Numerical Solutions to PDEs

Lecture Notes #2 — Finite Difference Schemes

Peter Blomgren, \(\text{blomgren.peter@gmail.com} \)

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2018

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

Lecture Notes #2 — Finite Difference Schemes — (1/29)

PDEs Hyperbolic PDEs

Elliptic, Hyperbolic, and Parabolic

Three Main Types of PDEs

1 of 3

A second order PDE in two independent variables (x, y) takes the form

$$au_{xx} + 2bu_{xy} + cu_{yy} + du_x + eu_y + fu = g$$

The coefficients a, b, c, d, e, f, and g are here (for now) assumed to be functions of (x, y) only, so the equation is **linear**.

Through a change of variables

$$\xi = \xi(x, y), \quad \eta = \eta(x, y)$$

it is possible to transform the PDE above to one of the three **canonical forms** (here the "..." terms hide (potentially) complicated expressions including u and its first derivatives): —

$$u_{\xi\xi} - u_{\eta\eta} + \dots = 0,$$

$$u_{\xi\xi} + \dots = 0,$$

$$u_{\xi\xi} + u_{\eta\eta} + \dots = 0.$$

Outline

- PDEs
 - Elliptic, Hyperbolic, and Parabolic
- 2 Hyperbolic PDEs
 - Introduction
 - Finite Difference Schemes

2 of 3

Lecture Notes #2 — Finite Difference Schemes — (2/29)

PDEs Hyperbolic PDEs

Elliptic, Hyperbolic, and Parabolic

Three Main Types of PDEs

It can be shown that the coefficients for the second order term (a, b and c) in the PDE

$$au_{xx} + 2bu_{xy} + cu_{yy} + du_x + eu_y + fu = g$$

determine what canonical form the equation can be reduced to

Canonical Form	Condition	Type
$u_{\xi\xi}-u_{\eta\eta}+\cdots=0,$	$b^2 - ac > 0$	Hyperbolic
$u_{\xi\xi}+\cdots=0,$	$b^2 - ac = 0$	Elliptic
$u_{\xi\xi}+u_{\eta\eta}+\cdots=0,$	$b^2 - ac < 0$	Parabolic

Examples:

The Wave Equation is hyperbolic, the Heat Equation is parabolic, and Laplace's equation is elliptic.

Three Main Types of PDEs

3 of 3

Rough characterizations:

- Hyperbolic equations have "wave-like" propagating solutions; where information propagates in space with finite speeds.
- Parabolic equations have "diffusion-like" solutions; where information gets "smoothed out" over time the propagation speed may be infinite.
- Elliptic equations have no sense of "time evolution" and tend to show up in electrostatics, continuum mechanics, and as sub-problems in computational fluid dynamics.
- Many physical problems have multiple behaviors: imagine an oil-spill spreading out (diffusing) as it is being propagated by ocean currents.

Lecture Notes #2 — Finite Difference Schemes — (5/29)

PDEs Hyperbolic PDEs Introduction
Finite Difference Scho

Full Wave Equation → One-way Wave Equation

The full wave equation yields solutions propagating both ways; by formally "factoring" the differential operator

$$\left(\partial_t^2 - a^2 \partial_x^2\right) u = \left(\partial_t - a \partial_x\right) \left(\partial_t + a \partial_x\right) u \equiv \left(\partial_t + a \partial_x\right) \left(\partial_t - a \partial_x\right) u = 0,$$

it is clear that solutions to either

$$(\partial_t - a\partial_x) u = 0$$
, or $(\partial_t + a\partial_x) u = 0$,

are solutions to the original equation.

These are known as **advection equations** describing a physical transport mechanism (with propagation speed *a* Length Units/Time Units).

Hyperbolic PDEs

We begin with an overview of Hyperbolic PDEs; from the simplest model equation, to hyperbolic systems, and equations with variable coefficients.

We introduce the central concepts

- convergence,
- consistency, and
- stability

for finite difference schemes.

These three concepts are related by the Lax-Richtmyer Theorem.

