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Convergence, Consistency, Stability, and Well-Posedness

Recap CFL-condition; Lax-Richtmyer Equivalence Theorem

1of 2

Previously...

Convergence: The desired result; as we refine the grid, the
numerical solution of the Finite Difference Scheme
(FDS) should better and better represent the

exact (continuous) solution of the PDE.

Consistency: Easily checked by Taylor expansion — the expan-
sion of the FDS should give the PDE + terms that

go to zero as (h, k) — 0.

Stability: An />-energy bound on the solution of the FDS in terms
of the initial condition (+ further levels of initialization
for multi-step schemes). Hard to check using the

definitions — we start developing tools today!

A property of the PDE for IVPs — An L?-
energy bound on the solution in terms of the ‘
initial conditions.

Well-Posedness:
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Convergence, Consistency, Stability, and Well-Posedness
CFL-condition; Lax-Richtmyer Equivalence Theorem

Previously... 2 of 2

The CFL-condition

Courant-Friedrichs-Lewy condition |aA| < 1 (for explicit one-step
schemes applied to u; + auy + bu = f) is necessary (but not
sufficient) for stability. It expresses the need for the numerical
speed of propagation A~! to match or exceed the physical speed of
propagation a.

v

Theorem (The Lax-Richtmyer Equivalence Theorem)

A consistent finite difference scheme for a partial differential
equation for which the initial value problem is well-posed is
convergent if and only if it is stable.
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Fourier Analysis: An Applied Crash Course

Fourier transform & Fourier inversion formula
Fourier Transform on a Grid
Parseval’s Relations

A Crash Course in Fourier Analysis

Fourier Analysis: An Applied Crash Course Fourier transform & Fourier inversion formula
Fourier Transform on a Grid

Parseval’s Relations

Truncated Genealogy (Advisor — Student)

Figure: Jean-Baptiste Joseph Fourier (21 March 1768
— 16 May 1830). Advisor: Joseph Louis Lagrange.
Student: Gustav Peter Lejeune Dirichlet (+1).
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Fourier Analysis: An Applied Crash Course Fourier transform & Fourier inversion formula
Fourier Transform on a Grid

Parseval’s Relations

A Crash Course in Fourier Analysis

The Fourier transform of a function u(x), x € R is defined by

u(w) = \/%_w /O; e % y(x) dx.

The Fourier inversion formula

u(x) = % /_ Z &% Gi(w) duw,

recovers the function from its Fourier transform.

Essentially, the Fourier transform representation expresses u(x) as

an infinite superposition of (complex) waves

e'“* = cos(wx) + isin(wx), with amplitudes u(w).

(") u(x) and u(w) must satisfy certain criteria for the integrals (above)
to be well-defined. We sweep those details under the rug, and refer to

Math 668: Applied Fourier Analysis.
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Fourier Analysis: An Applied Crash Course Fourier transform & Fourier inversion formula
Fourier Transform on a Grid

Parseval’s Relations

Example

With Correction of Typo (Strikwerda p.38)

We consider the function

e x>0
ux)=309 x=<o.

The Fourier transform of u(x) is given by

i(w) 1 /OO —iwx gx g 1 1
Uw) = — e e X = — ——.
~—~— V2 Jo Vomr 1+ iw

correction

The tools needed for evaluation of such integrals can be found in
Math 532 + 631A 4 631B: Complex Analysis.
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Tables of Fourier transforms can be found online in various places;
ask uncle Google for guidance.
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Fourier transform & Fourier inversion formula
Fourier Transform on a Grid
Parseval’s Relations

Fourier Analysis: An Applied Crash Course

Fourier Transform Tables: A Warning

There are several ways of defining the Fourier transform — the
normalization constants for the forward and inverse transforms are
chosen from one of the following three set

(e bt )

and the factors in the integrals can be chosen to be

—iwx  Liwx fwx —iwx
{e , e }, {eX, em™}.

For a total of six “natural” ways to define the transform and its

inverse. Of course, mathematicians and engineers have agreed to
disagree on the definition of the One True Fourier Transform™. —
These choices also affect numerical implementations of the discrete
Fourier transform...
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Fourier transform & Fourier inversion formula
Fourier Transform on a Grid
Parseval’s Relations

Fourier Analysis: An Applied Crash Course

Extending the Fourier Transform to Grid Functions, Il

For a grid function v,, defined for all coordinates x,, = h- m, the
Fourier transform is given by

= h - —imh¢
|74 = — e Vv,
(&)= 7= m;oo -

where ¢ € [—m/h,w/h], and V(7 /h) = V(—7/h).

