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Elliptic, Hyperbolic, and Parabolic

Three Main Types of PDEs 1 of 3

A second order PDE in two independent variables (x , y) takes the
form

auxx + 2buxy + cuyy + dux + euy + fu = g

The coefficients a, b, c , d , e, f , and g are here (for now) assumed
to be functions of (x , y) only, so the equation is linear.

Through a change of variables

ξ = ξ(x , y), η = η(x , y)

it is possible to transform the PDE above to one of the three
canonical forms (here the “. . . ” terms hide (potentially)
complicated expressions including u and its first derivatives): —

uξξ − uηη + · · · = 0,

uξξ + · · · = 0,

uξξ + uηη + · · · = 0.
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Three Main Types of PDEs 2 of 3

It can be shown that the coefficients for the second order term (a,
b and c) in the PDE

auxx + 2buxy + cuyy + dux + euy + fu = g

determine what canonical form the equation can be reduced to

Canonical Form Condition Type
uξξ − uηη + · · · = 0, b2 − ac > 0 Hyperbolic

uξξ + · · · = 0, b2 − ac = 0 Elliptic
uξξ + uηη + · · · = 0, b2 − ac < 0 Parabolic

Examples:
The Wave Equation is hyperbolic, the Heat Equation is parabolic,
and Laplace’s equation is elliptic.
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Rough characterizations:

Hyperbolic equations have “wave-like” propagating
solutions; where information propagates in space with finite
speeds.

Parabolic equations have “diffusion-like” solutions; where
information gets “smoothed out” over time – the propagation
speed may be infinite.

Elliptic equations have no sense of “time evolution” and
tend to show up in electrostatics, continuum mechanics, and
as sub-problems in computational fluid dynamics.

Many physical problems have multiple behaviors: imagine an
oil-spill spreading out (diffusing) as it is being propagated by
ocean currents.
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Hyperbolic PDEs

We begin with an overview of Hyperbolic PDEs; from the simplest
model equation, to hyperbolic systems, and equations with variable
coefficients.

We introduce the central concepts

convergence,

consistency, and

stability

for finite difference schemes.

These three concepts are related by the Lax-Richtmyer Theorem.
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Full Wave Equation  One-way Wave Equation

The full wave equation yields solutions propagating both ways; by
formally “factoring” the differential operator

(
∂2
t − a2∂2

x

)
u = (∂t − a∂x) (∂t + a∂x) u ≡ (∂t + a∂x) (∂t − a∂x) u = 0,

it is clear that solutions to either

(∂t − a∂x) u = 0, or (∂t + a∂x) u = 0,

are solutions to the original equation.

These are known as advection equations describing a physical
transport mechanism (with propagation speed a
LengthUnits/TimeUnits).
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Advection: Prototype Hyperbolic PDE

The simplest prototype for Hyperbolic PDEs is the one-way wave
equation

ut(t, x) + aux(t, x) = 0,

where a is a constant, t ∈ R+ represents time, and x ∈ R the
spatial location. The initial state, u(0, x), must be specified.
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The One-Way Wave Equation 1 of 2

Once the initial value u(0, x) = u0(x) is specified, the unique solution
to the one-way wave equation for t > 0 is given by

u(t, x) = u0(x − at).

The solution at time t is just a shift of the initial value, u0(x). When
a > 0 it is a shift to the right and when a < 0 it is a shift to the left.

The solution depends only on the value of ξ = x − at. These lines in the
(t, x)-plane are called characteristics, and

units(a) = units(x)/units(t) = length/time,

hence a is the propagation speed.

This is typical for Hyperbolic Equations: The solution propagates with
finite speed along characteristics.
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The One-Way Wave Equation 2 of 2

We note that the exact solution

u(t, x) = u0(x − at),

requires no differentiability of u (or u0), whereas
the equation

ut + aux = 0,

appears to only make sense if u is differentiable.

This picture shows a volume with
low pressure near the rear of the
aircraft at high subsonic airspeeds
(transonic speed regime). [U.S.
Navy photo By PHAN(AW)
Jonathan D. Chandler]

Hyperbolic equations feature solutions that are discontinuous (worse than
non-differentiable); e.g. the sonic boom produced by an aircraft
exceeding the speed of sound (Mach-1, or ≈ 750 miles per hour at sea
level) is an example of this phenomena. The discontinuity creates a
shock wave.