Peter Blomgren, \(\text{blomgren.peter@gmail.com} \)

Lecture Notes #2 — Finite Difference Schemes — (6/29)

PDEs Hyperbolic PDEs Introduction
Finite Difference Schen

Advection: Prototype Hyperbolic PDE

The simplest prototype for Hyperbolic PDEs is the **one-way wave equation**

$$u_t(t,x) + au_x(t,x) = 0,$$

where a is a constant, $t \in \mathbb{R}^+$ represents time, and $x \in \mathbb{R}$ the spatial location. The initial state, u(0,x), must be specified.

The One-Way Wave Equation

1 of 2

Once the **initial value** $u(0,x)=u_0(x)$ is specified, the **unique solution** to the one-way wave equation for t>0 is given by

$$u(t,x)=u_0(x-at).$$

The solution at time t is just a shift of the initial value, $u_0(x)$. When a > 0 it is a shift to the right and when a < 0 it is a shift to the left.

The solution depends only on the value of $\xi = x - at$. These lines in the (t, x)-plane are called **characteristics**, and

$$units(a) = units(x)/units(t) = length/time,$$

hence a is the **propagation speed**.

This is typical for Hyperbolic Equations: The solution propagates with finite speed along characteristics.

Peter Blomgren, \(\text{blomgren.peter@gmail.com} \)

Lecture Notes #2 — Finite Difference Schemes — (9/29)

PDEs Hyperbolic PDEs Introduction
Finite Difference Scheme

A More General Hyperbolic Equation

1 of 2

$$u_t + au_x + bu = f(t,x), \quad t > 0$$

 $u(0,x) = u_0(x)$

Where a and b are constants. We can introduce the following change of variables (and its inverse):

$$\left\{ \begin{array}{lll} \tau & = & t \\ \xi & = & x - \mathsf{a}t, \end{array} \right. \quad \left\{ \begin{array}{lll} t & = & \tau \\ x & = & \xi + \mathsf{a}\tau \end{array} \right.$$

With $\tilde{u}(\tau,\xi) = u(t,x)$, we can transform the PDE to an ODE along the characteristics:

$$\tilde{u}_{ au} = -b\tilde{u} + f(au, \xi + a au).$$

The One-Way Wave Equation

We note that the exact solution

$$u(t,x)=u_0(x-at),$$

requires no differentiability of u (or u_0), whereas the equation

$$u_t + au_x = 0$$
,

appears to only make sense if u is differentiable.

This picture shows a volume with low pressure near the rear of the aircraft at high subsonic airspeeds (transonic speed regime). [U.S. Navy photo By PHAN(AW) Jonathan D. Chandler]

Hyperbolic equations feature solutions that are discontinuous (worse than non-differentiable); e.g. the **sonic boom** produced by an aircraft exceeding the speed of sound (Mach-1, or ≈ 750 miles per hour at sea level) is an example of this phenomena. The discontinuity creates a **shock wave**.

Devising numerical schemes which allow for discontinuous solutions requires "a bit" of ingenuity.

2 of 2

2 of 2

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

Lecture Notes #2 — Finite Difference Schemes — (10/29)

PDEs Hyperbolic PDEs

Introduction
Finite Difference Schemes

The exact solution is given by

A More General Hyperbolic Equation

$$\tilde{u}(\tau,\xi) = u_0(\xi)e^{-b\tau} + \int_0^{\tau} f(\sigma,\xi+a\sigma)e^{-b(\tau-\sigma)} d\sigma,$$

which expressed in the original variables is

$$u(t,x) = u_0(x-at)e^{-bt} + \int_0^t f(s,x-a(t-s))e^{-b(t-s)} ds.$$

With some work this method can be extended to nonlinear equations of the form

$$u_t + u_x = f(t, x, u)$$
, **Note:** f depends on u

From a numerical point of view, the key thing to note is that the solution evolves with **finite speed along the characteristics**.

Systems of Hyperbolic Equations

Now consider systems of hyperbolic equations with constant coefficients in one space dimension; $\bar{\mathbf{u}}$ is now a d-dimensional vector (containing various quantities, e.g. density (ρ) , pressure (p), velocity (v), energy (E), and momentum (ρv) of a fluid or gas).

Definition (Hyperbolic System)

A system of the form

$$\bar{\mathbf{u}}_t + A\bar{\mathbf{u}}_x + B\bar{\mathbf{u}} = F(t,x)$$

is hyperbolic if the matrix A is diagonalizable with real eigenvalues.

