Numerical Optimization

> Peter Blomgren, \(\text{blomgren.peter@gmail.com} \)

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Outline

- 1 Linear Conjugate Gradient Methods
 - Recap
 - Conjugate Gradient Algorithms
 - The Effect of Preconditioning CG vs. PCG(M)
- Nonlinear Conjugate Gradient Methods
 - New Ideas... Fletcher-Reeves, etc...
 - Practical Considerations
 - Convergence
- 3 Projects
 - Separate Handouts, etc...

Quick Recap: Linear Conjugate Gradient Methods

We have introduced the Conjugate Gradient (CG) and Preconditioned Conjugate Gradient (PCG) methods for solution of the linear system $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$, where A is symmetric positive definite.

Linear CG is guaranteed to converge in n iterations, but as we have seen, in many cases — eigenvalue clustering and/or r < n distinct eigenvalues, convergence is much faster.

We briefly discussed preconditioning, where we use a simplified version $M \approx A$, and hope that $M^{-1}A \approx I$ has a favorable eigenvalue spectrum. We must be able to solve $M\overline{\mathbf{y}} = \overline{\mathbf{r}}$ fast.

Today:

- (i) An example of CG vs. PCG performance.
- (ii) Non-linear CG.
- (iii) Projects!

The CG Algorithm (version 1.0, "Standard")

Algorithm: Conjugate Gradient

Given
$$A$$
, $\bar{\mathbf{b}}$ and $\bar{\mathbf{x}}_0$:
 $\bar{\mathbf{r}}_0 = A\bar{\mathbf{x}}_0 - \bar{\mathbf{b}}$, $\bar{\mathbf{p}}_0 = -\bar{\mathbf{r}}_0$, $k = 0$

while (
$$||r_k|| > 0$$
, or other stopping condition)

$$\alpha_k = \frac{\overline{\mathbf{r}}_k^T \overline{\mathbf{r}}_k}{\overline{\mathbf{p}}_k^T A \overline{\mathbf{p}}_k}, \quad \text{Store the vector } A \overline{\mathbf{p}}_k \\ \text{and the scalar } \overline{\mathbf{r}}_k^T \overline{\mathbf{r}}_k$$

$$\bar{\mathbf{x}}_{k+1} = \bar{\mathbf{x}}_k + \alpha_k \bar{\mathbf{p}}_k$$

$$\mathbf{\bar{r}}_{k+1} = \mathbf{\bar{r}}_k + \alpha_k \mathbf{A} \mathbf{\bar{p}}_k$$

$$\beta_{k+1} = \frac{\overline{\mathbf{r}}_{k+1}^T \overline{\mathbf{r}}_{k+1}}{\overline{\mathbf{r}}_{k}^T \overline{\mathbf{r}}_{k}},$$

$$\bar{\mathbf{p}}_{k+1} = -\bar{\mathbf{r}}_{k+1} + \beta_{k+1}\bar{\mathbf{p}}_k$$

$$k = k+1$$

end-while

Keep numerator for next step!

Preconditioned CG Algorithm (a.k.a. "PCG(M)")

Algorithm: PCG

end-while

Given
$$A$$
, $\mathbf{M} = \mathbf{C}^T \mathbf{C}$, $\bar{\mathbf{b}}$ and $\bar{\mathbf{x}}_0$: compute $\bar{\mathbf{r}}_0 = A\bar{\mathbf{x}}_0 - \bar{\mathbf{b}}$, $\bar{\mathbf{y}}_0 = \mathbf{M}^{-1}\bar{\mathbf{r}}_0$, $\bar{\mathbf{p}}_0 = -\bar{\mathbf{y}}_0$, $k = 0$

while ($\|r_k\| > 0$, or other stopping condition)

