
Numerical Optimization
Lecture Notes #11

Conjugate Gradient Methods — Linear CG, Part #2

Peter Blomgren,
〈blomgren.peter@gmail.com〉

Department of Mathematics and Statistics
Dynamical Systems Group

Computational Sciences Research Center

San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Fall 2018

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (1/32)

Outline

1 Recap
Linear Conjugate Direction Methods

2 The Linear Conjugate Gradient Method
Ap̄ vs. A−1

Adding the Gradient to the Mix...
The CG Algorithm... and Krylov Subspaces

3 The CG Algorithm
Increased Efficiency
The Standard CG Algorithm
More Speed... Preconditioning

4 Non-Linear CG for Optimization Problems
HW#4, Due 11/2/2018, 12:00pm

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (2/32)

Recap Linear Conjugate Direction Methods

Quick Recap: Linear Conjugate Direction Methods

We introduced the conjugate direction method: Given a starting
point x̄0 ∈ Rn and a set of conjugate directions {p̄0, p̄1, . . . , p̄n}
the sequence

x̄k+1 = x̄k + αk p̄k , αk = − r̄Tk p̄k
p̄Tk Ap̄k

, where r̄k = r̄(x̄k) = Ax̄k − b̄

We showed that

(1) this method is guaranteed to converge to the solution
x̄∗ = A−1b̄ in at most n iterations;

(2) each x̄k is the minimizer of Φ(x̄) = 1
2 x̄

TAx̄ − b̄T x̄ over the
set {x̄ : x̄ = x̄0 + span{p̄0, p̄1, . . . , p̄k−1}}

We’re currently at the “So what?!?” stage...

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (3/32)

Recap Linear Conjugate Direction Methods

More Questions than Answers

How can we make this useful?

— Given A, how do we get a set of conjugate vectors?

— Efficiently, please!

— Even if we have them, why is this scheme any better than
Gaussian elimination? GE requires O(n3) operations, and
n steps of CG will require n matrix-vector (Ap̄k) products,
which require n2 operations...

— Again, if we have the conjugate vectors, it seems like we
will make more progress in certain directions than in others;
hence, if we are planning on stopping short of n iterations,
the subset of conjugate directions that we select will have
an impact on how well we do...

— Where is the gradient?

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (4/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Ap̄ vs. A−1

Adding the Gradient to the Mix...
The CG Algorithm... and Krylov Subspaces

Comment: Ap̄ vs. A−1

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 302

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 4096

Figure: If the matrix A is sparse (many elements are zero, e.g. the matrix illustrated
to the left), the computation of the matrix-vector product Ap̄ can be economized.
However, generally, the inverse of a sparse matrix is dense (the matrix on the right).
This is one indication that the conjugate direction method may be useful.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (5/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Ap̄ vs. A−1

Adding the Gradient to the Mix...
The CG Algorithm... and Krylov Subspaces

Enter: The Gradient

The Conjugate Gradient method is a conjugate direction
method, which

— Generates the next conjugate vector p̄k using only the previous
vector p̄k−1 (earlier vectors are not needed.)

— Cheap to compute, and store.

— Each direction p̄k is a clever linear combination of p̄k−1 and
the negative gradient of the objective −∇Φ(x̄k) = −r̄(x̄k)
(a.k.a “the (negative) residual,” or “the steepest descent
direction.”)

— Recall that we have a cheap update for the residual

r̄k = r̄k−1 + αk−1 Ap̄k−1︸ ︷︷ ︸
“Free”

.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (6/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Ap̄ vs. A−1

Adding the Gradient to the Mix...
The CG Algorithm... and Krylov Subspaces

A New Conjugate Direction

We let the new conjugate direction be

p̄k = −r̄k + βk p̄k−1,

and we select the scalar βk so that p̄k and p̄k−1 are A-conjugate

p̄Tk−1Ap̄k = −p̄Tk−1Ar̄k + βk p̄
T
k−1Ap̄k−1 = 0.

Hence,

βk =
p̄Tk−1Ar̄k

p̄Tk−1Ap̄k−1
=

r̄Tk Ap̄k−1

p̄Tk−1Ap̄k−1
,

where, again, the quantities [Ap̄k−1] and r̄Tk Ap̄k−1 are “free” (already
computed).

