Numerical Solutions to PDEs

Lecture Notes #5 — Order of Accuracy of Finite Difference Schemes

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2018

Order of Accuracy of Finite Difference Schemes -(1/28)

Recap

Previously...

Fourier Analysis — A Crash Course:

We introduced the Fourier transform, and its inverse

$$\widehat{u}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-i\omega x} u(x) dx, \quad u(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\omega x} \widehat{u}(\omega) d\omega.$$

Extended to grid functions (integration becomes summation). Introduced Parseval's equalities, i.e. $||u(x)||_2 = ||\widehat{u}(\omega)||_2$.

Parseval's equalities \rightarrow Well-posedness, and stability:

The energy conservation $||u(x)||_2 = ||\widehat{u}(\omega)||_2$ gives us a powerful tool for showing well-posedness of IVPs, and stability of finite difference schemes.

Von Neumann Analysis — Stability of Finite Difference Schemes:

We set $v_m^n \to g^n e^{im\theta}$ in our finite difference schemes, and analyze the expression for g; if $|g| \le 1 + Kk$, then the scheme is stable.

Outline

- Recap
- 2 Convergence: Quality
 - The Lax-Wendroff and Crank-Nicolson Schemes
 - Order of Accuracy
 - Symbols...
- 3 Special Case: Homogeneous Equations
- Explicit One-Step Schemes

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

Order of Accuracy of Finite Difference Schemes — (2/28)

_

Outstanding Question

"How do we deal with stability analysis for the Leapfrog scheme?"

or, more generally:

"How do we deal with stability analysis for multi step schemes?"

Fear not, answers are forthcoming [NOTES #7], [NOTES #8].

Consistency + Stability → Convergence

"Not the Whole Truth"

So far we have only classified our finite difference schemes as convergent or non-convergent. This we deduce, using the Lax-Richtmyer equivalence theorem, from consistency and stability.

Convergence says that as $(h, k) \to 0$, the solution of the finite difference scheme will better and better approximate the solution of the PDE.

Convergence, however, does not tell us anything about the quality for a fixed grid (h^*, k^*) and nothing about how the solution would improve if we refined the grid to, say, $(\frac{1}{2}h^*, \frac{1}{2}k^*)$.

The missing piece of the puzzle is the order of accuracy of the scheme in question.

Before discussing the order of accuracy, we introduce two new schemes — the Lax-Wendroff and Crank-Nicolson schemes.

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

Order of Accuracy of Finite Difference Schemes

Convergence: Quality Explicit One-Step Schemes The Lax-Wendroff and Crank-Nicolson Schemes

The Lax-Wendroff Scheme

2 of 3

We now replace the derivatives in x by second order accurate differences, i.e.

$$u_x \approx \frac{u(t,x+h)-u(t,x-h)}{2h} = u_x + \frac{h^2}{6}u_{xxx} + \mathcal{O}(h^4)$$

$$u_{xx} \approx \frac{u(t, x+h) - 2u(t, x) + u(t, x-h)}{h^2} = u_{xx} + \frac{h^2}{12}u_{xxxx} + \mathcal{O}(h^4)$$

and f_t by a forward difference, i.e.

$$f_t pprox rac{f(t+k,x)-f(t,x)}{k} = f_t + rac{k}{2}f_{tt} + \mathcal{O}\left(k^2\right).$$

The Lax-Wendroff Scheme

Consider the Taylor series expansion in time for u(t + k, x), where u is the solution to the inhomogeneous one-way wave equation

$$u_t + au_x = f$$
:

$$u(t+k,x) = u(t,x) + ku_t(t,x) + \frac{k^2}{2}u_{tt}(t,x) + \mathcal{O}(k^3)$$

Now, since $u_t = -au_x + f$, and therefore (given enough smoothness)

$$\mathbf{u_{tt}} = -a\mathbf{u_{xt}} + f_t = a^2 u_{xx} - af_x + f_t$$

$$\mathbf{u_{xt}} = -au_{xx} + f_x$$

we get (all quantities evaluated at (t, x), unless otherwise specified)

$$u(t+k,x) = u - aku_x + \frac{a^2k^2}{2}u_{xx} + kf - \frac{ak^2}{2}f_x + \frac{k^2}{2}f_t + \mathcal{O}(k^3).$$

