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Recap
Convergence, Consistency, Stability, and Well-Posedness
CFL-condition; Lax-Richtmyer Equivalence Theorem

Previously... 1 of 2

Convergence: The desired result; as we refine the grid, the
numerical solution of the Finite Difference Scheme
(FDS) should better and better represent the
exact (continuous) solution of the PDE.

Consistency: Easily checked by Taylor expansion — the expan-
sion of the FDS should give the PDE + terms that
go to zero as (h, k) → 0.

Stability: An ℓ2-energy bound on the solution of the FDS in terms
of the initial condition (+ further levels of initialization
for multi-step schemes). Hard to check using the
definitions — we start developing tools today!

Well-Posedness: A property of the PDE for IVPs — An L2-
energy bound on the solution in terms of the
initial conditions.
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Recap
Convergence, Consistency, Stability, and Well-Posedness
CFL-condition; Lax-Richtmyer Equivalence Theorem

Previously... 2 of 2

The CFL-condition

Courant-Friedrichs-Lewy condition |aλ| ≤ 1 (for explicit one-step
schemes applied to ut + aux + bu = f ) is necessary (but not
sufficient) for stability. It expresses the need for the numerical
speed of propagation λ−1 to match or exceed the physical speed of
propagation a.

Theorem (The Lax-Richtmyer Equivalence Theorem)

A consistent finite difference scheme for a partial differential
equation for which the initial value problem is well-posed is
convergent if and only if it is stable.
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A Crash Course in Fourier Analysis

Figure: Jean-Baptiste Joseph Fourier (21 March 1768
– 16 May 1830). Advisor: Joseph Louis Lagrange.
Student: Gustav Peter Lejeune Dirichlet (+1).
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Truncated Genealogy (Advisor → Student)

Euler d’Alembert

Lagrange Laplace

Fourier Poisson

Dirichlet Liouville

Lipschitz Kronecker
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A Crash Course in Fourier Analysis

The Fourier transform of a function u(x), x ∈ R is defined by

û(ω) =
1√
2π

∫ ∞

−∞
e−iωx u(x) dx .

The Fourier inversion formula

u(x) =
1√
2π

∫ ∞

−∞
e iωx û(ω) dω,

recovers the function from its Fourier transform.

Essentially, the Fourier transform representation expresses u(x) as
an infinite superposition of (complex) waves
e iωx = cos(ωx) + i sin(ωx), with amplitudes û(ω).

(!) u(x) and û(ω) must satisfy certain criteria for the integrals (above)
to be well-defined. We sweep those details under the rug, and refer to
Math 668: Applied Fourier Analysis.
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Example With Correction of Typo (Strikwerda p.38)

We consider the function

u(x) =

{
e−x x ≥ 0
0 x < 0.

The Fourier transform of u(x) is given by

û(ω)︸︷︷︸
correction

=
1√
2π

∫ ∞

0
e−iωx e−x dx =

1√
2π

1

1 + iω
.

The tools needed for evaluation of such integrals can be found in
Math 532+631A+631B: Complex Analysis.

Tables of Fourier transforms can be found online in various places;
ask uncle Google for guidance.
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Fourier Transform Tables: A Warning

There are several ways of defining the Fourier transform — the
normalization constants for the forward and inverse transforms are
chosen from one of the following three set

{
1√
2π

,
1√
2π

}
,

{
1,

1

2π

}
,

{
1

2π
, 1

}
,

and the factors in the integrals can be chosen to be

{
e−iωx, eiωx

}
,

{
e iωx , e−iωx

}
.

For a total of six “natural” ways to define the transform and its
inverse. Of course, mathematicians and engineers have agreed to
disagree on the definition of the One True Fourier TransformTM. —
These choices also affect numerical implementations of the discrete
Fourier transform...
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Extending the Fourier Transform to Grid Functions, I

For a grid function vm defined for all integers coordinates m, the
Fourier transform is given by

v̂(ξ) =
1√
2π

∞∑

m=−∞
e−imξ vm,

where ξ ∈ [−π, π], and v̂(π) = v̂(−π).

