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Summary: Linear Least Squares

Our study of non-linear least squares problems started with a look at
linear least squares, where each residual rj(x̄) is linear, and the
Jacobian therefore is constant. The objective of interest is

f (x̄) =
1

2
‖J x̄+ r̄0‖

2
2, r̄0 = r̄(0),

solving for the stationary point ∇f (x̄∗) = 0 gives the normal equations

JT J x̄∗ = −JT r̄0.

We have three approaches to solving the normal equations for x̄∗ — in
increasing order of computational complexity and stability:

(i) Cholesky factorization of JT J,

(ii) QR-factorization of J, and

(iii) Singular Value Decomposition of J.
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Summary: Nonlinear Least Squares 1 of 4

Problem: Nonlinear Least Squares

x̄∗ = argmin
x̄∈Rn

[f (x̄)] = argmin
x̄∈Rn


1

2

m∑

j=1

rj(x̄)
2


 , m ≥ n,

where the residuals rj(x̄) are of the form rj(x̄) = yj − Φ(x̄; tj).
Here, yj are the measurements taken at the locations/times tj ,
and Φ(x̄; tj) is our model.

The key approximation for the Hessian

∇2f(x̄) = J(x̄)T J(x̄) +
m∑

j=1

rj(x̄)∇
2rj(x̄) ≈ J(x̄)TJ(x̄).
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Summary: Nonlinear Least Squares 2 of 4

Line-search algorithm: Gauss-Newton, with the subproblem:

[
J(x̄k)

T J(x̄k)
]
p̄GN

k = −∇f (x̄k).

Guaranteed descent direction, fast convergence (as long as the
Hessian approximation holds up) equivalence to a linear least
squares problem (used for efficient, stable solution).
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Summary: Nonlinear Least Squares 3 of 4

Trust-region algorithm: Levenberg-Marquardt, with the
subproblem:

p̄LM

k = argmin
p̄∈Rn

1

2
‖J(x̄k)p̄+ r̄k‖

2
2, subject to ‖p̄‖ ≤ ∆k .

Slight advantage over Gauss-Newton (global convergence), same
local convergence properties; also (locally) equivalent to a linear
least squares problem.
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Summary: Nonlinear Least Squares 4 of 4

Hybrid Algorithms:

• When implementing Gauss-Newton or Levenberg-Marquardt,
we should implement a safe-guard for the large residual
case, where the Hessian approximation fails.

• If, after some reasonable number of iterations, we realize that
the residuals are not going to zero, then we are better off
switching to a general-purpose algorithm for non-linear opti-
mization, such as a quasi-Newton (BFGS), or Newton method.
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Fixed Regressor Models vs. Errors-In-Variables Models

So far we have assumed that there are no errors in the variables
describing where / when the measurements are made, i.e. in the data
set {tj , yj} where tj denote times of measurement, and yj the measured
value, we have assumed that tj are exact, and the measurement errors
are in yj .

Under this assumption, the discrepancies between the model and the
measured data are

ǫj = yj − Φ(x̄; tj), i = 1, 2, . . . ,m.

Next, we will take a look at the situation where we take errors in tj into
account — these models are known as errors-in-variables models, and
their solutions in the linear case are referred to as total least squares
optimization, or in the non-linear case as orthogonal distance
regression.
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Least Squares vs. Orthogonal Distance Regression
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Figure: (left) An illustration of how the error is measured in stan-
dard (fixed regressor) least squares optimization. (right) An example
of orthogonal distance regression, where we measure the shortest
distance to the model curve. [The right figure is actually not correct, why?]
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Orthogonal Distance Regression

For the mathematical formulation of orthogonal distance regression
we introduce perturbations (errors) δj for the variables tj , in
addition to the errors ǫj for the yj ’s.