1 of 3

Peter Blomgren, \(\text{blomgren.peter@gmail.com} \)

Order of Accuracy of Finite Difference Schemes

Convergence: Quality Special Case: Homogeneous Equations Explicit One-Step Schemes The Lax-Wendroff and Crank-Nicolson Schemes

The Lax-Wendroff Scheme

∃ Movie

3 of 3

With $v_m^n = u(t_n, x_m)$, we get the Lax-Wendroff Scheme

$$\begin{split} v_m^{n+1} &= v_m^n - \frac{a\lambda}{2} \left(v_{m+1}^n - v_{m-1}^n \right) + \frac{a^2 \lambda^2}{2} \left(v_{m+1}^n - 2 v_m^n + v_{m-1}^n \right) \\ &+ \frac{k}{2} \left(f_m^{n+1} + f_m^n \right) - \frac{ak\lambda}{4} \left(f_{m+1}^n - f_{m-1}^n \right) + \mathcal{O} \left(kh^2 + k^3 \right). \end{split}$$

Figure: Comparison of the Lax-Wendroff (left) and Lax-Friedrichs schemes. Clearly, the solutions produced by the L-W scheme is of better quality (for the same grid spacing). MAN DIEGO STO

1 of 2

Truncated Genealogy

 $(Advisor \rightarrow Student)$

Peter Blomgren, (blomgren.peter@gmail.com)

Order of Accuracy of Finite Difference Schemes — (9/28)

Convergence: Quality Special Case: Homogeneous Equations Explicit One-Step Schemes The Lax-Wendroff and Crank-Nicolson Schemes Order of Accuracy

The Crank-Nicolson Scheme

2 of 2

Since the Crank-Nicolson scheme is implicit

$$\frac{\mathbf{v_m^{n+1}} - v_m^n}{k} + a \frac{\mathbf{v_{m+1}^{n+1}} - \mathbf{v_{m-1}^{n+1}} + v_{m+1}^n - v_{m-1}^n}{4h} = \frac{\mathbf{f_m^{n+1}} + f_m^n}{2}$$

we are going to have to develop some more "technology" in order to compute the solution.

Figure: Illustration of the stencil for the Crank-Nicolson finite difference schemes; it contains three points on the previous (known) time-level, and three points on the new (to-be-determined) time-level.

The Crank-Nicolson Scheme

Formally, the Crank-Nicolson scheme is obtained by differencing the one-way wave equation about the point (t + k/2, x), using central differencing in time to get second-order accuracy:

$$u_t\left(t+\frac{k}{2},x\right) = \frac{u(t+k,x)-u(t,x)}{k} + \frac{k^2}{24}u_{ttt}\left(t+\frac{k}{2},x\right) + \mathcal{O}\left(k^4\right).$$

Then we use

$$u_{x}\left(t+\frac{k}{2},x\right) = \frac{u_{x}(t+k,x)+u_{x}(t,x)}{2} + \mathcal{O}(k^{2})$$

$$= \frac{1}{2}\left[\frac{u(t+k,x+h)-u(t+k,x-h)}{2h} + \frac{u(t,x+h)-u(t,x-h)}{2h}\right]$$

$$+\mathcal{O}(k^{2}+h^{2}).$$

With this we can write down the Crank-Nicolson scheme...

$$\frac{v_m^{n+1} - v_m^n}{k} + a \frac{v_{m+1}^{n+1} - v_{m-1}^{n+1} + v_{m+1}^n - v_{m-1}^n}{4h} = \frac{f_m^{n+1} + f_m^n}{2} + \mathcal{O}\left(k^2 + h^2\right) \cdot \underbrace{\sum_{\substack{\text{NDDIGGSINT} \\ \text{SNDDIGGSINT}}}}_{\text{SNDDIGGSINT}}$$

Order of Accuracy of Finite Difference Schemes — (10/28)

Convergence: Quality Special Case: Homogeneous Equations Explicit One-Step Schemes The Lax-Wendroff and Crank-Nicolson Schemes Order of Accuracy Symbols...