Note!!! The first direction p̄0 is set to be the steepest descent direction
at the initial point x̄0.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (7/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Ap̄ vs. A−1

Adding the Gradient to the Mix...
The CG Algorithm... and Krylov Subspaces

The Conjugate Gradient Algorithm (version 0.99α)

Algorithm: Preliminary Conjugate Gradient

Given A, b̄ and x̄0:
r̄0 = Ax̄0 − b̄, p̄0 = −r̄0, k = 0
while (‖̄rk‖ > 0, or other stopping condition)

αk = − r̄Tk p̄k
p̄Tk Ap̄k

,
Store the vector Ap̄k

and the scalar p̄Tk Ap̄k

x̄k+1 = x̄k + αk p̄k

r̄k+1 = r̄k + αkAp̄k

βk+1 =
r̄Tk+1Ap̄k

p̄TkAp̄k
p̄k+1 = −r̄k+1 + βk+1p̄k

k = k + 1

end-while

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (8/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Ap̄ vs. A−1

Adding the Gradient to the Mix...
The CG Algorithm... and Krylov Subspaces

Does the CG Algorithm Work?

In order to guarantee convergence in n steps, the directions {p̄i}
must be A-conjugate; maybe we should show this?! But, first a
definition:

Definition (Krylov Subspace)

A Krylov subspace of degree k for r̄0 is the space

K(̄r0, k)
def
= span{̄r0,Ar̄0,A2r̄0, . . . ,A

k−1r̄0}.

We state a theorem which shows that the directions are indeed
conjugate; further it shows that the residuals are mutually
orthogonal, and that the search directions and residuals are
contained in a Krylov subspace. These facts will allow us to
optimize the CG algorithm for speed (computational effort).

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (9/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Ap̄ vs. A−1

Adding the Gradient to the Mix...
The CG Algorithm... and Krylov Subspaces

“The CG Theorem”

Theorem

Suppose that the kth iterate generated by the CG method is not the
solution (i.e. x̄k 6= x̄∗). The following properties hold

(1) r̄Tk r̄i = 0, i = 0, 1, . . . , k − 1
(2) span{̄r0, r̄1, . . . , r̄k} = span{̄r0,Ar̄0,A2r̄0, . . . ,Ak r̄0}
(3) span{p̄0, p̄1, . . . , p̄k} = span{̄r0,Ar̄0,A2r̄0, . . . ,Ak r̄0}
(4) p̄Tk Ap̄i = 0, i = 0, 1, . . . , k − 1

Therefore, the sequence {x̄k} converges to x̄∗ in at most n steps.

Note: The theorem is true if and only if the first search direction is the
steepest descent direction. We notice that the search direction (and
not the gradients/residuals) are conjugate in the “conjugate gradient
method.”

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (10/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Increased Efficiency
The Standard CG Algorithm
More Speed... Preconditioning

A More Efficient Implementation αk (Numerator)

We now combine our results in order to tighten up the algorithm.

First, we use the relation (update for p̄k in the algorithm)

p̄k = −r̄k + βk p̄k−1,

and the result (from lecture #10, or slide #10)

r̄Tk p̄i = 0, i = 0, 1, . . . , k − 1,

thus the numerator in the expression for αk can be rewritten:

r̄Tk p̄k = r̄Tk (−r̄k + βk p̄k−1) = −r̄Tk r̄k + βk r̄
T
k p̄k−1︸ ︷︷ ︸

0

= −r̄Tk r̄k .

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (11/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Increased Efficiency
The Standard CG Algorithm
More Speed... Preconditioning

A More Efficient Implementation βk

Second, we use the update formula for the residual

r̄k = r̄k−1 + αk−1Ap̄k−1 ⇔ αk−1Ap̄k−1 = r̄k − r̄k−1,

and again (from lecture #10, or slide #10)

r̄Tk p̄i = 0, i = 0, 1, . . . , k − 1,

as well as the update for p̄k in the algorithm

p̄k = −r̄k + βk p̄k−1

We get

βk =
r̄Tk+1Ap̄k

p̄Tk Ap̄k
=

r̄Tk+1(̄rk+1 − r̄k)