We relate the measurements and the model in the following way

ǫj = yj − Φ(x̄; tj + δj),

and define the minimization problem:

(x̄∗, δ̄∗) = argmin
x̄,δ̄

1

2

m∑

j=1

[
w2

j

[
yj −Φ(x̄; tj + δj)

]2
+ d2j δ

2
j

]
,

where d̄ and w̄ are two vectors of weights which denote the
relative significance of the error terms.
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Orthogonal Distance Regression: The Weights

The weight-vectors d̄ and w̄ must either be supplied by the
modeler, or estimated in some clever way.

If all the weights are the same wj = dj = C, then each term in the
sum is simply the shortest distance between the point (tj , yj) and
curve Φ(x̄; t) (as illustrated in the previous figure).

In order to get the orthogonal-looking figure, I set wj =
1/0.5 and dj = 1/4, thus adjusting for the different
scales in the t- and y-directions.

The shortest path between the point and the curve will be normal
(orthogonal) to the curve at the point of intersection.

We can think of the scaling (weighting) as adjusting for measuring
time in fortnights, seconds, milli-seconds, micro-seconds, or
nano-seconds...
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Orthogonal Distance Regression: In Terms of Residuals rj

By identifying the 2m residuals

rj(x̄, δ̄) =





wj

[
yj − Φ(x̄; tj + δj)

]
j = 1, 2, . . . ,m

dj−mδj−m j = (m + 1), (m + 2), . . . , 2m

we can rewrite the optimization problem

(x̄∗, δ̄∗) = argmin
x̄,δ̄

1

2

m∑

i=1

w2
j

[
yj − Φ(x̄; tj + δj)

]2
+ d2

j δ
2
j ,

in terms of the 2m-vector r̄(x̄, δ̄)

(x̄∗, δ̄∗) = argmin
x̄,δ̄

1

2

2m∑

i=1

rj(x̄, δ̄)
2 = argmin

x̄,δ̄

1

2
‖r(x̄, δ̄)‖22.
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Orthogonal Distance Regression → Least Squares

If we take a cold hard stare at the expression

(x̄∗, δ̄∗) = argmin
x̄,δ̄

1

2

2m∑

i=1

rj(x̄, δ̄)
2 = argmin

x̄,δ̄

1

2
‖̄r(x̄, δ̄)‖22.

We realize that this is now a standard (nonlinear) least squares
problem with 2m residuals and (n +m) unknowns — {x̄, δ̄}.

We can use any of the techniques we have previously explored for
the solution of the nonlinear least squares problem.

However, a straight-forward implementation of these strategies
may prove to be quite expensive, since the number of parameters
have doubled to 2m and the number of independent variables have
grown from n to (n +m). Recall that usually m ≫ n, so this is a
drastic growth of the problem.
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Orthogonal Distance Regression → Least Squares: Problem Size

m

n (n+m)

2m

Figure: We recast ODR as a much larger standard
nonlinear least squares problem.

Standard LSQ-solution via QR/SVD ∼ O(mn2), for m ≫ n; slows
down by a factor of 2(1 +m/n)2.
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ODR → Least Squares: Exploiting Structure

Fortunately we can save a lot of work by exploiting the structure of the
Jacobian of the Least Squares problem originating from the orthogonal
distance regression — many entries are zero!

∂rj
∂δi

= wj

∂[yj − Φ(x̄; tj + δj)]

∂δi
= 0, ∀i , j ≤ m, i 6= j

∂rj
∂δi

=
∂[dj−mδj−m]

∂δi
=

{
0 i 6= (j −m), j > m
dj−m i = (j −m), j > m

∂rj
∂xi

=
∂[dj−mδj−m]

∂xi
= 0, i = 1, 2, . . . , n, j > m

Let vj = wj

∂[yj − Φ(x̄; tj + δj)]

∂δj
, and let D = diag(d̄), and V = diag(v̄),

then we can write the Jacobian of the residual function in matrix form...

