3 and [|Bill = Dk
[ 9] Apy1 = min(24, A)
[10] else
[11] Dps1 = Ay
[12]1 endif
[13]  endif
[14]  if pg > 17
[15] X1 = Xk + Pk
[16] else
[17] s = X
[18]  endif

[19] k=k+1
[20] End-While
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Global Convergence
Global Convergence... Convergence to Stationary Points
Enhancements

Convergence to Stationary Points

Case n =20
accept any step which produces descent in f — we can show that
the sequence of gradients {Vf(Xx)} has a limit point at zero.

Case n >0
accept a step only if the decrease in f is at least some fixed

fraction of the predicted decrease — we can show the stronger
result {Vf(xx)} — 0.

In order for the proof(s) to work, we must assume that the model
Hessians By are uniformly bounded, i.e. ||Bk|| < 3, and that f is
bounded below on the levelset {x € R" : f(X) < f(Xp)}.

The trust-region bound can be relaxed so that the results hold as
long as the solution to the subproblems satisfy

Pkl < vAk, for some constant v > 1. ‘Aszi?rc"
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Global Convergence
Global Convergence... Convergence to Stationary Points
Enhancements

Convergence to Stationary Points: n =0

Theorem

Let n = 0 in the trust region algorithm. Suppose that ||Bx|| < B for some
constant 3, that f is continuously differentiable and bounded below on
the bounded set {x € R" : f(X) < f(Xo)}, and that all approximate
solutions to the trust-region subproblem satisfy the inequalities

= _ - . Vi (x
mk(O) — mk(pk) Z Cl‘IVf(Xk)H min |:Ak, ||B(k|k)||:| s
and
1Bl < YA,

for some positive constants ¢; and y. Then we have

lim inf ||V £ (%¢)]| = 0.
k—o0

o
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Global Convergence
Global Convergence... Convergence to Stationary Points
Enhancements

Convergence to Stationary Points: 1 > 0

Theorem

Let n € (0, %) in the trust region algorithm. Suppose that ||Bk| < j3 for
some constant 3, that f is Lipschitz continuously differentiable and
bounded below on the bounded set {x € R" : f(X) < f(Xo)}, and that
all approximate solutions to the trust-region subproblem satisfy the
inequalities

_ _ L V(%
mi(0) — me(Bx) = 1| VF(%e)|| min {Ak, llB(Zlk)” .
and
Pkl < vAk

for some positive constants ¢; and v. Then we have

kImeVf(xk) =0. \
iy
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Global Convergence
Global Convergence... Convergence to Stationary Points
Enhancements

Proofs: Convergence to Stationary Points

The complete proofs are in NW'* pp.90-91, and pp.92-93; or NW>"
pp-80-82, and pp.82-83.

The proofs are based on manipulation of p — the ratio of actual
(objective) reduction and predicted (model) reduction; Taylor's theorem;
then deriving a contradiction from the supposition ||V f(Xk)| > € using
careful selection of scalings and bounds for Ay.

Definition (limsup and liminf)

Let {s,} be a sequence of real numbers. Let E be the set of values x so that s, — x
for some subsequence {s;, }. This set E contains all sub-sequential limits, plus
possibly f-o0; let

*

s* =supE, s, =infE

The values s* and s, are the upper and lower limits of {s,}, and we use the notation

limsups, =s*, liminfs, = s, _
n—o00 n—00
« DIEGO STATE
UNIVERSITY
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Global Convergence
Global Convergence... Convergence to Stationary Points
Enhancements

Convergence: lIterative “Nearly Exact” Solutions pj, for Trust-Region Newton

Theorem (NW?™ p.92, proof in Moré & Sorensen (1983))
Letn € (O, %) in the algorithm on slide 11, let B, = V?f(xy), and
suppose that py at each iteration satisfy

mi(0) — mi(Br) > ca(mi(0) — mi(py)),

and ||pk|| < yAx, for some positive constant «y, and c; € (0,1]. Then

lim ||Vf(x«)|| = 0.

k— o0

If, in addition, the set {x € R" : f(X) < f(Xo)} is compact, then either
the algorithm terminates at a point X, at which the second order
necessary conditions for a local minimum hold, or {X,} has a limit point
x* e {x€R": f(x) < f(Xo)} at which the conditions hold.

‘
SAN DIEGO STATE
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Global Convergence
Global Convergence... Scaling
Enhancements

Enhancement: Scaling — The Problem

:

As we have seen before (in the context of steepest descent / line-search),
scaling (ill-conditioning) can cause problems. — If the objective is more
sensitive to changes in one variable than other, the contour lines stretch

out to be narrow ellipses (in 2D).