The inversion formula is given by

\/—1 / " i 5(6) e
Vim = —/— e 14 .
27 J—x/h
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Fourier transform & Fourier inversion formula
Fourier Transform on a Grid
Parseval’s Relations

Fourier Analysis: An Applied Crash Course

Extending the Fourier Transform to Grid Functions, |

For a grid function v,, defined for all integers coordinates m, the
Fourier transform is given by

= 1 & —im,
v(§) = —% Z e~ mt Vm,
m=—0o0

where ¢ € [—m, 7], and V(7) = V(—).

The inversion formula is given by

_ L T mes
vm—m/ﬂe v(&) d¢.
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Fourier transform & Fourier inversion formula
Fourier Transform on a Grid
Parseval’s Relations

Fourier Analysis: An Applied Crash Course

Parseval's Relations: Preservation of L2 Energy

With the following definition for the L? (continuous) energy

lulle =/ [ lut) a,
the following holds

Parseval’s Relations

[ |u(x)[2 dx = ullz = @2 = ,/[ (@) dw
00 7/h
ho> |vm|2=||v||2=|\vw|2=,/[ EGIRS

These relations are key to our stability analysis, and are also a big reason why

measuring quantities in the L? (and/or £2) norm is usually a Good Thing™ — many

times the norm expresses a natural physical energy, and that energy is preserved undet,, proosm
the Fourier transform. fe
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Using Parseval’s Relations
Von Neumann Analysis
Von Neumann Stability

The Road to Stability

The Road to Stability: Using Parseval's Relations

Using Parseval’s relations, we can rewrite the inequalities that appeared
in the definition of stability (last lecture)

0o J 0o 5
h Z \v,’,’,|2§CThZ Z ’an’ ,
m=—00 Jj=0 m=—o0
and
1/2

J J
vl < | Cr Y IV & IVills < Y IV,
Jj=0 Jj=0

by the equivalent inequality (applied in the Fourier domain...)

J
17"l < C7 11 1a-
j=0
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Using Parseval’s Relations

Von Neumann Analysis

Von Neumann Stability

The Road to Stability

Higher Derivatives — L?> — Parseval

It now follows that the squared L?-norm of the r-th derivative is given by

/°° 9 u(x)

ox"
These quantities exist (i.e. u has L? integrable derivatives of order
through r, if and only if

2

de= [ oA do,

—00

/Oo (14 W) [5(w)]? dw < o,

— 00

From this we can define the function space (Sobolev space, also
denoted WJ(R), or W"2(R)) H"(R) (r > 0) as the set of functions
u € L2(R), for which (note H°(R) = L2(R))

llullpr = \//_00 (1+ |w]?)" |o(w)]? dw < 0.
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Using Parseval’s Relations
Von Neumann Analysis
Von Neumann Stability

The Road to Stability

Fourier Analysis and PDEs

Given the Fourier inversion formula

u(x) = \/12? / Z &% Gi(w) dw,

we formally compute the derivative with respect to x:

at(;(xx) = \/127_ /_oo e jwii(w) dw.

This leads us to the stunningly simple, and extremely useful conclusion
that

@ = i B(w)

i.e. differentiation on the physical side, corresponds to multiplication
by iw on the Fourier transform side.
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Using Parseval’s Relations
Von Neumann Analysis
Von Neumann Stability

The Road to Stability

Notations for Norms of Derivatives

We introduce the notation

, oo ar
ol = [ | w0

— 00

2 0o
de= [ ol [P do,

—0o0

and note (for future reference), that the integral over x is only
defined when r is an integer, but the integral over w can be used
for “fractional derivatives.”

OK, lets return to the one-way wave equation...
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Using Parseval’s Relations
Von Neumann Analysis
Von Neumann Stability

The Road to Stability

Fourier Analysis and the One-Way Wave Equation, |

Consider, with u(0, x) = up(x) specified,

ur +au, =0, <& up = —auy.