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Orthogonal Distance Regression — (15/22)



Summary
Orthogonal Distance Regression

Error Models
Weighted Least Squares / Orthogonal Distance Regression
ODR = Nonlinear Least Squares, Exploiting Structure

ODR → Least Squares: The Jacobian

We now have

J(x̄, δ̄) =

[
Ĵ V

0 D

]
,

where D and V are m ×m diagonal matrices, D = diag(d̄), and
V = diag(v̄), and Ĵ is the m × n matrix defined by

Ĵ =

[
∂[wj(yj − Φ(x̄; tj + δj))]

∂xi

]
j = 1, 2, . . . ,m
i = 1, 2, . . . , n

We can now use this matrix in e.g. the Levenberg-Marquardt
algorithm...
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ODR → Least Squares: The Jacobian — Structure

m

n (n+m)

2m

Figure: If we exploit the structure of the Jacobian,
the problem is still somewhat tractable.
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ODR → Least Squares → Levenberg-Marquardt 1 of 2

If we partition the step vector p̄, and the residual vector r̄ into

p̄ =

[
p̄x
p̄δ

]
, r̄ =

[
r̃1
r̃2

]

where p̄x ∈ R
n, p̄δ ∈ R

m, and r̃1, r̃2 ∈ R
m, then e.g. we can write

the Levenberg-Marquardt subproblem in partitioned form

[
ĴT Ĵ + λIn ĴTV

V Ĵ V 2 + D2 + λIm

] [
p̄x
p̄δ

]
= −

[
ĴT r̃1

V r̃1 + D r̃2

]

Since the (2, 2)-block V 2 + D2 + λIm is diagonal, we can eliminate
the p̄δ variables from the system...
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ODR → Least Squares → Levenberg-Marquardt 2 of 2

[
ĴT Ĵ + λIn ĴTV

V Ĵ V 2 + D2 + λIm

] [
p̄x
p̄δ

]
= −

[
ĴT r̃1

V r̃1 + D r̃2

]

p̄δ = −

[
V 2 + D2 + λIm

]−1[
(V r̃1 + D r̃2) + V Ĵp̄x

]

This leads to the n × n-system Ap̄x = b̄, where

A =

[
ĴT Ĵ + λIn − ĴTV

[
V 2 + D2 + λIm

]−1

V Ĵ

]

b̄ =

[
− ĴT r̃1 + ĴTV

[
V 2 + D2 + λIm

]−1[
V r̃1 + D r̃2

]]
.

Hence, the total cost of finding the LM-step is only marginally
more expensive than for the standard least squares problem.
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ODR → LSQ (2m × (n +m)) → Levenberg-Marquardt → LSQ (m × n)

The derived system is typically very ill-conditioned since we have formed
a modified version of the normal equations ĴT Ĵ + “stuff”... With some
work we can recast is as an m × n linear least squares problem
p̄x = argminp̄ ‖Ãp̄− b̃‖2, where

Ã =

[
Ĵ + λ[ĴT ]† − V

[
V 2 + D2 + λIm

]−1

V Ĵ

]

b̃ =

[
− r̃1 + V

[
V 2 + D2 + λIm

]−1[
V r̃1 + D r̃2

]]

Where the “mystery factor” [ĴT ]† is the pseudo-inverse of ĴT .

Expressed in terms of the QR-factorization QR = Ĵ, we have

ĴT = RTQT , [ĴT ]† = QR−T ,

Since QR−TRTQT = I = RTQTQR−T .
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Software and References

MINPACK Implements the Levenberg-Marquardt algorithm. Available
for free from http://www.netlib.org/minpack/.

ODRPACK Implements the orthogonal distance regres-
sion algorithm. Available for free from
http://www.netlib.org/odrpack/.

Other The NAG (Numerical Algorithms Group) library and HSL
(formerly the Harwell Subroutine Library), implement
several robust nonlinear least squares implementations.

GvL Golub and van Loan’s Matrix Computations, 4th edition
(chapters 5–6) has a comprehensive discussion on orthogo-
nalization and least squares; explaining in gory detail much
of the linear algebra (e.g. the SVD and QR-factorization)
we swept under the rug.
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