The inversion formula is given by

vm =
1√
2π

∫ π

−π
e imξ v̂(ξ) dξ.
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Extending the Fourier Transform to Grid Functions, II

For a grid function vm defined for all coordinates xm = h ·m, the
Fourier transform is given by

v̂(ξ) =
h√
2π

∞∑

m=−∞
e−imhξ vm

where ξ ∈ [−π/h, π/h], and v̂(π/h) = v̂(−π/h).

The inversion formula is given by

vm =
1√
2π

∫ π/h

−π/h
e imhξ v̂(ξ) dξ.
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Parseval’s Relations: Preservation of L2 Energy

With the following definition for the L2 (continuous) energy

‖u‖2 =

√∫ ∞

−∞
|u(x)|2 dx ,

the following holds

Parseval’s Relations
√∫ ∞

−∞
|u(x)|2 dx = ‖u‖2 = ‖û‖2 =

√∫ ∞

−∞
|û(ω)|2 dω

√√√√h
∞∑

m=−∞
|vm|2 = ‖v‖2 = ‖v̂‖2 =

√∫ π/h

−π/h
|v̂(ξ)|2 dξ

These relations are key to our stability analysis, and are also a big reason why
measuring quantities in the L2 (and/or ℓ2) norm is usually a Good ThingTM — many
times the norm expresses a natural physical energy, and that energy is preserved under
the Fourier transform.
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The Road to Stability: Using Parseval’s Relations

Using Parseval’s relations, we can rewrite the inequalities that appeared
in the definition of stability (last lecture)

h
∞∑

m=−∞
|vn

m|2 ≤ CTh
J∑

j=0

∞∑

m=−∞

∣∣v j
m

∣∣2 ,

and

‖vn‖h ≤


CT

J∑

j=0

‖v j‖2h



1/2

⇔ ‖vn‖h ≤ C∗
T

J∑

j=0

‖v j‖h,

by the equivalent inequality (applied in the Fourier domain...)

‖v̂n‖h ≤ C∗
T

J∑

j=0

‖v̂ j‖h.

So???
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Fourier Analysis and PDEs

Given the Fourier inversion formula

u(x) =
1√
2π

∫ ∞

−∞
e iωx û(ω) dω,

we formally compute the derivative with respect to x :

∂u(x)

∂x
=

1√
2π

∫ ∞

−∞
e iωx iωû(ω) dω.

This leads us to the stunningly simple, and extremely useful conclusion
that (̂

∂u

∂x

)
= iω û(ω)

i.e. differentiation on the physical side, corresponds to multiplication
by iω on the Fourier transform side.
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Higher Derivatives — L2 — Parseval

It now follows that the squared L2-norm of the r -th derivative is given by

∫ ∞

−∞

∣∣∣∣
∂ru(x)

∂x r

∣∣∣∣
2

dx =

∫ ∞

−∞
|ω|2r |û(ω)|2 dω,

These quantities exist (i.e. u has L2 integrable derivatives of order
through r , if and only if

∫ ∞

−∞
(1 + |ω|2)r |û(ω)|2 dω < ∞.

From this we can define the function space (Sobolev space, also
denoted W r

2 (R), or W r ,2(R)) H r (R) (r > 0) as the set of functions
u ∈ L2(R), for which (note H0(R) ≡ L2(R))

‖u‖H r =

√∫ ∞

−∞
(1 + |ω|2)r |û(ω)|2 dω < ∞.
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Notations for Norms of Derivatives

We introduce the notation

‖Dru‖2 =
∫ ∞

−∞

∣∣∣∣
∂r

∂x r
u(x)

∣∣∣∣
2

dx =

∫ ∞

−∞
|ω|2r |û(ω)|2 dω,

and note (for future reference), that the integral over x is only
defined when r is an integer, but the integral over ω can be used
for “fractional derivatives.”

OK, lets return to the one-way wave equation...
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Fourier Analysis and the One-Way Wave Equation, I

Consider, with u(0, x) = u0(x) specified,

ut + aux = 0, ⇔ ut = −aux .

Fourier transforming in the x-coordinate, we get

ût = −iaωû, û0(ω) given.

This is an Ordinary Differential Equation (ODE) in t, and the
solution is given by

û(t, ω) = e−iaωt û0(ω).