αk p̄Tk Ap̄k
=

r̄Tk+1r̄k+1

(−r̄k + βk p̄k−1)T (̄rk+1 − r̄k)

=
r̄Tk+1r̄k+1

−r̄Tk r̄k+1 + βk p̄Tk−1r̄k+1 + r̄Tk r̄k − r̄Tk r̄k+1
=

r̄Tk+1r̄k+1

r̄Tk r̄k
.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (12/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Increased Efficiency
The Standard CG Algorithm
More Speed... Preconditioning

The CG Algorithm (version 1.0, “Standard”)

Algorithm: Conjugate Gradient

Given A, b̄ and x̄0:

r̄0 = Ax̄0 − b̄, p̄0 = −r̄0, k = 0

while (‖rk‖ > 0, or other stopping condition)

αk =
r̄Tk r̄k

p̄Tk Ap̄k
,

Store the vector Ap̄k

and the scalar r̄Tk r̄k

x̄k+1 = x̄k + αk p̄k

r̄k+1 = r̄k + αkAp̄k

βk+1 =
r̄Tk+1r̄k+1

r̄Tk r̄k
, Keep numerator for next step!

p̄k+1 = −r̄k+1 + βk+1p̄k

k = k + 1

end-while

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (13/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Increased Efficiency
The Standard CG Algorithm
More Speed... Preconditioning

The CG Algorithm (version 1.0, “Standard”) Work

The work per iteration for this version of the CG algorithm consists
of
— One matrix-vector product Ap̄k

∼ n2 operations (if A is dense)
∼ O(n) in many cases, when A is sparse.

— Two inner products: p̄Tk (Ap̄k) and r̄Tk+1r̄k+1

∼ n additions, and ∼ n multiplications

— Three vector sums
∼ 3n additions

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (14/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Increased Efficiency
The Standard CG Algorithm
More Speed... Preconditioning

The CG Algorithm — Convergence

In exact arithmetic CG converges in at most n iterations.

In many cases, the algorithm will find the solution in many fewer
iterations. We leave the detailed convergence analysis for some
other day, but state some key results:

Theorem

If A has only r distinct eigenvalues, then the CG iteration will
terminate at the solution x̄∗ in at most r iterations.

Theorem

If A has eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn, we have that

‖x̄k+1 − x̄∗‖A ≤
[
λn−k − λ1

λn−k + λ1

]
‖x̄0 − x̄∗‖A.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (15/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Increased Efficiency
The Standard CG Algorithm
More Speed... Preconditioning

The CG Algorithm — Convergence: Comments

The second theorem tells us that the CG algorithm selects exactly
the optimal sequence of conjugate search directions {p̄i}.
If there is a cluster of eigenvalues of A around λ1, i.e. λ1 = 1,
λ3900 = 1.0002, λ4000 = 1.03, and λn = λ4032, then after 32
iterations we would have

‖x̄32 − x̄∗‖A ≤
[
0.03

2.03

]
‖x̄0 − x̄∗‖A

and after another 100 iterations

‖x̄132 − x̄∗‖A ≤
[
0.0002

2.0002

]
‖x̄0 − x̄∗‖A

With tight clustering (which is quite common) we often achieve
very good convergence after a k ≪ n iterations.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (16/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Increased Efficiency
The Standard CG Algorithm
More Speed... Preconditioning

The CG Algorithm — Example 1 of 2

Let
A = diag(k2 Ik , k = 1 . . . 5), b̄ = 1̄, x̄0 = 0̄.

We get r̄0, r̄1, r̄2, r̄3, r̄4, r̄5:

‖r̄0‖ =
√
15, ‖r̄1‖ = 2.16025, ‖r̄2‖ = 1.54919, ‖r̄3‖ = 1.13389, ‖r̄4‖ = 0.745356, ‖r̄5‖ = 2.20786×10−14




