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Hessian Modifications Recall: The Trust Region Algorithm
We.d.lscussgd.strategles for modifying the Hessian in order to make it Algorithm: Trust Region
positive definite: N ~
[1] Set k=1, A >0, Ag € (0,A), and n € [0, %
If we use the Frobenius matrix norm, the smallest change is of the type [ 2] While optimality condition not satisfied ,
“ . . .. ” [ 31 Get py (approximate solution, Today’s Discussion)
change negative eigenvalues to small positive ones: [4] Evaluate py
(5] if pp<i
[ 6] Dps1 = 20
= — 1 . T J— 0 Ai Z 5 [ 71 else
B = A+ AA, where AA = Qdiag(7) Q", 7 = { O— A A< [ 8l if pp > 2 and |[pill = Ak
[ 9] App1 = min(2A, A)
[10] else
. . [11] Dps = Dy
If, on the other hand, we use the Euclidean norm the smallest change is a [12] endif
. . . . . . . [13] dif
multiple of the identity matrix, i.e. “shift the eigenvalue spectrum, so (4] if pp > 7
: PO [15] Rpr1 = Xk + Pr
all eigenvalues are positive: nol Lk
[17] Rpy1 = Xk
B=A+AA, where AA=7l, 7=max(0,d— A\nn(A)). R
[20] End-While _
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Trust-Region Methods: By not Positive Definite is OK(?)
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Review + Add Hessian Modifications and/or CG-solvers

The Trust-region framework does not require that the model
Hessian is positive definite.

It is possible to use the exact Hessian By = V2f(Xy) directly and
find the search direction pyx by solving the trust-region subproblem

min f(%k) + V(&) B+ = Bib, Bl < Ax.

pERN

N~

Some of the techniques we discussed, e.g. dogleg, require that
By is positive definite.
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We have seen quite few ideas floating around, lets review what we
have seen in the context of our methods:

(i)  the dogleg method,

(ii))  2D-subspace minimization,
(iii) nearly exact solution, and
(iv) the CG method.

The goal is to improve the methods and remove as many
restrictions as possible.
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Newton-Dogleg “Newton” = By = V2f(xx) 1of 2 Newton-Dogleg Convexification 2 of 2

When By is positive definite the dogleg method — minimizing the model
over the dogleg path

[:)(T):{Tﬁg 0<r<i1
Py + (T —1{BE —pY) 1<7<2
where
_ _ _ _ VI(xe)TVF(Xk) _
B - _B 1 f U - _ f
P« k \Y (xk)a P« Vf()_(k)TBka()_(k)v (Xk)

The Full Step
The unconstrained minimum of the quadratic model
along the steepest descent direction

gives good approximate solutions to the trust-region subproblems which
can be computed efficiently.

However, when By is not positive definite we cannot safely compute g
pg, further the denominator V£ (X,)" BV f(Xx) could be zero... ssmesu

VERSITY
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In order to make the dogleg method work for non-positive definite Bxs we
can use the Hessian modification from last time to replace

By, — (Bk + Ek)
—_———
Pos.Def

and use this matrix in the dogleg solution.

There is a price to pay. When the matrix By is modified, the importance
of different directions are potentially changed in different ways, and the
1D-path (approximating the optimal path) is moved in nD-space. This
may negatively impact the benefits of the trust-region approach.

Modifications of the type Ex = 7/ behave somewhat more predictably
than modifications of the type Ex = diag(71,72,...,7h).