With the help of the tools we have developed, we can show that
this Initial Value Problem is well-posed.
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Fourier Analysis and the One-Way Wave Equation, II

We have, using Parseval’s equality

∫ ∞

−∞
|u(t, x)|2 dx =

∫ ∞

−∞
|û(t, ω)|2 dω =

∫ ∞

−∞
|e−iaωt û0|2 dω =

∫ ∞

−∞
|e−iaωt |︸ ︷︷ ︸

1

2 |û0|2 dω =

∫ ∞

−∞
|û0|2 dω =

∫ ∞

−∞
|u0|2 dx = ‖u0‖22.

Hence, not only do we have a bound on the energy — we have an
exact value, which does not change in time. ⇒ The IVP is
well-posed.
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Von Neumann Analysis

The application of Fourier analysis which presently is of interest to
us is the application to the stability analysis of finite difference
schemes; known as von Neumann analysis.

Starting from the forward-time-backward-space scheme (suitable
only when a > 0, think about the characteristic) applied to the
one-way wave equation (ut + aux = 0):

vn+1
m − vnm

k
+ a

vnm − vnm−1

h
= 0.

We rewrite this in the form (λ = k/h)

vn+1
m = (1− aλ)vnm + aλvnm−1.

Next we, use the Fourier inversion formula to represent the
quantities on the right-hand side....
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Von Neumann Analysis... Moving Along 1 of 2

With

vnm =
1√
2π

∫ π/h

−π/h
e imhξ v̂n(ξ) dξ,

we get

vn+1
m =

1√
2π

∫ π/h

−π/h
e imhξ


(1− aλ) + aλ e−ihξ

︸ ︷︷ ︸
from vnm−1


 v̂n(ξ) dξ.

From the inversion formula we also have

vn+1
m =

1√
2π

∫ π/h

−π/h
e imhξ v̂n+1(ξ) dξ.

We have two representations of the same quantity...
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Von Neumann Analysis... Moving Along 2 of 2

The integrands must be the same, hence

v̂n+1(ξ) =
[
(1− aλ) + aλ e−ihξ

]

︸ ︷︷ ︸
g(hξ)

v̂n(ξ).

g(hξ) is known as the amplification factor, and we note that

v̂n(ξ) = g(hξ)n v̂0(ξ).

If |g(hξ)| > 1, then the energy grows exponentially; hence for
stability we must require |g(hξ)| ≤ 1.
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Von Neumann Analysis... Closing Out

We let θ = hξ, and use e−iθ = cos θ − i sin θ, and consider |g(θ)|2:
|g (θ) |2 = (1− aλ+ aλ cos θ)2 + a2λ2 sin2 θ

=

(
1− 2aλ sin2

(
θ

2

))2

+ 4a2λ2 sin2
(
θ

2

)
cos2

(
θ

2

)

= 1− 4aλ sin2
(
θ

2

)
+ 4a2λ2 sin4

(
θ

2

)
+ 4a2λ2 sin2

(
θ

2

)
cos2

(
θ

2

)

= 1− 4aλ(1− aλ) sin2
(
θ

2

)
.

Since sin2
(
θ
2

)
≥ 0, we must require aλ ≥ 0 and aλ ≤ 1 in order for

|g(θ)|2 ≤ 1. Hence, the scheme is stable for 0 ≤ aλ ≤ 1.

1− cos θ = 2 sin2
(
θ

2

)
, sin θ = 2 sin

(
θ

2

)
cos

(
θ

2

)
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Von Neumann Analysis: Images of g(θ)
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Figure: Images of g(θ) in the complex plane. For aλ = 0.8 and aλ = 0.9, the
image (blue, solid) is contained in the unit circle (red, dashed), but for aλ = 1.05
we can clearly see that |g(θ)| > 1, except for g(0) = 1.

With this example in mind, we are ready for the formal criterion for
stability.
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Von Neumann Analysis: The Stability Condition

Theorem (Von Neumann Stability)

A one-step finite difference scheme (with constant coefficients) is
stable in a stability region Λ if and only if there is a constant K
(independent of θ, k, and h) such that

|g(θ, k , h)| ≤ 1 + Kk

with (k , h) ∈ Λ. If g(θ, k , h) is independent of h and k, the stability
condition can be replaced with the restricted stability condition

|g(θ)| ≤ 1.