Order of Accuracy

Both the Lax-Wendroff, and the Crank-Nicolson schemes can be written as $P_{k,h}v=R_{k,h}f$ evaluated at a grid point (t_n,x_m) ; and the expression involves a finite sum of terms involving $v_{m'}^{n'}$ and $f_{m'}^{n'}$. With this in mind, we can now give the definition of the order of accuracy of a scheme:

Definition (Order of Accuracy (version 0.99))

A scheme $P_{k,h}v=R_{k,h}f$ that is consistent with the differential equation Pu=f is accurate of order p in time and order q in space if for any smooth function $\Phi(t,x)$,

$$P_{k,h}\Phi - R_{k,h}P\Phi = \mathcal{O}\left(k^p + h^q\right).$$

We say that such a scheme is accurate of order (p, q).

Order of Accuracy and Consistency

In a sense the definition of the order of accuracy is an extension of consistency.

Consistency requires that $P_{k,h}\Phi - P\Phi \to 0$, as $(k,h) \to 0$. The order of accuracy is a measure of how fast this convergence is.

The Lax-Wendroff (slide 8) and Crank-Nicolson (slide 10) schemes are accurate of order (2, 2).

Note that the Lax-Wendroff scheme must be written in the consistent form

$$\frac{v_m^{n+1} - v_m^n}{k} = -\frac{a}{2h} \left(v_{m+1}^n - v_{m-1}^n \right) + \frac{a^2 k}{2h^2} \left(v_{m+1}^n - 2v_m^n + v_{m-1}^n \right)$$

$$+ \frac{1}{2} \left(f_m^{n+1} + f_m^n \right) - \frac{a\lambda}{4} \left(f_{m+1}^n - f_{m-1}^n \right) + \mathcal{O} \left(h^2 + k^2 \right),$$

Peter Blomgren, (blomgren.peter@gmail.com)

Order of Accuracy of Finite Difference Schemes — (13/28)

Convergence: Quality Special Case: Homogeneous Equations Explicit One-Step Schemes

in order for the order of accuracy to be apparent.

The Lax-Wendroff and Crank-Nicolson Schemes Order of Accuracy Symbols...

Symbols of Difference Schemes

Additional Tools

Another way of checking the accuracy of a scheme is to compare the **symbols** of the scheme and differential operator. This is usually more convenient than using the previous definition directly.

Definition (Symbol of the Difference Operator $P_{k,h}$)

The symbol $p_{k,h}(s,\xi)$ of a difference operator $P_{k,h}$ is defined by

$$P_{k,h}\left(e^{skn}e^{imh\xi}\right)=p_{k,h}(s,\xi)e^{skn}e^{imh\xi}.$$

That is, the symbol is the quantity multiplying the grid function $e^{skn}e^{imh\xi}$ after operating on this function with the difference operator.

Another Definition

The given definition of order of accuracy breaks for the Lax-Friedrichs scheme, in which the Taylor expansion contains the term $\frac{h^2}{k}\Phi_{xx}$.

A more general definition of order of accuracy is needed. Assuming that $k = \Lambda(h)$, where $\Lambda(h)$ is smooth, and $\Lambda(0) = 0$, we define:

Definition (Order of Accuracy)

A scheme $P_{k,h}v=R_{k,h}f$ with $k=\Lambda(h)$ that is consistent with the differential equation Pu=f is accurate of order ρ if for any smooth function $\Phi(t,x)$,

$$P_{k,h}\Phi - R_{k,h}P\Phi = \mathcal{O}(h^{\rho}).$$

With $\Lambda(h) = \lambda \cdot h$, the Lax-Friedrichs scheme is consistent with the one-way way equation; and 1st-order accurate $(\rho = 1)$.