1
1
1
1
1
1
1
1
1
1
1
1
1
1
1




,




0.933
0.733
0.733

0.4
0.4
0.4

−0.0667
−0.0667
−0.0667
−0.0667
−0.667
−0.667
−0.667
−0.667
−0.667




,




0.8
0.286
0.286

−0.286
−0.286
−0.286
−0.486
−0.486
−0.486
−0.486
0.286
0.286
0.286
0.286
0.286




,




0.6
−0.171
−0.171
−0.386
−0.386
−0.386
0.314
0.314
0.314
0.314

−0.0714
−0.0714
−0.0714
−0.0714
−0.0714




,




0.333
−0.381
−0.381
0.214
0.214
0.214

−0.0635
−0.0635
−0.0635
−0.0635
0.00794
0.00794
0.00794
0.00794
0.00794




,




1.11 × 10−16

−1.11 × 10−16

−1.11 × 10−16

−1.39 × 10−16

−1.39 × 10−16

−1.39 × 10−16

8.05 × 10−16

8.05 × 10−16

8.05 × 10−16

8.05 × 10−16

−6.98 × 10−15

−6.98 × 10−15

−6.98 × 10−15

−6.98 × 10−15

−6.98 × 10−15




Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (17/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Increased Efficiency
The Standard CG Algorithm
More Speed... Preconditioning

The CG Algorithm — Example 2 of 2

Let
A = diag(k2 Ik , k = 1 . . . 5), b̄ = 1̄, x̄0 = 0̄.

We get x̄1, x̄2, x̄3, x̄4, x̄5 = x̄∗:




0.0667
0.0667
0.0667
0.0667
0.0667
0.0667
0.0667
0.0667
0.0667
0.0667
0.0667
0.0667
0.0667
0.0667
0.0667




,




0.2
0.179
0.179
0.143
0.143
0.143

0.0929
0.0929
0.0929
0.0929
0.0286
0.0286
0.0286
0.0286
0.0286




,




0.4
0.293
0.293
0.154
0.154
0.154

0.0429
0.0429
0.0429
0.0429
0.0429
0.0429
0.0429
0.0429
0.0429




,




0.667
0.345
0.345

0.0873
0.0873
0.0873
0.0665
0.0665
0.0665
0.0665
0.0397
0.0397
0.0397
0.0397
0.0397




,




1
0.25
0.25

0.111
0.111
0.111

0.0625
0.0625
0.0625
0.0625

0.04
0.04
0.04
0.04
0.04




Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (18/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Increased Efficiency
The Standard CG Algorithm
More Speed... Preconditioning

Contrasting Example: “Maximal Subspace Collapse” 1 of 2

What happens is we select a sequence of search directions which collapse
the maximal number of dimensions of the residual (which coincidentally,
in this example, is the subspace corresponding to the largest eigenvalue)?

p̄0 =




0
0
0
0
0
0
0
0
0
0
1
1
1
1
1




, p̄1 =




0
0
0
0
0
0
1
1
1
1
0
0
0
0
0




, p̄2 =




0
0
0
1
1
1
0
0
0
0
0
0
0
0
0




, p̄3 =




0
1
1
0
0
0
0
0
0
0
0
0
0
0
0




, p̄4 =




1
0
0
0
0
0
0
0
0
0
0
0
0
0
0




Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (19/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Increased Efficiency
The Standard CG Algorithm
More Speed... Preconditioning

Contrasting Example: “Maximal Subspace Collapse” 2 of 2

We get the following sequence of residuals

r̄MSC
1 ≈




1
1
1
1
1
1
1
1
1
1
0
0
0
0
0




, r̄MSC
2 ≈




1
1
1
1
1
1
0
0
0
0
0
0
0
0
0




, r̄MSC
3 ≈




1
1
1
0
0
0
0
0
0
0
0
0
0
0
0




, r̄MSC
4 ≈




1
0
0
0
0
0
0
0
0
0
0
0
0
0
0




, r̄MSC
5 ≈




0
0
0
0
0
0
0
0
0
0
0
0
0
0
0




‖̄r0‖ ‖̄r1‖ ‖̄r2‖ ‖̄r3‖ ‖̄r4‖ ‖̄r5‖
CG

√
15 2.1603 1.5492 1.1339 0.7454 ≈ 0

MSC
√
15 3.1623 2.4495 1.7321 1.0000 ≈ 0

Table: CG gives the optimal sequence of residual lengths at each iteration!