$$\alpha_k = \frac{\bar{\mathbf{r}}_k^T \bar{\mathbf{y}}_k}{\bar{\mathbf{p}}_k^T A \bar{\mathbf{p}}_k}, \qquad \text{Store the vector } A\bar{\mathbf{p}}_k \\ \bar{\mathbf{p}}_k = \bar{\mathbf{x}}_k + \alpha_k \bar{\mathbf{p}}_k \\ \bar{\mathbf{r}}_{k+1} = \bar{\mathbf{x}}_k + \alpha_k A\bar{\mathbf{p}}_k \\ \bar{\mathbf{y}}_{k+1} = \bar{\mathbf{r}}_k + \alpha_k A\bar{\mathbf{p}}_k \\ \bar{\mathbf{y}}_{k+1} = \mathbf{M}^{-1}\bar{\mathbf{r}}_{k+1} \\ \beta_{k+1} = \frac{\bar{\mathbf{r}}_{k+1}^T \bar{\mathbf{y}}_{k+1}}{\bar{\mathbf{r}}_k^T \bar{\mathbf{y}}_k}, \qquad \text{Save the numerator for next step!}$$

$$\bar{\mathbf{p}}_{k+1} = -\bar{\mathbf{y}}_{k+1} + \beta_{k+1}\bar{\mathbf{p}}_k$$

k = k+1

1 of 7

Problem: Solve $\nabla^2 u(x,y) = f(x,y)$ in the domain

$$D = \{(x, y) : -1 \le x, y \le 1\} - \{(x, y) : (x+1)^2 + (y+1)^2 < 1\}$$

Set u(x,y)=0 on $\Gamma=\partial D$ (Dirichlet Boundary Conditions).

Figure: We discretize $\nabla^2 u(x, y)$ by the standard 5-point finite difference approximation of the Laplacian.

We study the numerical solution of the resulting linear system $Aar{\mathbf{u}} = ar{\mathbf{f}}$ for varying discretizations of the square (from 2×2 to 64×64 grids.)

We look at CG, PCG(M) with M being the tri-diagonal preconditioner, and PCG(M) with $M = \tilde{L}\tilde{L}^T$, where \tilde{L} is given by the incomplete (zero fill-in) Cholesky factorization.

Figure: We discretize $\nabla^2 u(x,y)$ by the standard 5-point finite difference approximation of the Laplacian on the numerical domain (illustrated on the left with a 48 \times 48 grid), the corresponding matrix A is illustrated to the right; it has a tridiagonal component, and two additional elements on every row — the bandwidth is not constant due to the cut-out in the domain.

Figure: To the left we see the L given by complete Cholesky factorization — we notice how the entire band fills in, we get a total of 67,071 non-zero entries. To the left we see the \tilde{L} given by **incomplete Cholesky factorization** — here we only get 5,020 non-zero entries. (A had 8,336 non-zero entries)

We will use the preconditioners $M = \tilde{L}\tilde{L}^T$, and $M = \operatorname{tridiag}(A)$.

$n_{ m GRID}$	48 ²	64 ²
Α	1704×1704	3094×3094
$L = ichol(A), LL^T$	pprox A	
$\ A - LL^T\ _F / \ A\ _F$	0.0900	0.0907
cond(A)	924.5193	1656.936
$cond(L^{-1}AL^{-T})$	133.4733	238.4772
L = chol(tridiag(A)), $LL^T \approx A$	
$ A - LL^T _F / A _F$	0.3131	0.3139
cond(A)	924.5193	1656.936
$\operatorname{cond}(L^{-1}AL^{-T})$	463.1769	829.6574

Figure: The performance of **CG** and **PCG(M)** on our test problem. The discretization of the square $[-1,1]^2$ ranges from 2×2 to 64×64 , which gives us a matrix A of dimensions ranging from 3×3 to 3094×3094 . The stopping criteria was a relative reduction of $\|\mathbf{F}\|$ by 10^{-6} .

Figure: The solution to our test problem on the 48×48 grid, with the right-hand-side f(x, y) = 1.

Nonlinear Conjugate Gradient Methods

We now turn our attention to making the CG methods useful for optimization problems (the non-linear situation).

The **Fletcher-Reeves** (CG-FR, published in 1964) extension requires two modifications to the CG algorithm:

- 1: The computation of the step length α_k is replaced by a line-search which minimizes the non-linear objective $f(\cdot)$ along the search direction $\mathbf{\bar{p}}_k$.
- The instances of the residual \bar{r} (which are just $\nabla \Phi(\cdot)$ for the 2: quadratic objective in standard CG) are replaced by the gradient of the non-linear objective $\nabla f(\cdot)$.