Devising numerical schemes which allow for discontinuous solutions
requires “a bit” of ingenuity.
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A More General Hyperbolic Equation 1 of 2

ut + aux + bu = f (t, x), t > 0

u(0, x) = u0(x)

Where a and b are constants. We can introduce the following
change of variables (and its inverse):

{
τ = t
ξ = x − at,

{
t = τ
x = ξ + aτ

With ũ(τ, ξ) = u(t, x), we can transform the PDE to an ODE
along the characteristics:

ũτ = −bũ + f (τ, ξ + aτ).
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A More General Hyperbolic Equation 2 of 2

The exact solution is given by

ũ(τ, ξ) = u0(ξ)e
−bτ +

∫ τ

0

f (σ, ξ + aσ)e−b(τ−σ) dσ,

which expressed in the original variables is

u(t, x) = u0(x − at)e−bt +

∫ t

0

f (s, x − a(t − s))e−b(t−s) ds.

With some work this method can be extended to nonlinear equations of
the form

ut + ux = f (t, x , u), Note: f depends on u

From a numerical point of view, the key thing to note is that the solution
evolves with finite speed along the characteristics.
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Systems of Hyperbolic Equations

Now consider systems of hyperbolic equations with constant
coefficients in one space dimension; ū is now a d-dimensional
vector (containing various quantities, e.g. density (ρ), pressure (p),
velocity (v), energy (E ), and momentum (ρv) of a fluid or gas).

Definition (Hyperbolic System)

A system of the form

ūt + Aūx + Bū = F (t, x)

is hyperbolic if the matrix A is diagonalizable with real eigenvalues.
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Systems of Hyperbolic Equations: Diagonalizablity

The matrix A is diagonalizable, if there exists a non-singular matrix P
such that

PAP−1 = diag(λ1, . . . , λd ) = Λ,

is a diagonal matrix. The eigenvalues λ1, . . . , λd are the characteristic
speeds of the system.

In the easiest case, B = 0, we get

w̄t + Λw̄x = PF (t, x) = F̃ (t, x)

under the change of variables w̄ = Pū. This is a reduction to d
independent scalar hyperbolic equations.

When B 6= 0, the resulting system is coupled, but only in undifferentiated
terms. The lower order term Bū causes growth, decay, or oscillations in
the solution but does not alter the primary feature of solutions
propagating along characteristics.
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(Silly) Example: Hyperbolic System 1 of 2

[
u
v

]

t

+

[
2 1
1 2

] [
u
v

]

x

= 0

with u(0, x) = 1 if |x | ≤ 1, and 0 otherwise; and v(0, x) = 0.

The eigenvalues are λ = {3, 1}, and without too much difficulty

(P =

[
1 1
1 −1

]
) we can find the solution

u(t, x) =
1

2

[
u0(x − 3t) + u0(x − t)

]
,

v(t, x) =
1

2

[
u0(x − 3t)− u0(x − t)

]
.
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(Silly) Example: Hyperbolic System 2 of 2
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Figure: The solution at times t = 0, 1/2, 1, 3/2, 2, 5/2. (∃Movie)
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Hyperbolic Equations with Variable Coefficients

What happens when the propagation speed is variable, e.g.

ut + a(t, x)ux = 0 ?

In this example the solution is constant along characteristics, but
the characteristics are not straight lines. Here, we get an ODE for
the x-coordinate

dx

dτ
= a(τ, x), x(0) = ξ.

If, e.g. a(τ, x) = x , then x(τ) = ξeτ (so that ξ = xe−t), and we
get

u(t, x) = ũ(τ, ξ) = u0(ξ) = u0(xe
−t).
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Hyperbolic Systems with Variable Coefficients

We can extend the definition of hyperbolicity to systems:

Definition (Hyperbolic System)

A system of the form

ūt + A(t, x)ūx + B(t, x)ū = F (t, x)

is hyperbolic if there exists a matrix function P(t, x) such that

P(t, x)A(t, x)P−1(t, x) = diag(λ1(t, x), . . . , λd(t, x)) = Λ(t, x)

is diagonal with real eigenvalues and the matrix norms of P(t, x)
and P−1(t, x) are bounded in x and t for x ∈ R, t ≥ 0.
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Boundary Conditions

We now consider solving a hyperbolic equations on finite intervals,
e.g. 0 ≤ x ≤ 1.

First, consider the simple equation

ut + aux = 0, 0 ≤ x ≤ 1, t ≥ 0,

If a is positive then the information propagates to the right and if
a is negative it propagates to the left.

0 1 0 1
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Boundary Conditions

When a > 0, in addition to the initial value u(0, x) 0 ≤ x ≤ 1, we
must also specify the boundary value u(t, 0) for all t > 0, and
when a < 0 we must specify u(t, 1) for t > 0.