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (20/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Increased Efficiency
The Standard CG Algorithm
More Speed... Preconditioning

Contrasting Example #2: Steepest Descent

Iterations

0 50 100 150 200

R
e
s
id

u
a
l
2
-n

o
rm

10 -6

10 -4

10 -2

10 0

Figure: Since the condition number is only 52 = 25, one may think
that maybe steepest descent will do a decent job? But, alas, it takes
over 200 iterations to get a reduction of the residual norm by 10−8.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (21/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Increased Efficiency
The Standard CG Algorithm
More Speed... Preconditioning

The CG Algorithm — Convergence: More Comments

It is worth noting that the theorem gives an upper bound of the error, in
practice it is almost true that if the eigenvalues of A occur in r distinct
clusters, then (compare with the first theorem) the CG algorithm will
approximately solve the problem after r steps.

Further it can be shown that for the CG algorithm

‖x̄k − x̄∗‖A ≤ 2

[√
κ(A)− 1√
κ(A) + 1

]k

‖x̄0 − x̄∗‖A,

whereas (forgotten from lecture #5)

‖x̄k+1 − x̄∗‖A ≤
[
κ(A)− 1

κ(A) + 1

]k
‖x̄0 − x̄∗‖A,

for the steepest descent algorithm. Here κ(A) = λn/λ1 is the condition
number of the matrix A.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (22/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Increased Efficiency
The Standard CG Algorithm
More Speed... Preconditioning

CG vs. Steepest Descent 1 of 2

0 50 100 150 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Convergence Factor / Iteration

CG

Steepest Descent

Figure: Comparing the convergence factors

[√
κ(A)−1√
κ(A)+1

]
(for Conjugate Gradient) and

[
κ(A)−1
κ(A)+1

]
(for Steepest Descent) for condition numbers, κ(A) ∈ [2, 200].

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (23/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Increased Efficiency
The Standard CG Algorithm
More Speed... Preconditioning

CG vs. Steepest Descent 2 of 2

κ(A) CG SD SD/CG
10 22 69 3.136
100 72 691 9.597

1,000 229 6,908 30.166
10,000 725 69,078 95.280

Table: A comparison of how many iterations Conjugate gra-
dient (CG) and Steepest descent (SD) are required in order to
reduce the initial error ‖x̄0 − x̄∗‖A by a factor of 10−6. We
notice a “slight” improvement. The speedup is ∼

√
κ(A).

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (24/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Increased Efficiency
The Standard CG Algorithm
More Speed... Preconditioning

Preconditioning: Speeding Things Up Even More

The CG method can be accelerated further by preconditioning the linear
system; we [formally] make a non-singular change of variables

x̂ = C x̄,

and solve the linear system (and/or its equivalent minimization problem,

min Φ̂(x̄))

[
C−TAC−1

]
x̂− C−T b̄, Φ̂(x̄) =

1

2
x̂T

[
C−TAC−1

]
x̂−

[
C−T b̄

]T
x̂.

Now, the convergence rate will depend on the eigenvalues of
A =

[
C−TAC−1

]
. Therefore, we would like to choose C such that the

eigenvalues of A are favorably clustered, and/or the condition number of
A is less than that of A.

As in the case of the transformation guaranteeing n-step convergence,
this change of variables does not have to be done explicitly.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (25/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Increased Efficiency
The Standard CG Algorithm
More Speed... Preconditioning

The Preconditioned CG Algorithm (a.k.a. “PCG”)

Algorithm: PCG

Given A, M = CTC, b̄ and x̄0: compute r̄0 = Ax̄0 − b̄,
ȳ0 = M−1r̄0, p̄0 = −ȳ0, k = 0

while (‖rk‖ > 0, or other stopping condition)

αk =
r̄Tk ȳk
p̄Tk Ap̄k

,
Store the vector Ap̄k

and the scalar r̄Tk ȳk

x̄k+1 = x̄k + αk p̄k
r̄k+1 = r̄k + αkAp̄k
ȳk+1 = M−1r̄k+1

βk+1 =
r̄Tk+1ȳk+1

r̄Tk ȳk
, Save the numerator for next step!

p̄k+1 = −ȳk+1 + βk+1p̄k
k = k + 1

end-while

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (26/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Increased Efficiency
The Standard CG Algorithm
More Speed... Preconditioning

PCG: Comments

If we set M = I , then we recover standard CG.