Fourier transforming in the x-coordinate, we get

Uy = —iawu, Up(w) given.
This is an Ordinary Differential Equation (ODE) in ¢, and the
solution is given by

G(t,w) = e~ Go(w).

With the help of the tools we have developed, we can show that
this Initial Value Problem is well-posed.
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Using Parseval’s Relations
Von Neumann Analysis
Von Neumann Stability

The Road to Stability

Von Neumann Analysis

The application of Fourier analysis which presently is of interest to
us is the application to the stability analysis of finite difference
schemes; known as von Neumann analysis.

Starting from the forward-time-backward-space scheme (suitable
only when a > 0, think about the characteristic) applied to the
one-way wave equation (u¢ + au, = 0):

n+l . ,n
Vi % v

k h
We rewrite this in the form (A = k/h)

vt — (1 — aX)v! + a\v” ;.

Next we, use the Fourier inversion formula to represent the
quantities on the right-hand side....
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Using Parseval’s Relations
Von Neumann Analysis
Von Neumann Stability

The Road to Stability

Fourier Analysis and the One-Way Wave Equation, Il

We have, using Parseval’s equality

/ yu(t,x)|2dx:/ |a(t,w)\2dw:/ et G dew =

—00 —o0 >
c© 2 o >
/ et |uo|2dw:/ \uo|2dw:/ |uo|® dx = ||uo]|3-

Hence, not only do we have a bound on the energy — we have an
exact value, which does not change in time. = The IVP is
well-posed.
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Using Parseval’s Relations

Von Neumann Analysis

Von Neumann Stability

The Road to Stability

Von Neumann Analysis... Moving Along

With
- ] " e () a
Vg = —— ey ,
21 J—x/h

we get

1 w/h . : —~
vt = 27r/ /he’m”g (1—aX\)+ax e ™ | 97(¢) de.

n
from v

From the inversion formula we also have

1 w/h
V,r:,—o—l — / elmh.f T/\'H_l(g) df.
27 J—x/h
We have two representations of the same quantity...
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Using Parseval’s Relations
Von Neumann Analysis
Von Neumann Stability

The Road to Stability

Von Neumann Analysis... Moving Along

Using Parseval’s Relations
Von Neumann Analysis
Von Neumann Stability

The Road to Stability

Von Neumann Analysis... Closing Out

The integrands must be the same, hence

L(g) = [(1— a\) + a e—"hf] (6.

\ /

g(‘;é)

g(hg) is known as the amplification factor, and we note that
V(€)= g(he)" V(€).

If |g(h&)| > 1, then the energy grows exponentially; hence for
stability we must require |g(h¢)| < 1.
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Using Parseval’s Relations
Von Neumann Analysis
Von Neumann Stability

The Road to Stability

Von Neumann Analysis: Images of g(0)

1 Tt = 1
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Figure: Images of g(0) in the complex plane. For aA = 0.8 and a\ = 0.9, the
image (blue, solid) is contained in the unit circle (red, dashed), but for aX\ = 1.05
we can clearly see that |g(0)| > 1, except for g(0) = 1.
With this example in mind, we are ready for the formal criterion for
stability.
a2
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We let § = h¢, and use e " = cos@ — isin 6, and consider |g(6)|?:

(1 —aX+ arcosf)? + a®A\%sin 0
0\ 2 0 0
(1 — 2a\sin? (7)) + 42%°)2 sin? <7> cos? <7>
2 2 2
= 1-—4a\sin? (g) + 42222 sin* (9) + 4a%°)2 sin? (Q> cos? (Q>
2 2 2 2

1 — 4aX(1 — a))sin? (g) .

g (0) 17

Since sin? (g) > 0, we must require aX > 0 and a\ < 1 in order for
|g(0)]?> < 1. Hence, the scheme is stable for 0 < a\ < 1.

o 6 0
— prm— i 2 - i = [ By 5 ¢
1 —cosf = 2sin <2) ., sinf = 2sin (2) cos (2)
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Using Parseval’s Relations
Von Neumann Analysis
Von Neumann Stability

The Road to Stability

Von Neumann Analysis: The Stability Condition

Theorem (Von Neumann Stability)

A one-step finite difference scheme (with constant coefficients) is
stable in a stability region \ if and only if there is a constant K
(independent of 6, k, and h) such that

1g(0, k, h)| <1+ Kk

with (k, h) € N. If g(0, k, h) is independent of h and k, the stability
condition can be replaced with the restricted stability condition

g(0)] < 1.