1 of 2

Peter Blomgren, (blomgren.peter@gmail.com)

Lecture Notes #2 — Finite Difference Schemes — (13/29)

PDEs Hyperbolic PDEs Introduction

Finite Difference Schemes

(Silly) Example: Hyperbolic System

$$\begin{bmatrix} u \\ v \end{bmatrix}_1 + \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}_1 = 0$$

with u(0,x)=1 if $|x| \le 1$, and 0 otherwise; and v(0,x)=0.

The eigenvalues are $\lambda=\{3,1\}$, and without too much difficulty $(P=\begin{bmatrix}1&1\\1&-1\end{bmatrix})$ we can find the solution

$$u(t,x) = \frac{1}{2} \left[u_0(x-3t) + u_0(x-t) \right],$$

$$v(t,x) = \frac{1}{2} \left[u_0(x-3t) - u_0(x-t) \right].$$

Systems of Hyperbolic Equations: Diagonalizablity

The matrix A is **diagonalizable**, if there exists a non-singular matrix P such that

$$PAP^{-1} = \operatorname{diag}(\lambda_1, \dots, \lambda_d) = \Lambda,$$

is a diagonal matrix. The eigenvalues $\lambda_1, \ldots, \lambda_d$ are the **characteristic speeds** of the system.

In the easiest case, B = 0, we get

$$\mathbf{\bar{w}}_t + \Lambda \mathbf{\bar{w}}_x = PF(t, x) = \tilde{F}(t, x)$$

under the change of variables $\bar{\mathbf{w}} = P\bar{\mathbf{u}}$. This is a reduction to d independent scalar hyperbolic equations.

When $B \neq 0$, the resulting system is coupled, but only in undifferentiated terms. The lower order term $B\bar{\mathbf{u}}$ causes growth, decay, or oscillations in the solution but **does not** alter the primary feature of solutions propagating along characteristics.

SAN DIEGO STA UNIVERSITY

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

Lecture Notes #2 — Finite Difference Schemes — (14/29)

PDEs Hyperbolic PDEs

Introduction
Finite Difference Schemes

(Silly) Example: Hyperbolic System

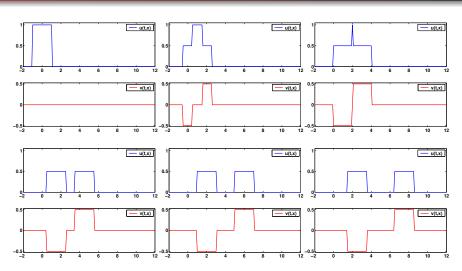


Figure: The solution at times t = 0, 1/2, 1, 3/2, 2, 5/2. ($\exists MOVIE$)

Hyperbolic Equations with Variable Coefficients

What happens when the propagation speed is variable, e.g.

$$u_t + a(t,x)u_x = 0$$
?

In this example the solution is constant along characteristics, but the characteristics are not straight lines. Here, we get an ODE for the x-coordinate

$$\frac{dx}{d\tau}=a(\tau,x), \quad x(0)=\xi.$$

If, e.g. $a(\tau, x) = x$, then $x(\tau) = \xi e^{\tau}$ (so that $\xi = xe^{-t}$), and we get

$$u(t,x) = \tilde{u}(\tau,\xi) = u_0(\xi) = u_0(xe^{-t}).$$

Peter Blomgren, (blomgren.peter@gmail.com)

Lecture Notes #2 — Finite Difference Schemes — (17/29)

Hyperbolic PDEs

Introduction

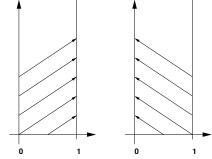
Boundary Conditions

We now consider solving a hyperbolic equations on finite intervals, *e.g.* $0 \le x \le 1$.

First, consider the simple equation

$$u_t + au_x = 0$$
, $0 < x < 1$, $t > 0$,

If a is positive then the information propagates to the right and if a is negative it propagates to the left.



