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Last Time

We established that our “favorite problem” for the semester will be
of the form

min
x̄∈Rn

f (x̄),

where

f (x̄) the objective function
x̄ the vector of variables (a.k.a. unknowns, or parameters.)

The problem is unconstrained since all values of x̄ ∈ R
n are

allowed.

Further, we established that our initial approach will focus on
problems where we do not have any extra factors working against
us, i.e. we are considering local optimization, continuous variables,
and deterministic techniques.
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What are we looking for? Global Optimizer

A solution to the unconstrained optimization problem is a point
x̄∗ ∈ R

n such that

f (x̄∗) ≤ f (x̄), ∀x̄ ∈ R
n,

such a point is called a global minimizer.

In order to find a global optimizer we need information about the
objective on a global scale.

— Unless we have special information (such as convexity of f ), this
information is “expensive” since we would have to evaluate f
in (infinitely?) many points.
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What are we looking for? Local Optimizers, 1 of 3

Most algorithms will take a starting point x̄0 and use information
about f , and possibly its derivative(s) in order to compute a point
x̄1 which is “closer to optimal” than x̄0, in the sense that

f (x̄1) ≤ f (x̄0).

Then the algorithm will use information about f + derivative(s) in
x̄1 (and possibly in x̄0 — this increases the storage requirement) to
find x̄2 such that

f (x̄2) ≤ f (x̄1) ≤ f (x̄0).

An algorithm of this type will only be able to find a local
minimizer.
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What are we looking for? Local Optimizers, 2 of 3

Definition (Local Minimizer)

A point x̄∗ ∈ R
n is a local minimizer if there is a neighborhood N

of x̄∗ ∈ R
n such that f (x̄∗) ≤ f (x̄), ∀x̄ ∈ N.

Note: A neighborhood of x̄∗ is an open set which contains x̄∗.

Note: A local minimizer of this type is sometimes referred to as a
weak local minimizer. A strict or strong local minimizer
is defined as —

Definition (Strict Local Minimizer)

A point x̄∗ ∈ R
n is a strict local minimizer if there is a

neighborhood N of x̄∗ ∈ R
n such that f (x̄∗) < f (x̄),

∀x̄ ∈ N − {x̄∗}.
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What are we looking for? Local Optimizers, 3 of 3

Definition (Isolated Local Minimizer)

A point x̄∗ ∈ R
n is an isolated local minimizer if there is a

neighborhood N of x̄∗ ∈ R
n such that x̄∗ is the only local

minimizer in N.
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Figure: The objective f (x) = x2(2 + cos(1/x)) has a strict local minimizer at

x = 0, however there are strict local minimizers at infinitely many neighboring

points. x∗ = 0 is not an isolated minimizer.
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Recognizing A Local Minimum

If we are given a point x̄ ∈ R
n how do we know if it is a (local)

minimizer??? — Do we have to look at all the points in the
neighborhood?

If/when the objective function f (x̄) ∈ R is differentiable we can
recognize a minimum by looking at the first and second derivatives
— the gradient ∇f (x̄) ∈ R

n, and
— the Hessian∗ ∇2f (x̄) ∈ R

n×n.

The key tool is the multi-dimensional version of Taylor’s
Theorem (Taylor† expansions/series).

∗ after Ludwig Otto Hesse (4/22/1811 – 8/4/1874).
† Brook Taylor (8/18/1685 – 12/29/1731).
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Illustration: The Gradient (∇f ) and the Hessian (∇2f )

Example: Let x̄ ∈ R
3, i.e.

x̄ =





x1
x2
x3





then

∇f (x̄) =







∂f (x̄)
∂x1
∂f (x̄)
∂x2
∂f (x̄)
∂x3






,

︸ ︷︷ ︸

Gradient

∇2f (x̄) =








∂2f (x̄)

∂x21

∂2f (x̄)
∂x1∂x2

∂2f (x̄)
∂x1∂x3

∂2f (x̄)
∂x1∂x2

∂2f (x̄)

∂x22

∂2f (x̄)
∂x2∂x3

∂2f (x̄)
∂x1∂x3

∂2f (x̄)
∂x2∂x3

∂2f (x̄)

∂x23







.

︸ ︷︷ ︸

Hessian
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Taylor’s Theorem

Theorem (Taylor’s Theorem)

Suppose that f : Rn → R is continuously differentiable, and that p̄ ∈ R
n.

Then,
f (x̄+ p̄) = f (x̄) +∇f (x̄+ tp̄)T p̄,

for some t ∈ (0, 1). Moreover, if f is twice continuously differentiable —
f ∈ C 2 (Rn) — then

∇f (x̄+ p̄) = ∇f (x̄) +

∫ 1

0

∇2f (x̄+ tp̄)p̄ dt

and

f (x̄+ p̄) = f (x̄) +∇f (x̄)T p̄+
1

2
p̄T∇2f (x̄+ tp̄)p̄

for some t ∈ (0, 1).
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Optimality: First Order Necessary Conditions (Theorem)

Theorem (First-Order Necessary Conditions)

If x̄∗ is a local minimizer and f is continuously differentiable in an
open neighborhood of x̄∗, then ∇f (x̄∗) = 0.
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Optimality: First Order Necessary Conditions (Proof)

Proof (By contradiction).