Fletcher, R., and Reeves, C. M. "Function minimization by conjugate gradients." The computer journal, 7, no. 2 (1964), 149-154.

The Fletcher-Reeves FR-CG Algorithm

Algorithm: Fletcher-Reeves Given $\bar{\mathbf{x}}_0$: Evaluate $f_0 = f(\bar{\mathbf{x}}_0), \ \nabla f_0 = \nabla f(\bar{\mathbf{x}}_0).$ Set $\mathbf{\bar{p}}_0 = -\nabla f_0$, k=0while ($\|\nabla f_k\| > 0$, ...) α_k = linesearch(...) $\mathbf{\bar{x}}_{k+1} = \mathbf{\bar{x}}_k + \alpha_k \mathbf{\bar{p}}_k$ $\nabla f_{k+1} = \text{Evaluate } \nabla f(\bar{\mathbf{x}}_{k+1})$ $\beta_{k+1}^{\text{FR}} = \frac{\nabla f_{k+1}^T \nabla f_{k+1}}{\nabla f_k^T \nabla f_k},$ Save numerator! $\bar{\mathbf{p}}_{k+1} = -\nabla f_{k+1} + \beta_{k+1}^{\text{FR}} \bar{\mathbf{p}}_{k}$ k = k+1end-while

Comments: The Fletcher-Reeves FR-CG Algorithm

Sanity check: If $f(\bar{\mathbf{x}})$ is a strongly convex quadratic, and α_k the exact minimizer, then FR-CG reduces to linear CG.

Each iteration requires evaluation of the objective function (for the line-search), and the gradient of the objective. — No Hessian evaluation, nor matrix operations are required. **Good** for large non-linear optimization problems.

If we require that α_k satisfies the strong Wolfe conditions

$$\begin{aligned}
f(\bar{\mathbf{x}}_k + \alpha \bar{\mathbf{p}}_k) &\leq f(\bar{\mathbf{x}}_k) + c_1 \alpha \bar{\mathbf{p}}_k^T \nabla f_k \\
|\bar{\mathbf{p}}_k^T \nabla f(\bar{\mathbf{x}}_k + \alpha \bar{\mathbf{p}}_k)| &\leq c_2 |\bar{\mathbf{p}}_k^T \nabla f_k|
\end{aligned}$$

where $0 < c_1 < c_2 < \frac{1}{2}$, then FR-CG converges globally.

The following modification to FR-CG was suggested by Polak-Ribière

$$\beta_{k+1}^{\text{FR}} = \frac{\nabla f_{k+1}^{\mathsf{T}} \nabla f_{k+1}}{\nabla f_{k}^{\mathsf{T}} \nabla f_{k}} \quad \rightarrow \quad \beta_{k+1}^{\text{PR}} = \frac{\nabla f_{k+1}^{\mathsf{T}} (\nabla f_{k+1} - \nabla f_{k})}{\nabla f_{k}^{\mathsf{T}} \nabla f_{k}}$$

when f is a strongly convex quadratic, and the line search is exact, the gradients are orthogonal and $\beta_{k+1}^{\text{FR}} = \beta_{k+1}^{\text{PR}}$.

On general non-linear objectives, an inexact line-searches PR-CG tends to be **more robust** and **more efficient** than FR-CG.

Polak, Elijah, and Gerard Ribiere. "Note sur la convergence de méthodes de directions conjugués." Revue française d'informatique et de recherche opérationnelle. Série rouge 3, no. 16 (1969): 35-43.

Variants: The Polak-Ribière (PR-CG) Method

2 of 2

One problem: The strong Wolfe conditions **do not** guarantee that $\bar{\mathbf{p}}_k$ is always descent direction for PR-CG. In order to fix this, β is defined to be

$$\beta_{k+1}^+ = \max(\beta_{k+1}^{PR}, 0)$$

the resulting algorithm is known as PR+.

There are a number of other choices for β in the literature, but they are not (in general) more efficient than Polak-Ribière PR-CG/PR+.

If the line-search uses quadratic (or cubic) interpolation along the search direction $\bar{\mathbf{p}}_k$, then if/when $f(\cdot)$ is a strictly convex quadratic, the step lengths α_k will be the exact 1D-minimizers \Rightarrow the non-linear algorithm reduces to linear CG. [This is Highly Desirable!]