Determining stability this way is quite straightforward — only
symbolic manipulations of the expression for |g(θ, k , h)|2 are
needed.
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Example: Forward-Time-Central-Space

The procedure can be stream-lined quite a bit, consider

vn+1
m − vnm

k
+ a

vnm+1 − vnm−1

2h
= 0.

Replace vnm by gn e imθ, and get

gn+1e imθ − gne imθ

k
+ a

gne i(m+1)θ − gne i(m−1)θ

2h

= gne imθ

[
g − 1

k
+ a

e iθ − e−iθ

2h

]
= 0.

The expression in the square bracket must be zero, and
e iθ − e−iθ = 2i sin θ, so the amplification factor is given by

g(θ) = 1− iaλ sin θ, |g(θ)|2 = 1 + (aλ)2 sin2 θ ≥ 1.

Hence, this scheme is unstable.
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Example: Lax-Friedrichs Scheme

The Lax-Friedrichs Scheme is quite similar to FT-CS:

vn+1
m − 1

2

[
vnm+1 + vnm−1

]

k
+ a

vnm+1 − vnm−1

2h
= 0

Replace vnm by gn e imθ, and get

gn+1e imθ − gn 1
2

[
ei(m+1)θ + ei(m−1)θ

]

k
+ a

gne i(m+1)θ − gne i(m−1)θ

2h

= gne imθ

[
g − 1

2

[
eiθ + e−iθ

]

k
+ a

e iθ − e−iθ

2h

]
= 0

Now, e iθ − e−iθ = 2i sin θ, and e iθ + e−iθ = 2 cos θ, so

g(θ) = cos θ − iaλ sin θ, |g(θ)|2 = cos2 θ + (aλ)2 sin2 θ

Hence, this scheme is stable, as long as |aλ| ≤ 1.
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Example: Lax-Friedrichs Scheme... Again

The Lax-Friedrichs scheme applied to the equation

ut + aux − u = 0,

i.e.

vn+1
m − 1

2

[
vnm+1 + vnm−1

]

k
+ a

vnm+1 − vnm−1

2h
− vnm = 0,

gives rise to the amplification factor

g(θ, k , h) = cos θ − iaλ sin θ + k,

with
|g(θ, k , h)|2 = (cos θ + k)2 + (aλ)2 sin2 θ.

For which |g(θ, k , h)|2 ≤ (1 + k)2 = 1 + 2k +O
(
k2

)
if |aλ| ≤ 1.

This scheme is stable according to the first inequality in the
theorem.
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Modified Schemes and Stability

Corollary (Stability for Modified Schemes)

If a scheme as in the von Neumann stability theorem is
modified so that the modifications result only in the addition to
the amplification factor of terms that are O (k) uniformly in ξ,
then the modified scheme is stable if and only if the original
scheme is stable.

Proof: If g is the amplification factor for the scheme and satisfies
|g | ≤ 1 + Kk , then the amplification factor of the modified
scheme, g ′, satisfies

|g ′| = |g +O (k) | ≤ 1 + Kk + Ck = 1 + K ′k .

Hence the modified scheme is stable if and only if the original
scheme is stable, and vice versa. �

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Analysis of Finite Difference Schemes — (28/30)



Fourier Analysis: An Applied Crash Course
The Road to Stability

Stability

Examples: FTCS, Lax-Friedrichs
Stability of Modified Schemes
Impact of Lower-Order Terms

Stability For the One-Way Wave Equation with a Lower-Order Term

Theorem

A consistent one-step scheme for the equation

ut + aux + bu = 0

is stable if and only if it is stable for this equation when b = 0.
Moreover, when k = λh, and λ is a constant, the stability
condition on g(hξ, k , h) is

|g(θ, 0, 0)| ≤ 1.

Because of this theorem, it is usually sufficient to consider
g(hξ, k , h) g(θ), and ignore the dependence on h, and k .
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Informal Homework Not Due

Study the examples in chapter 2, and the proofs of the theorems.

Read § 2.3 — Comments on Instability and Stability.
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