Suppose ∇f (x̄∗) 6= 0. Let p̄ = −∇f (x̄∗) and realize that
p̄T ∇f (x̄∗) = −‖∇f (x̄∗)‖2 < 0. By continuity of ∇f , there is a
scalar T > 0 such that

p̄T ∇f (x̄∗ + tp̄) < 0, ∀t ∈ [0,T ]

Further, for any s ∈ (0,T ], by Taylor’s theorem:

f (x̄∗ + sp̄) = f (x̄∗) + s p̄T ∇f (x̄∗ + tp̄)
︸ ︷︷ ︸

<0

, for some t ∈ (0, s).

Therefore f (x̄∗ + sp̄) < f (x̄∗), which contradicts the fact that x̄∗ is
a local minimizer. Hence, we must have ∇f (x̄∗) = 0.
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Optimality: Language and Notation

If ∇f (x̄∗) = 0, then we call x̄∗ a stationary point.

Recall from linear algebra —

Definition (Positive Definite Matrix)

An n × n-matrix A is Positive Definite if and only if

∀x̄ 6= 0, x̄TAx̄ =

n∑

i=1

n∑

j=1

aijxixj > 0.

Definition (Positive Semi-Definite Matrix)

An n × n-matrix A is Positive Semi-Definite if and only if

∀x̄ 6= 0, x̄TAx̄ =

n∑

i=1

n∑

j=1

aijxixj ≥ 0.
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Optimality: Second-Order Necessary Conditions

Theorem (Second-Order Necessary Conditions)

If x̄∗ is a local minimizer of f and ∇2f is continuous in an open
neighborhood of x̄∗, then ∇f (x̄∗) = 0 and ∇2f (x̄∗) is positive
semi-definite.

Proof.

∇f (x̄∗) = 0 follows from the previous proof. We show that ∇2f (x̄∗) is positive
semi-definite by contradiction: Assume that ∇2f (x̄∗) is not positive semi-definite.
Then there must exist a vector p̄ such that p̄t∇2f (x̄∗)p̄ < 0. By continuity of ∇2f

there is a T > 0 such that p̄t∇2f (x̄∗ + tp̄)p̄ < 0 ∀t ∈ [0,T ]. Now, the Taylor
expansion around x̄∗, shows that ∀s ∈ (0,T ] there exists t ∈ (0,T ) such that

f (x̄∗ + sp̄) = f (x̄∗) + sp̄T ∇f (x̄∗)
︸ ︷︷ ︸

=0

+
1

2
s2 p̄T∇2f (x̄∗ + tp̄)p̄

︸ ︷︷ ︸

<0

.

Hence f (x̄∗ + sp̄) < f (x̄∗), which is a contradiction.
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Optimality: Necessary vs. Sufficient Conditions

The conditions we have outlined so far are necessary; hence if x̄∗

is a minimum, then the conditions must hold.

It is more useful to have a set of sufficient conditions, so that if
the conditions are satisfied (at x̄∗), then x̄∗ is a minimum.

The second order sufficient conditions guarantee that x̄∗ is a
strict local minimizer of f , and the convexity of f guarantees that
any local minimizer is a global minimizer...
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Optimality: Second-order Sufficient Conditions (Theorem)

Theorem (Second-Order Sufficient Conditions)

Suppose that ∇2f is continuous in an open neighborhood of x̄∗

and that ∇f (x̄∗) = 0 and ∇2f (x̄∗) is positive definite. Then x̄∗ is a
strict local minimizer of f .
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Optimality: Second-order Sufficient Conditions (Proof)

Proof.

Since the Hessian ∇2f (x̄∗) is positive definite, we can find a open
ball of positive radius r , D(r ; x̄∗) = {ȳ ∈ R

n : ‖x̄∗ − ȳ‖ < r}, so
that ∇2f (ȳ) is positive definite ∀ȳ ∈ D. Now, for any vector p̄
such that ‖p̄‖ < r , we have x̄∗ + p̄ ∈ D and therefore (by Taylor)

f (x̄∗ + p̄) = f (x̄∗) + p̄T ∇f (x̄∗)
︸ ︷︷ ︸

=0

+
1

2
p̄T∇2f (x̄∗ + tp̄)p̄
︸ ︷︷ ︸

>0

for some t ∈ (0, 1). Hence it follows that f (x̄∗) < f (x̄∗ + p̄), and
so x̄∗ must be a strict local minimizer.
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Optimality: Convexity 1 of 3

Theorem

When the objective function f is convex, any local minimizer x̄∗ is
also a global minimizer of f . If in addition f is differentiable, then
any stationary point x̄∗ is a global minimizer of f .
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Optimality: Convexity 2 of 3

Proof (part-1).