Restarting: CG gets its favorable convergence properties from the conjugacy of the search directions **near** the optimum. If we start "far" from the optimum, the algorithm does not necessarily gain anything from maintaining this conjugacy.

Therefore, we should periodically restart the algorithm, by setting $\beta=0$ (i.e. taking a steepest-descent step).

The *n*-step convergence is only guaranteed when we start with a steepest-descent step, and the model is quadratic. Hence a restart close to $\bar{\mathbf{x}}^*$ will (approximately) guarantee *n*-step convergence.

Restarting conditions: The most common condition is based on the fact that for the strictly quadratic objective, the residuals are orthogonal. Hence, when two consecutive residuals are "far" from orthogonal

$$\frac{\nabla f_k^T \nabla f_{k-1}}{\nabla f_k^T \nabla f_k} \ge \nu \sim 0.1$$

a restart is triggered.

The formula

$$\beta_{k+1}^+ = \max(\beta_{k+1}^{\mathsf{PR}}, 0)$$

in PR+ can be viewed as a restart-condition. This is not practical since these "restarts" are very infrequent — in practice $\beta_{k+1}^{\rm PR}$ is positive most of the time.

Nonlinear CG: Global Convergence

Linear CG: Global convergence properties well understood, and optimal.

Nonlinear CG: Convergence properties not so well understood, except in special cases. The behavior is sometimes surprising and bizarre!

We look at some results, under the following non-restrictive assumptions

Assumptions:

- (i) The level set $\mathcal{L} = \{ \overline{\mathbf{x}} \in \mathbb{R}^n : f(\overline{\mathbf{x}}) \le f(\overline{\mathbf{x}}_0) \}$ is bounded.
- (ii) In some neighborhood $\mathcal N$ of $\mathcal L$, the objective function f is Lipschitz continuously differentiable, *i.e.* there exists a constant L>0 such that

$$\|\nabla f(\bar{\mathbf{x}}) - \nabla f(\bar{\mathbf{y}})\| \le L \|\bar{\mathbf{x}} - \bar{\mathbf{y}}\|, \quad \forall \bar{\mathbf{x}}, \bar{\mathbf{y}} \in \mathcal{N}$$

Global Convergence: FR-CG

Theorem

Suppose that the assumptions hold, and that FR-CG is implemented with a line search which satisfies the strong Wolfe conditions, with $0 < c_1 < c_2 < \frac{1}{2}$. Then

$$\liminf_{k\to\infty}\|\nabla f_k\|=0.$$

This does not say that the limit of the sequence of gradients $\{\nabla f_k\}$ is zero; but it does tell us that at least the sequence is not bounded away from zero.

If, however, we restart the algorithm every n steps, we get n-step quadratic convergence:

$$\|\mathbf{\bar{x}}_{k+n} - \mathbf{\bar{x}}^*\| = \mathcal{O}(\|\mathbf{\bar{x}}_k - \mathbf{\bar{x}}^*\|^2).$$

Nonlinear Conjugate Gradient Methods

Global Convergence: PR-CG

In practice PR-CG performs better than FR-CG, but we cannot prove a theorem like the one for FR-CG on the previous slide.

The following surprising result **can** be shown:

Theorem

Consider the Polak-Ribiere PR-CG method with an ideal line search. There exists a twice continuously differentiable objective function $f: \mathbb{R}^3 \to \mathbb{R}$ and a starting point $\bar{\mathbf{x}}_0 \in \mathbb{R}^3$ such that the sequence of gradients $\{\|\nabla f_k\|\}$ is **bounded away from zero**.

The modification (PR+)

$$\beta_{k+1}^+ = \max(\beta_{k+1}^{PR}, 0)$$

fixes this strange behavior, and it is possible to show global convergence for PR+.

T.P.S REPORT		
System:	Program Language: Platform: OS:	
Unit Code:	Customer:	
Unit Code Tested:		
Due Date:	Approved By:	
Test Date:	Tested By:	
Total Run Time:	Total Error Count:	
Error Reference:		
Errors Logged:	Log Location:	
Passed:	Moved to Production:	

CONFIDENTIAL

Index