Order of Accuracy of Finite Difference Schemes — (14/28)

Convergence: Quality Special Case: Homogeneous Equations Explicit One-Step Schemes

Peter Blomgren, (blomgren.peter@gmail.com)

The Lax-Wendroff and Crank-Nicolson Schemes
Order of Accuracy
Symbols...

Example: The Symbol of the Lax-Wendroff Scheme

We write the scheme as $P_{k,h}v_m^n = R_{k,h}f_m^n$:

$$\begin{split} &\frac{v_{m}^{n+1}-v_{m}^{n}}{k}+\frac{a}{2h}\left(v_{m+1}^{n}-v_{m-1}^{n}\right)-\frac{a^{2}k}{2h^{2}}\left(v_{m+1}^{n}-2v_{m}^{n}+v_{m-1}^{n}\right)\\ &=\frac{1}{2}\left(f_{m}^{n+1}+f_{m}^{n}\right)-\frac{a\lambda}{4}\left(f_{m+1}^{n}-f_{m-1}^{n}\right) \end{split}$$

and can identify the symbols

$$p_{k,h} = \frac{e^{sk} - 1}{k} + \frac{ia}{h}\sin(h\xi) + 2\frac{a^2k}{h^2}\sin^2\left(\frac{h\xi}{2}\right)$$

$$r_{k,h} = \frac{e^{sk} + 1}{2} - \frac{iak}{2h}\sin(h\xi)$$

$$1-\cos\theta=2\sin^2\left(rac{ heta}{2}
ight),\quad \sin\theta=2\sin\left(rac{ heta}{2}
ight)\cos\left(rac{ heta}{2}
ight).$$

Symbols of Differential Operators

We need something the compare our finite difference scheme against:

Definition (Symbol of the Differential Operator P)

The symbol $p(s,\xi)$ of the differential operator P is defined by

$$P\left(e^{st}e^{i\xi x}\right)=p(s,\xi)e^{st}e^{i\xi x}.$$

That is, the symbol is the quantity multiplying the function $e^{st}e^{i\xi x}$ after operating on this function with the differential operator.

The symbol of $P = \frac{\partial}{\partial t} + a \frac{\partial}{\partial x}$ (the one-way wave-equation differential operator), with the right-hand-side R = f are given by:

$$p(s,\xi) = s + ia\xi, \quad r(s,\xi) = 1.$$

2 of 2

Peter Blomgren, (blomgren.peter@gmail.com) Order of Accuracy of Finite Difference Schemes — (17/28)

Convergence: Quality Special Case: Homogeneous Equations Explicit One-Step Schemes

Using the Symbols $p_{k,h}$, $r_{k,h}$, $p(s,\xi)$ and $r(s,\xi)$

Usually, the form (*) from the theorem is the most convenient form for showing the order of accuracy. For the Lax-Wendroff scheme applied to the one-way wave equation, we get

$$p_{k,h}(s,\xi) - r_{k,h}(s,\xi)p(s,\xi) =$$

$$\frac{e^{sk} - 1}{k} + \frac{ia}{h}\sin(h\xi) + 2\frac{a^2k}{h^2}\sin^2\left(\frac{h\xi}{2}\right)$$

$$-\left[\frac{e^{sk} + 1}{2} - \frac{iak}{2h}\sin(h\xi)\right] \cdot [s + ia\xi].$$

This looks like a hopeless mess... We get the Taylor expansion using $\mathsf{Maple}^{\mathsf{TM}}$, and find

$$p_{k,h}(s,\xi)-r_{k,h}(s,\xi)p(s,\xi)\sim -\left[rac{s^3}{12}+rac{is^2a\xi}{4}
ight]k^2-\left[rac{ia\xi^3}{6}
ight]h^2+\ldots$$

hence, the Lax-Wendroff scheme is $\mathcal{O}(k^2 + h^2)$, i.e. order (2,2).