] E =l o 1 2 3

Clearly, a circular trust-region may be quite limiting in this scenario. — _
The radius is limited by the sensitive variable. i

SAN DIEGO STATE
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Global Convergence
Global Convergence... Scaling
Enhancements

Enhancement: Scaling — The Solution

The solution to the problem of poor scaling is to use elliptical trust
regions. We define a diagonal scaling matrix

D:diag(dl,dg,...,d,,), d; > 0.

Then, the constraint ||Dp|| < A defines an elliptical trust region, and we
get the following scaled trust-region subproblem:

1
i (%) +p' V(%) + =’ Bip.
ﬁeR"irr\]gllJHSAk (%) +P (%) 2P PP

The scaling matrix can be built using information about the gradient
Vf(Xx) and the Hessian V2f(X,) along the solution path. — We can
allow D = Dy to change from iteration to iteration.

All our analysis/algorithms still work with scaling added — but we get
factors of D2, D1, D, and D? in our expressions. SR

UNIVERSITY
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Global Convergence
Global Convergence... Scaling
Enhancements

Feature: Non-Euclidean Trust Regions 1of 4

T 58 05 04 oz 0 0z 04 05 08 1 T o8 s <4 w0z 0 02 04 05 08 1 T s s o4 w0z 0 02 04 05 08 1 S 0% 6 4 0z 0 0z 04 05 08

Figure: lllustration of (unscaled) trust region boundaries for, from left-to-right:
[Bll2 < Ak, [IPllr < Ak, [IBlla < A, and [[Plloo < A

Most of the time using trust regions based on norms with g # 2:
Ipllg < Ak (unscaled), ||Dpllqg < Ak (scaled)

cause us a giant head-ache. There are however some situations
when such regions come in handy...

SAN DIEGO STATE
UNIVERSITY

Peter Blomgren, (blomgren.peterQgmail.com) TR: Global Convergence and Enhancements — (19/23)



Global Convergence

Global Convergence... Scaling
Enhancements
Feature: Non-Euclidean Trust Regions 2 of 4
1 -1 ! ! | ! - 1 ! ! | ! ! 1 !
0.8 -08 -08 0.8
0.6 - 06 -06 06
04 -04 -04 04
0.2 - 0.2 -0.2 0.2
] -0 -0 o
-0.2 0.2 0.2 0.2
-0.4 -0.4 -0.4 0.4
-0.6 0.6 0.6 0.6
-0.8 -0.8 -0.8 0.8
-1 - - -1
-1 -0.5 0 05 1 1 -0.5 o 05 1 1 -0.5 o 0.5 1 -1 -0.5 o 0.5 1

Figure: lllustration of (unscaled) trust region boundaries for, from left-to-right:
1Pl < Ax, ﬁll% <Ay, |ﬁ||% < Ay, and ||F_)||é < Ag.

Using g < 1 leads to non-convex trust regions, which may be a bit
of a pain?!?

This may, however, be useful /necessary for non-convex
optimization problems.
d
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Global Convergence
Global Convergence... Scaling
Enhancements

Feature: Non-Euclidean Trust Regions 3of 4

For constrained problems, e.g.

min f(x), subjectto x;>0,i=1,2,....n

xeR

the trust-region subproblem may be

_mIiRn my(p), subject to X,+p > 0, (component-wise), ||p|| < Ay
peRn

This trust region is the intersection of the disk centered at X, and
the first quadrant. It could look like this:

SAN DIEGO STATE
INIVERSITY
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Global Convergence
Global Convergence... Scaling
Enhancements

Feature: Non-Euclidean Trust Regions 4 of 4

Such a region is hard to describe, and hard to work with.

If, instead, we work with the || - ||«-norm, the trust region is the
intersection of the square with sides A centered at X, and the
first quadrant:

Much easier to work with... ,
SyRsosT
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Global Convergence

Global Convergence... Scaling
Enhancements
Index
definition
limsup and liminf, 15
lemma
Cauchy point descent, 5
theorem
Convergence (when n = 0), 13
Convergence (when n > 0), 14
Global trust-region Newton convergence (n > 0), 16
Second order necessary conditions, 4
Reference(s):

MS-1983 J.J. Moré and D.C. Sorensen, Computing a Trust Region Step, SIAM Journal on Scientific and Statistical
Computing, 4 (1983), pp. 553 -572.
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