Determining stability this way is quite straightforward — only B
symbolic manipulations of the expression for |g(6, k, h)|? are ‘

needed.
— (24/30)
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Examples: FTCS, Lax-Friedrichs
Stability of Modified Schemes
Stability Impact of Lower-Order Terms

Examples: FTCS, Lax-Friedrichs
Stability of Modified Schemes
Stability Impact of Lower-Order Terms

Example: Forward-Time-Central-Space

The procedure can be stream-lined quite a bit, consider

vt — v L Vmel T Ve g
k 2h ’
Replace v by g"e™ and get
gn+1eim9 _ gneim9 s gnei(m+1)9 _ gnei(m—l)ﬁ
k 2h
, _1 oif _ o—if
= g"eim |& a =0.
g PR

The expression in the square bracket must be zero, and
e’ — e = 2jsin#, so the amplification factor is given by

0) =1 — ia\siné, 0)|> =1+ (a\)?sin?6 > 1.
g(0) 1g(0)] (aA) >

Hence, this scheme is unstable.
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Examples: FTCS, Lax-Friedrichs
Stability of Modified Schemes

Stability Impact of Lower-Order Terms

Example: Lax-Friedrichs Scheme... Again

The Lax-Friedrichs scheme applied to the equation
ur + auy —u =0,
Ie.

1_1
Vot — 3 [Vime1 + Vi1 +a Voil ~ Vm—1  .n
k 2h m
gives rise to the amplification factor

g(0,k, h) =cosf — iaksinf + k,

with
12(0, k, h)|*> = (cos 6 + k)? 4 (a\)?sin? .

For which [g(0, k, h)|? < (1+ k) =1+ 2k + O (k?) if |[aA] < 1.

This scheme is stable according to the first inequality in the ‘ _
theorem. T
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Example: Lax-Friedrichs Scheme

The Lax-Friedrichs Scheme is quite similar to FT-CS:

11
Vit — 3 Vs Vi) 12 Vim+1l ~ Vo1 _ 0
k 2h
Replace v by g" €™ and get
gn+1eim0 _ gn% [ei(m-l—l)@ + ei(m—l)@] e gnei(m—l—l)e _ gnei(m—1)9
k 2h
1[0 | aif 0 _—if
o |&— 3 [ +e ] el —e
— nelmG 2 3 =0
& k T,

Now, e — e = 2isin@, and e’ + e~ = 2cosf, so

g(0) = cos# — iasinf, |g(h)|* = cos® 6 + (aX)?sin? 6

SAN DIEGO STATE

Hence, this scheme is stable, as long as [a\| < 1.
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Examples: FTCS, Lax-Friedrichs
Stability of Modified Schemes

Stability Impact of Lower-Order Terms

Modified Schemes and Stability

Corollary (Stability for Modified Schemes)

If a scheme as in the von Neumann stability theorem is
modified so that the modifications result only in the addition to
the amplification factor of terms that are O (k) uniformly in &,
then the modified scheme is stable if and only if the original
scheme is stable.

Proof: If g is the amplification factor for the scheme and satisfies
lg| < 1+ Kk, then the amplification factor of the modified
scheme, g’, satisfies

g =g+ O (k)| <1+ Kk+ Ck=1+K'k.

Hence the modified scheme is stable if and only if the original

scheme is stable, and vice versa. U
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Examples: FTCS, Lax-Friedrichs Examples: FTCS, Lax-Friedrichs
Stability of Modified Schemes Stability of Modified Schemes
Stability Impact of Lower-Order Terms Stability Impact of Lower-Order Terms

Stability For the One-Way Wave Equation with a Lower-Order Term Informal Homework

A consistent one-step scheme for the equation

us + auy, + bu =0 Study the examples in chapter 2, and the proofs of the theorems.

is stable if and only if it is stable for this equation when b = Q. Read §2.3 — Comments on Instability and Stability.

Moreover, when k = \h, and X\ is a constant, the stability
condition on g(h&, k, h) is

1g(#,0,0)] < 1.

Because of this theorem, it is usually sufficient to consider
g(h¢, k, h) ~ g(0), and ignore the dependence on h, and k.
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