Using the Symbols $p_{k,h}$, $r_{k,h}$, $p(s,\xi)$ and $r(s,\xi)$

Consistency requires

$$\lim_{k,h\to 0} p_{k,h} = p(s,\xi), \quad \lim_{k,h\to 0} r_{k,h} = r(s,\xi),$$

the following theorem gives the order of accuracy:

Theorem (Order of Accuracy)

A scheme $P_{k,h}v = R_{k,h}f$ that is consistent with Pu = f is accurate of order (p, q) if and only if for each value of s and ξ ,

$$p_{k,h}(s,\xi) - r_{k,h}(s,\xi)p(s,\xi) = \mathcal{O}(k^p + h^q), \qquad (*)$$

or equivalently

$$\frac{p_{k,h}(s,\xi)}{r_{k,h}}-p(s,\xi)=\mathcal{O}\left(k^p+h^q\right).$$

1 of 2

Peter Blomgren, (blomgren.peter@gmail.com)

Order of Accuracy of Finite Difference Schemes — (18/28)

Convergence: Quality Special Case: Homogeneous Equations Explicit One-Step Schemes

The Lax-Wendroff and Crank-Nicolson Schemes

How to use Matlab / MapleTM for Taylor Expansions

Maple:

 $S := (\exp(s*k) - 1) / k + I*a/h * \sin(h*xi) +$ $2*a^2*k/h^2*sin(h*xi/2)^2 - ((exp(s*k) + 1)/2 -$ I*a*k / 2 / h * sin(h*xi)) * (s + I*a*xi):collect(simplify(mtaylor(S, [k,h], 4)),k);

Matlab:

svms s k h xi a $S = (exp(s*k) - 1)/k + i*a/h*sin(h*xi) + 2*a^2*k/h^2*sin(h*k)$ $(xi/2)^2 - ((exp(s*k)+1)/2 - i*a*k/2/h*sin(h*xi))*(s+i*a*xi)$ taylor(S,[k,h],'ExpansionPoint',[0.0],'Order',3)

ans =
$$(-(s^2 * (s + a * xi * i))/4 + s^3/6) * k^2 + a * h^2 * xi^3 * (-i/6)$$

Corollary (Order of Accuracy)

A scheme $P_{k,h}v = R_{k,h}f$ with $k = \Lambda(h)$ that is consistent with Pu = f is accurate of order ρ if and only if for each value of s and

$$\frac{p_{k,h}(s,\xi)}{r_{k,h}}-p(s,\xi)=\mathcal{O}\left(h^{\rho}\right).$$

Peter Blomgren, \(\text{blomgren.peter@gmail.com} \)

Order of Accuracy of Finite Difference Schemes — (21/28)

Special Case: Homogeneous Equations Explicit One-Step Schemes

Order of Accuracy for Homogeneous Equations

2 of 4

A

Definition (Symbol Congruence to Zero)

A symbol $a(s, \xi)$ is congruent to zero modulo a symbol $p(s, \xi)$, written

$$a(s,\xi) \equiv 0 \mod p(s,\xi),$$

if there is a symbol $b(s, \xi)$ such that

$$a(s,\xi) = b(s,\xi) \cdot p(s,\xi).$$

We also write

$$a(s,\xi) \equiv c(s,\xi) \mod p(s,\xi),$$

if

$$a(s,\xi)-c(s,\xi)\equiv 0 \bmod p(s,\xi)$$

i.e.

$$a(s,\xi) = b(s,\xi) \cdot p(s,\xi) + c(s,\xi).$$

Often, we are interested in the IVP with the homogeneous equation Pu = 0, rather than Pu = f. As stated, our theorem breaks, since we have no meaningful definition of $R_{k,h}$.