Usage of the dogleg method for non-convex problems is somewhat dicey,
and even though it may work it is not the preferred method.
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Newton-2D-Subspace-Minimization
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Iterative “Nearly Exact” Solution of the Trust-Region Subproblem

In much the same way we modified the dogleg method, we can adapt the
2D-subspace minimization subproblem to work in the case of indefinite B

. - oT= , 1_ _ _ _ o\ =
min £(%c) + V&) B+ 5B B, IIBll < Ak, B € span(VF (%), p®)

can be applied when By is positive definite, and with a modified
Bk = (Bk + Ex) which is positive definite in the case when By is not
positive definite:

. _ \T- 1 _1x _ _ _ _\ B
min £(%) + V&) B+ 5p Bib,  IIBl < Ak, B € span(VF(%),B°)

Recall the characterization of the exact solution, from lecture #9:

Theorem

The vector p* is a global solution of the trust-region problem

1
in f(x p’VF(x ~—p"Bip
A (Xk) +p" VF(xi) + >P" Bip
if and only if p* is feasible and there is a scalar A > 0 such that the
following conditions are satisfied:

1. (B + \)p* = —VF(%)
=% _
2. MAc=1p*) = 0
. . y - 3. By + Al is positive semi-definite
The 2D-subspace method is only marginally more “expensive” (per (Bi ) P )
iteration) than the dogleg approach; it is however more robust with _ . . . . e _
) . §°8 ab This approach is already using the Hessian modification in the
respect to Hessian modification. " e " "
Sy DugosTT: Euclidian™ form Ex = A, good for “small problems. S DuGoSTaT:
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Trust-Region Newton-CG 1of 4 Trust-Region Newton-CG Steihaug’s Method 2 of 4
The trust-region subproblem In the case of negative curvature we follow the direction to the boundary of the trust
region; we get Steihaug’s Method
1
. — - \T= —Tp = —
min F(%i) + VI&e) P+ 5B Bib, (Bl = A, Algorithm: CG-Steihaug
) o ] ) Given € > 0; set po =0, To = VI (Xk), dg = 7o
can be solved using the [Preconditioned] Conjugate Gradient ( [P]CG) if( ||[foll < € ) return(po)
method, with two additional termination criteria (one of which we have while(_TRUE ) \ ,
Iread if ( dj Bd; <0 ) % Negative Curvature
seen already). Find 7 > 0 such that p = p; + 7d; satisfies |[p]| = A
return(p)
For each subproblem we must solve endif o )
_ _ Q;j :FJ-TF_,'/dTij, Pi+1 = Pj + a;d;
Bipx = —Vf(xk). if( [|pj1ll > A ) % Step outside trust region
Find 7 > 0 such that p = p; + 7d; satisfies [|p]| =A
. . o return (p)
We apply CG with the following stopping criteria endif _
(standard) The system has been solved to desired accuracy. fj+1 =1j + O‘J'Bd_j _
. . iEC [[Fjgall < €ellfo]l ) return(pji1)
(previous) Negative curvature encountered. _ Bisr =¥l Fiy1/F ¥, disq = —Fiy1 + Bjord; _
. . . . . j+1 = Vi Ui/ 0 Vs G+ = —hj j+14;
(new) Size of the approximate solution exceeds the trust-region radius. ol end-while i
S ONvirsery Dty
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Trust-Region Newton-CG
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When we get close to the optimum, the trust-region constraint becomes
inactive (the model becomes a good approximation of the objective, and
the radius of the trust-region grows).

At this juncture, we need to pay particular attention to how the € in
CG-Steihaug is selected. It should be given by the forcing sequence {7}
which gives us quadratic convergence, i.e. € ~ || VF(X)]-

Good properties of TR-Newton-CG: Globally convergent, the first step
in the —V£(Xx) direction identifies the Cauchy point, the subsequent
steps improve on p. No matrix factorizations are necessary.

Advantages over LS-Newton-CG: Step lengths are controlled by the
trust region. Directions of negative curvature are explored.

SAN DIEGO STATE

UNIVERSITY

Room for Improvement: Any direction of negative curvature is
accepted — the accepted direction can give an insignificant
reduction in the model.

There is an extension of CG known as Lanczos method, and it is
possible to build a TR-Newton-Lanczos algorithm which does not
terminate when encountering the first direction of curvature, but

continues to search for a direction of sufficient negative curvature.