Suppose that x̄∗ is a local, but not a global minimizer. Then there
must exist a point z̄ ∈ R

n such that f (z̄) < f (x̄∗). Consider the
line-segment that joins x̄∗ and z̄:

ȳ(λ) = λz̄+ (1− λ)x̄∗, λ ∈ [0, 1]

Since f is convex we must have [by definition]

f (ȳ(λ)) ≤ λf (z̄) + (1− λ)f (x̄∗) < f (x̄∗), λ ∈ (0, 1]

Every neighborhood of x̄∗ will contain a piece of the line-segment,
hence x̄∗ cannot be a local minimizer.
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Optimality: Convexity 3 of 3

Proof (part-2).

Suppose that x̄∗ is a local but not a global minimizer, and let z̄ be
such that f (z̄) < f (x̄∗). Using convexity, and the definition of a
directional derivative (NW2nd p-628), we have

∇f (x̄∗)T (z̄− x̄∗) =
d

dλ
f (x̄∗ + λ(z̄− x̄∗))

∣
∣
∣
∣
λ=0

= lim
λց0

f (x̄∗ + λ(z̄− x̄∗))− f (x̄∗)

λ

≤ lim
λց0

λf (z̄) + (1− λ)f (x̄∗)− f (x̄∗)

λ

= f (z̄)− f (x̄∗) < 0.

Therefore, ∇f (x̄∗) 6= 0, so x̄∗ cannot be a stationary point. This
contradicts the supposition that f is a local minimum.
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Optimality: Theorems and Algorithms

The theorems we have shown — all of which are based on
elementary (vector) calculus — are the backbone of unconstrained
optimization algorithms.

Since we usually do not have a global understanding of f , the
algorithms will seek stationary points, i.e. solve the problem

∇f(x̄) = 0.

When x̄ ∈ R
n, this is a system of n (generally) non-linear

equations.

Hence, there is a strong connection between the solution of
non-linear equations and unconstrained optimization.

— We will focus on developing an optimization framework, and
in the last few weeks of the semester we will use it to solve
non-linear equations.
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Algorithms — An Overview

The algorithms we study start with an initial (sub-optimal) guess
x̄0, and generate a sequence of iterates {x̄k}k=1,...,N .

The sequence is terminated when either
[success] We have approximated a solution up to desired accuracy.

[failure] No more progress can be made.

Different algorithms make different decisions in how to move from
x̄k to the next iterate x̄k+1.

Many algorithms are monotone, i.e. f (x̄k+1) < f (x̄k), ∀k ≥ 0, but
there exist non-monotone algorithms. Even a non-monotone
algorithm is required to eventually decrease — how else can we
reach a minimum? Typically f (x̄k+m) < f (x̄k) is required for some
fixed value m > 0 and ∀k ≥ 0.
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Moving from x̄k to x̄k+1 Line Search

Most optimization algorithms use one of two fundamental
strategies for finding the next iterate: —

1. Line search based algorithms reduce the n-dimensional
optimization problem

min
x̄∈Rn

f (x̄),

with a one-dimensional problem:

min
α>0

f (x̄k + αp̄k),

where p̄k is a chosen search direction. Clearly, how cleverly we
select p̄k will affect how much progress we can make in each
iteration.

— The intuitive choice gives a slow scheme!
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Moving from x̄k to x̄k+1 Trust Region, 1 of 2

2. Trust region based methods take a completely different
approach. — Using information gathered about the objective f ,
i.e. function values, gradients, Hessians, etc. during the iteration, a
simpler model function is generated.

A good model function mk(x̄) approximates the behavior of f (x̄) in
a neighborhood of x̄k , e.g. Taylor expansion

mk(x̄k + p̄) = f (x̄k) + p̄T∇f (x̄k) +
1

2
p̄THk p̄,

where Hk is the full Hessian ∇2f (x̄k) (expensive) or a clever
approximation thereof.
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Moving from x̄k to x̄k+1 Trust Region, 2 of 2

The model is chosen simple enough that the optimization problem

min
p∈N(x̄k )

mk(x̄k + p̄),

can be solved quickly. The neighborhood N(x̄k) of x̄k specifies the
region in which we trust the model.

A simple model can only capture the local behavior of f — think
about how the Taylor expansion approximates a function well close
to the expansion point, but not very well further away.

Usually the trust region is a ball in R
n, i.e.

N(x̄k) = {p̄ : ‖p̄− x̄k‖ ≤ r},

but elliptical or box-shaped trust regions are sometimes used.
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Line Search vs. Trust Region

Step Line Search Trust Region

1
Choose a search direction
p̄k .

Establish the maximum
distance — the size of the
trust region.

2
Identify the distance, e.g.
the step length in the
search direction.

Find the direction in the
trust region.

Table: Line search and trust region methods handle the selection of
direction and distance in opposite order.

Next time:

— Rate of Convergence.
— Line search methods, detailed discussion.
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