We extend our toolbox:

Definition (Symbol)

A symbol $a(s, \xi)$ is an infinitely differentiable function defined for complex values of s, with Re(s) > c for some constant c and for all real values of ξ .

This definition of a symbol includes the previously defined symbols for finite difference operators (polynomials in e^{ks} with coefficients that are polynomials or rational functions in $e^{ih\xi}$), and differential operators (polynomials in s and ξ), along with many other symbols...

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

Order of Accuracy of Finite Difference Schemes — (22/28)

Special Case: Homogeneous Equations Explicit One-Step Schemes

Order of Accuracy for Homogeneous Equations

3 of 4

With this extended toolbox, we have:

Theorem (Accuracy for Homogeneous Equations)

A scheme $P_{k,h}v = 0$, with $k = \Lambda(h)$, that is consistent with Pu = 0 is accurate of order ρ if

$$p_{k,h}(s,\xi) \equiv \mathcal{O}(h^{\rho}) \mod p(s,\xi).$$

Consider

$$p_{k,h}^{\mathsf{LW}}(s,\xi) = \frac{e^{sk}-1}{k} + \frac{ia}{h}\sin\left(h\xi\right) + 2\frac{a^2k}{h^2}\sin^2\left(\frac{h\xi}{2}\right),$$

and

$$p(s,\xi)=s+ia\xi.$$

The Taylor expansion of $p_{k,h}^{LW}(s,\xi)$ is

$$p_{k,h}^{\mathrm{LW}}(s,\xi) \sim \underbrace{\left[s + ia\xi\right]}_{p(s,\xi)} + \frac{1}{2} \underbrace{\left(s^2 + a^2\xi^2\right)}_{p(s,\xi) \cdot \overline{p(s,\xi)}} k + \left[\frac{1}{6}s^3\right] k^2 - \left[\frac{1}{6}ia\xi^3\right] h^2 + \dots$$

Hence

$$p_{k,h} \equiv \mathcal{O}\left(k^2 + h^2\right) \bmod p(s,\xi)$$

since

$$ho_{k,h} =
ho(s,\xi) \cdot \left(1 + rac{1}{2} \overline{
ho(s,\xi)}
ight) + \mathcal{O}\left(k^2 + h^2
ight).$$

Peter Blomgren, \(\text{blomgren.peter@gmail.com} \)

Order of Accuracy of Finite Difference Schemes — (25/28)

Convergence: Quality Explicit One-Step Schemes

Order of Accuracy of the Solution

In the last third of the semester we will show that:

The order of accuracy of the solution computed using (multiple time-steps of) the finite difference scheme is **equal** to that of the order of accuracy of the scheme, provided that the initial data is smooth.

Next time:

We examine the stability of the newly introduced schemes — Lax-Wendroff, and Crank-Nicolson; discuss some notation; talk about boundary conditions for finite difference schemes; and discuss how to efficiently propagate the solution using the Crank-Nicolson scheme.

Theorem (Accuracy for Explicit One-Step Schemes)

An explicit one-step scheme for hyperbolic equations that has the form

$$\mathbf{v}_{m}^{n+1} = \sum_{\ell=-\infty}^{\infty} \alpha_{\ell} \mathbf{v}_{m+\ell}^{n}$$

for homogeneous problems can be at most first-order accurate if all the coefficients α_1 are non-negative, except for trivial schemes for the one-way wave-equation with $a\lambda = \ell$, where ℓ is an integer, given by

$$v_m^{n+1}=v_{m-\ell}^n.$$

The proof (Strikwerda pp.71–72) uses our new "symbols toolbox" extensively. The Lax-Wendroff scheme is the explicit one-step second-order accurate scheme that uses the fewest number of grid-points.

Order of Accuracy of Finite Difference Schemes — (26/28)

Convergence: Quality Explicit One-Step Schemes

Truncated Genealogy

 $(Advisor \rightarrow Student)$