Hyperbolic Systems with Variable Coefficients

We can extend the definition of hyperbolicity to systems:

Definition (Hyperbolic System)

A system of the form

$$\bar{\mathbf{u}}_t + A(t,x)\bar{\mathbf{u}}_x + B(t,x)\bar{\mathbf{u}} = F(t,x)$$

is hyperbolic if there exists a matrix function P(t,x) such that

$$P(t,x)A(t,x)P^{-1}(t,x) = \operatorname{diag}(\lambda_1(t,x),\ldots,\lambda_d(t,x)) = \Lambda(t,x)$$

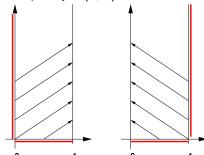
is diagonal with real eigenvalues and the matrix norms of P(t,x)and $P^{-1}(t,x)$ are bounded in x and t for $x \in \mathbb{R}$, t > 0.

Peter Blomgren, \(\text{blomgren.peter@gmail.com} \)

Lecture Notes #2 — Finite Difference Schemes — (18/29)

Boundary Conditions

When a > 0, in addition to the initial value u(0, x) 0 < x < 1, we must also specify the boundary value u(t,0) for all t>0, and when a < 0 we must specify u(t, 1) for t > 0.



The problem of determining a solution when both initial and boundary data are present is known as an Initial-Boundary Value Problem (IBVP).

IBVP for Systems

1 of 3

Consider the hyperbolic system (assume a > 0, b > 0)

$$\left[\begin{array}{c} u \\ v \end{array}\right]_t + \left[\begin{array}{cc} a & b \\ b & a \end{array}\right] \left[\begin{array}{c} u \\ v \end{array}\right]_x = 0$$

on the interval $0 \le x \le 1$. The characteristic speeds are (a + b)and (a - b), so that with w = u + v, and z = u - v

$$\begin{bmatrix} w \\ z \end{bmatrix}_t + \begin{bmatrix} a+b \\ a-b \end{bmatrix} \begin{bmatrix} w \\ z \end{bmatrix}_x = 0$$

If b < a, then both characteristic speeds are positive, but when b > a, we get one positive and one negative speed.

Peter Blomgren, (blomgren.peter@gmail.com)

Lecture Notes #2 — Finite Difference Schemes — (21/29)

Hyperbolic PDEs

Introduction

IBVP for Systems

3 of 3

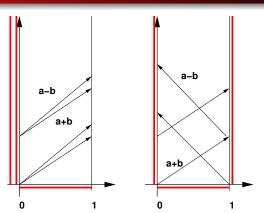


Figure: In order for the IBVPs to be **well-posed** we must (LEFT) specify the initial condition and two boundary conditions at x = 0; and (RIGHT) the initial condition, a boundary condition at x = 0, and a boundary condition at x = 1. Note that the specified boundary conditions must be linearly independent from the outgoing (leaving the domain) characteristic.

IBVP for Systems

2 of 3

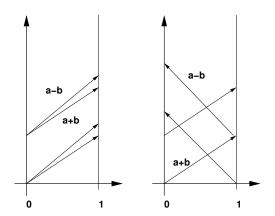


Figure: Illustration of Hyperbolic propagation; in the left panel b < a, so both characteristics propagate to the right. In the right panel b > a, so the characteristics propagate in opposite directions.

Peter Blomgren, \(\text{blomgren.peter@gmail.com} \)

Lecture Notes #2 — Finite Difference Schemes — (22/29)

Hyperbolic PDEs

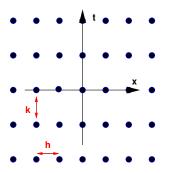
Introduction to Finite Difference Schemes

1 of 4

Let

$$G(k,h) = \{(t_n, x_m) = (n \cdot k, m \cdot h) : n, m \in \mathbb{Z}\}\$$

be a grid on \mathbb{R}^2 :



We are interested in small values of h, and k (sometimes denoted by Δx , and Δt ; or δx , and δt .)

Introduction to Finite Difference Schemes

2 of 4

The basic idea is to replace derivatives by finite difference approximations, e.g. the time derivative at the point (t_n, x_m) can be represented as

$$\frac{\partial u}{\partial t}(t_n, x_m) \approx \begin{cases} \frac{u(t_n + k, x_m) - u(t_n, x_m)}{k} \\ \frac{u(t_n + k, x_m) - u(t_n - k, x_m)}{2k} \end{cases}$$

These are valid approximation since, for differentiable functions u

$$\frac{\partial u}{\partial t}(t_n, x_m) = \begin{cases} \lim_{\epsilon \to 0} \frac{u(t_n + \epsilon, x_m) - u(t_n, x_m)}{\epsilon} \\ \lim_{\epsilon \to 0} \frac{u(t_n + \epsilon, x_m) - u(t_n - \epsilon, x_m)}{2\epsilon} \end{cases}$$

We frequently use the notation $v_m^n = u(t_n, x_m)$.