0 1 0 1

The problem of determining a solution when both initial and
boundary data are present is known as an Initial-Boundary Value
Problem (IBVP).
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IBVP for Systems 1 of 3

Consider the hyperbolic system (assume a > 0, b > 0)

[
u
v

]

t

+

[
a b
b a

] [
u
v

]

x

= 0

on the interval 0 ≤ x ≤ 1. The characteristic speeds are (a+ b)
and (a− b), so that with w = u + v , and z = u − v

[
w
z

]

t

+

[
a+ b

a− b

] [
w
z

]

x

= 0

If b < a, then both characteristic speeds are positive, but when
b > a, we get one positive and one negative speed.
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IBVP for Systems 2 of 3

0 1

a+b

a−b

0 1

a−b

a+b

Figure: Illustration of Hyperbolic propagation; in the left panel b < a, so
both characteristics propagate to the right. In the right panel b > a, so
the characteristics propagate in opposite directions.
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IBVP for Systems 3 of 3

0 1

a+b

a−b

0 1

a−b

a+b

Figure: In order for the IBVPs to be well-posed we must (left) specify
the initial condition and two boundary conditions at x = 0; and (right)
the initial condition, a boundary condition at x = 0, and a boundary
condition at x = 1. Note that the specified boundary conditions must be
linearly independent from the outgoing (leaving the domain)
characteristic.
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Introduction to Finite Difference Schemes 1 of 4

Let
G (k , h) = {(tn, xm) = (n · k ,m · h) : n,m ∈ Z}

be a grid on R2:

k

t

x

h

We are interested in small values of h, and k (sometimes denoted
by ∆x , and ∆t; or δx , and δt.)
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Introduction to Finite Difference Schemes 2 of 4

The basic idea is to replace derivatives by finite difference approximations,
e.g. the time derivative at the point (tn, xm) can be represented as

∂u

∂t
(tn, xm) ≈





u(tn + k , xm)− u(tn, xm)

k

u(tn + k , xm)− u(tn − k , xm)

2k

These are valid approximation since, for differentiable functions u

∂u

∂t
(tn, xm) =





lim
ǫ→0

u(tn + ǫ, xm)− u(tn, xm)

ǫ

lim
ǫ→0

u(tn + ǫ, xm)− u(tn − ǫ, xm)

2ǫ

We frequently use the notation vn
m = u(tn, xm).
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Introduction to Finite Difference Schemes 3 of 4

Applying these ideas to ut + aux = 0 we can write down a number of
finite difference approximations at (tn, xm), e.g.

vn+1
m − vn

m

k
+ a

vn
m+1 − vn

m

h
= 0 Forward-Time-Forward-Space

vn+1
m − vn

m

k
+ a

vn
m − vn

m−1

h
= 0 Forward-Time-Backward-Space

vn+1
m − vn

m

k
+ a

vn
m+1 − vn

m−1

2h
= 0 Forward-Time-Central-Space

vn+1
m − vn−1

m

2k
+ a

vn
m+1 − vn

m−1

2h
= 0 Central-Time-Central-Space, leapfrog

It is quite easy to derive these schemes (see e.g. polynomial
approximation in Math 541) and/or to see that they may be viable
approximations.
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Introduction to Finite Difference Schemes 4 of 4

The main difficulty of finite difference schemes is the analysis
required to determine if they are useful approximations. Indeed,
some of the schemes on the previous slide are useless.

The schemes presented so far can all be written expressing vn+1
m as

linear combinations of vνµ at previous time-levels ν ∈ {n − 1, n}.
The Forward-Time-Forward-Space scheme can be written as

vn+1
m = (1 + aλ)vnm − aλvnm+1

where λ = k/h is the ratio of the time- and space- discretization.
This scheme is a one-step scheme since it only involves
information from one previous time-level.

The leapfrog scheme is a two-step (multi-step) scheme.
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Example: Leapfrog Solutions (At time T=2)
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T = 2
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Figure: Solutions for the leapfrog scheme with λ = {0.8, 0.95, 1.02} for the equation
ut + ux = 0 with initial condition

u0(x) =

{
1− |x | if |x | ≤ 1
0 otherwise

and boundary condition
u(t,−2) = 0.

Clearly something “strange” happens when we let λ > 1. We introduce the discussion
on convergence, consistency, and stability next time. (∃Movie)
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Leapfrog Simulation — Final Error
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Figure: We notice that the errors shrink with the size of dx
when λ < 1, but grow when λ > 1.
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