TR-Newton-Lanczos is more robust, but comes at a cost of a more
expensive solution of the subproblem.

We leave the discussion of the Lanczos algorithm to Math 643 (to
be offered in ~Spring 2049).
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As we have seen in other (very similar) settings, adding preconditioning
to the CG-solver can cut the number of iterations quite drastically.

It would seem like a good (and natural) idea to add preconditioning to
the Trust-Region Newton-CG scheme.

We have to be a little careful... For the standard CG-Steihaug, the
following is true

Theorem

The sequence of vectors generated by CG-Steihaug satisfies

0= |Poll2 < [Ip1ll2 <+~ <[Ipjll2 < IPjsall <. llpl2 < A

This does not hold for preconditioned PCG(M)-Steihaug. This means that
the sequence can leave the trust region, and then come back!
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It is possible to define a weighed norm in which the PCG(M) iterates grow
monotonically — this weighted norm depends on the preconditioner.

If we express the preconditioning of By in terms of a non-singular matrix
D, which guarantees that the eigenvalues of D=7 B, D! have a
favorable distribution, when the subproblem takes the form

. e N S _
min f(X¢) + V(%) P+ =p' Bb,

Dp|| <A
> DB < A

if we formally make the change of variables p = Dp, and set
gx = D~ TVF(Xy), Bx = D~ T"BxD~! , the subproblem transform into

[y

SPTBb. [l < A
to which we can apply CG-Steihaug.

SAN DIEGO STATE
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. f - AT =
min £(Xe) + 8P+
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As usual, we never make this change of variables explicitly. Instead the
CG-Steihaug algorithm is modified so that the wherever we have a
multiplication by D~ or D=7 we solve the appropriate linear system.

Note, if D~TB,D~! = | the preconditioning is perfect. Usually

D TBD'=I1+E

and if we multiply by DT from the left and D from the right we see

Bc.=D'"D+DTED
N N———

M

So that M = By, and R captures the

preconditioning.

Peter Blomgren, (blomgren.peter@gmail.com)
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“Inexactness’ of the
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We can get a good general-purpose preconditioner by using a variant of

the Cholesky factorization, LLT = B,.

We have discussed two ideas in connection with the Cholesky
factorization — last time, we talked about how to modify it to get an
approximate factorization of an indefinite matrix, i.e.

(LL7] = choldecomp(By) =
’ ~ | modelhess(By) =

cholesky(By + diag(71, 72, - . .
cholesky(Bx + /)

’Tn))

We have also (in general terms) talked about the incomplete Cholesky
factorization, which preserves the sparsity pattern of By by not allowing

fill-ins.

Putting the two together we get something like the algorithm on the next

slide... (do not implement this one!)
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Algorithm: Modified Incomplete Cholesky Factorization,

LDLT form

Given 6 >0, >0
for j = 1:n

_ J—1 4 2
Gj = ajj = 21 dsljs
09J' = maxj<,-§,,|c,-j\
0.12
dj = max |qﬂ,6,[ﬁ]
for i = (j+1):n

if( a; #0 ) % Only allow /; #0 if a; #0

cj = aj — Y411 dslisls
/,'j = C,'j Clj
else
/,'J' = C,‘j =0
endif
endfor (i)

endfor (j)
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We have looked at Newton methods (with quadratic convergence, if
and only if we implement and solve all the subproblems in the right way)
for both the linesearch and trust-region approach, and have developed
quite a powerful framework of algorithms that are suitable and quite

stable for large problems.
Are we done??? — Not quite!

We several topics left on the menu, including:

1. Estimation of derivatives — how to proceed if the gradient and/or
the Hessian is not available in analytic form.

2. Quasi-Newton methods — how to proceed if the Hessian is not

available (too expensive).

3. Application to Nonlinear Least Squares problems.

4. Application to Nonlinear Equations. — If we can minimize, we can

also solve F(x) = 0.
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