We note that in each iteration, we have to solve the linear system
M ȳk+1 = r̄k+1 ⇔ (ȳk+1 = M−1r̄k+1). We must select M so that
we can do this quickly, otherwise we lose the overall-work
advantage over Steepest descent or Gaussian elimination.

There are several (usually competing) properties we would like M
to have:

— M should effectively impact the structure of the eigenvalues.

— M should be cheap to compute and store.

— The linear system M ȳ = r̄ should be “easy.”

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (27/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Increased Efficiency
The Standard CG Algorithm
More Speed... Preconditioning

Finding Good Preconditions 1 of 2

There is no “best” way of finding M. The optimal M for a
particular A may even depend on how much memory, etc your
computer has.

In general M is a simplified version of A, e.g. we may take the
tridiagonal part of A:

0 50 100 150 200 250

0

50

100

150

200

250

nz = 3070

0 50 100 150 200 250

0

50

100

150

200

250

nz = 766

Figure: When A has a banded structure (left) with a significant bandwidth, then
a tri-diagonal preconditioner M (right) may be a good choice. Recall that in this
case we can solve M ȳ = r̄ in O(n) operations.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (28/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems

Increased Efficiency
The Standard CG Algorithm
More Speed... Preconditioning

Finding Good Preconditioners 2 of 2

Preconditioning is itself a science (or an art?) which will be revisited in
more detail in (???).

One of the more efficient strategies is incomplete Cholesky
factorization. — The exact Cholesky factorization of an SPD matrix A
has the form

LLT = A, where L is lower triangular.

Usually, even though A may be sparse, L will be dense (due to fill-ins).

In incomplete Cholesky factorization, the same algorithm is followed, but
whenever a fill-in occurs, that value is dropped — this way we end up
with

M = L̃L̃T ≈ A,

where L̃ and A have the same sparsity patterns.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (29/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems
HW#4, Due 11/2/2018, 12:00pm

Homework #4, Problem #1 of 2 Due 11/2/2018, 12:00pm

Problem #1

Implement the standard CG algorithm, and use it to solve linear systems
describing the “Helical Coordinate Preconditioner for the Laplacian” in
1D, 2D, and 3D:

Matlab-centric problem matrices; push n until you run out of memory (or patience!)

d = ones(n,1); A = spdiags([d -2*d d], [-1 0 1], n, n);

d = ones(n2,1); A = spdiags([d d -4*d d d], [-n -1 0 1 n], n2, n2);
d = ones(n3,1); A = spdiags([d d d -6*d d d d], [-n2 -n -1 0 1 n n2],

n3, n3);

Ponder matrix size; number of iterations to drive the initial residual
(given the initial guess of all zeros ~x0 = zeros(size(d)), with a

right-hand-side of all ones ~b = ones(size(d))) to a residual of size tol
× initial residual; execution time; condition numbers; non-zero matrix
elements; total # of matrix elements, etc...

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (30/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems
HW#4, Due 11/2/2018, 12:00pm

Homework #4, Problem #2 of 2

Problem #2

A modified version of NW1st-5.1: Implement the standard CG algorithm,
and use it to solve linear systems in which A is the Hilbert matrix, whose
elements are aij = 1/(i + j − 1). Set the right-hand-side to be all ones
~b = ones(n,1), and the initial point to be the origin ~x0 = zeros(n,1).
For dimensions n = 5, 8, 12, 20, plot the norm of the residual as a
function of the iteration; stop when the norm is less than 10−6

Note: The Hilbert matrix shows up in the normal equations in least
squares approximations, and is an example of a matrix with a
nasty condition number.

Compute the condition number for your matrices, and plot the spread of
the eigenvalues. From the formulas, estimate how many steepest descent
iterations you would need to solve the problem to the same precision.
(Can you get a meaningful estimate?)

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (31/32)

The Linear Conjugate Gradient Method
The CG Algorithm

Non-Linear CG for Optimization Problems
HW#4, Due 11/2/2018, 12:00pm

Index

algorithm
conjugate gradient, 13
preconditioned conjugate gradient, 26

Krylov subspace, 9

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear CG, Part #2 — (32/32)