Peter Blomgren, (blomgren.peter@gmail.com)

Lecture Notes #2 — Finite Difference Schemes — (25/29)

PDEs Hyperbolic PDEs

Finite Difference Schemes

Introduction to Finite Difference Schemes

4 of 4

The main difficulty of finite difference schemes is the analysis required to determine if they are **useful approximations**. Indeed, some of the schemes on the previous slide are useless.

The schemes presented so far can all be written expressing v_m^{n+1} as linear combinations of v_μ^ν at previous time-levels $\nu \in \{n-1, n\}$. The Forward-Time-Forward-Space scheme can be written as

$$v_m^{n+1} = (1 + a\lambda)v_m^n - a\lambda v_{m+1}^n$$

where $\lambda = k/h$ is the ratio of the time- and space- discretization. This scheme is a **one-step scheme** since it only involves information from one previous time-level.

The leapfrog scheme is a two-step (multi-step) scheme.

Introduction to Finite Difference Schemes

3 of 4

Applying these ideas to $u_t + au_x = 0$ we can write down a number of finite difference approximations at (t_n, x_m) , e.g.

$$\frac{v_m^{n+1} - v_m^n}{k} + a \frac{v_{m+1}^n - v_m^n}{h} = 0$$

Forward-Time-Forward-Space

$$\frac{v_m^{n+1} - v_m^n}{k} + a \frac{v_m^n - v_{m-1}^n}{h} = 0$$

Forward-Time-Backward-Space

$$\frac{v_m^{n+1} - v_m^n}{k} + a \frac{v_{m+1}^n - v_{m-1}^n}{2h} = 0$$

 ${\sf Forward\text{-}Time\text{-}Central\text{-}Space}$

$$\frac{v_m^{n+1} - v_m^{n-1}}{2k} + a \frac{v_{m+1}^n - v_{m-1}^n}{2h} = 0$$

Central-Time-Central-Space, leapfrog

It is quite easy to derive these schemes (see e.g. polynomial approximation in Math 541) and/or to see that they may be viable approximations.

Peter Blomgren, (blomgren.peter@gmail.com)

Lecture Notes #2 — Finite Difference Schemes — (26/29)

PDEs Hyperbolic PDEs

Introduction
Finite Difference Schemes

Example: Leapfrog Solutions

(At time T=2)

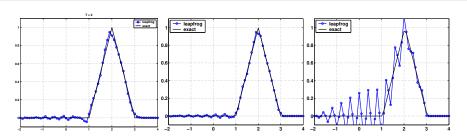


Figure: Solutions for the leapfrog scheme with $\lambda = \{0.8, 0.95, 1.02\}$ for the equation $u_t + u_x = 0$ with initial condition

$$u_0(x) = \begin{cases} 1 - |x| & \text{if } |x| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

and boundary condition

$$u(t, -2) = 0.$$

Clearly something "strange" happens when we let $\lambda > 1$. We introduce the discussion on convergence, consistency, and stability next time. ($\exists \text{Movie}$)

PDEs Hyperbolic PDEs

Introduction
Finite Difference Schemes

Leapfrog Simulation — Final Error

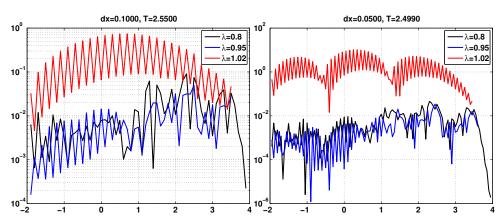


Figure: We notice that the errors shrink with the size of dx when $\lambda < 1$, but grow when $\lambda > 1$.

Peter Blomgren, (blomgren.peter@gmail.com)

Lecture Notes #2 — Finite Difference Schemes — (29/29)

