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Recap Last Time

Last Time

We introduced the concept of order of accuracy, which
essentially is the measure of how fast a finite difference scheme
converges to the solution of the PDE, as we refine the grid.

The order of accuracy is identified (using Taylor expansions) as

O (kp + hq) ≡ order-(p, q), or with k = Λ(h), O (hρ) ≡ order-ρ

Two new schemes were introduced: The Lax-Wendroff (explicit)
and Crank-Nicolson (implicit) schemes, both are order-(2,2).

We introduced quite a bit of technology: the concept of symbols

(“fingerprints”) of the schemes and PDEs, and congruence to zero
modulo a symbol, so that in the end the analysis comes down to a
mechanical Taylor expansion and identification of terms.
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Stability
Notation

Boundary Conditions, Take #1
Propagating Crank-Nicolson

the Lax-Wendroff Scheme
the Crank-Nicolson Scheme
Summary: Lax-Wendroff vs. Crank-Nicolson

Stability of the Lax-Wendroff Scheme 1 of 3

We apply the Lax-Wendroff scheme

vn+1
m = vnm −

aλ

2

(
vnm+1 − vnm−1

)
+

a2λ2

2

(
vnm+1 − 2vnm + vnm−1

)
,

to the one-way wave equation, with right-hand-side f = 0 in order
to identify the amplification factor.
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We apply the Lax-Wendroff scheme

vn+1
m = vnm −

aλ

2

(
vnm+1 − vnm−1

)
+

a2λ2

2

(
vnm+1 − 2vnm + vnm−1

)
,

to the one-way wave equation, with right-hand-side f = 0 in order
to identify the amplification factor.

As per our recipe we set vnm  gn e imθ, where θ = hξ, and get

g(θ) = 1−
aλ

2

(

e iθ − e−iθ
)

+
a2λ2

2

(

e iθ − 2 + e−iθ
)

= 1− iaλ sin(θ)− a2λ2(1− cos(θ))

= 1− 2a2λ2 sin2
(
θ

2

)

− iaλ sin(θ).

|g(θ)|2 =

[

1− 2a2λ2 sin2
(
θ

2

)]2

+ [aλ sin(θ)]2

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Stability of LW and CN; Boundary Conditions — (4/27)



Stability
Notation

Boundary Conditions, Take #1
Propagating Crank-Nicolson

the Lax-Wendroff Scheme
the Crank-Nicolson Scheme
Summary: Lax-Wendroff vs. Crank-Nicolson

Stability of the Lax-Wendroff Scheme 11
2 of 3

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Lax−Wendroff g(θ)

 

 

Barrier

aλ=0.25

aλ=0.50

aλ=0.75

aλ=0.95

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Stability of LW and CN; Boundary Conditions — (5/27)



Stability
Notation

Boundary Conditions, Take #1
Propagating Crank-Nicolson

the Lax-Wendroff Scheme
the Crank-Nicolson Scheme
Summary: Lax-Wendroff vs. Crank-Nicolson

Stability of the Lax-Wendroff Scheme 2 of 3

|g(θ)|2 =

[

1− 2a2λ2 sin2
(
θ

2

)]2

+ [aλ sin(θ)]2

=

[

1− 2a2λ2 sin2
(
θ

2

)]2

+

[

2aλ sin

(
θ

2

)

cos

(
θ

2

)]2

= 1− 4a2λ2 sin2
(
θ

2

)

+ 4a4λ4 sin4
(
θ

2

)

+4a2λ2 sin2
(
θ

2

)

cos2
(
θ

2

)

= 1− 4a2λ2 sin2
(
θ

2

)[

1− cos2
(
θ

2

)]

+ 4a4λ4 sin4
(
θ

2

)

= 1− 4a2λ2 sin4
(
θ

2

)

+ 4a4λ4 sin4
(
θ

2

)

= 1− 4a2λ2
[
1− a2λ2

]
sin4

(
θ

2

)
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|g(θ)|2 = 1− 4a2λ2
[
1− a2λ2

]
sin4

(
θ

2

)

︸ ︷︷ ︸

γ(θ)

In order for |g(θ)| ≤ 1, we must have that 0 ≤ γ(θ) ≤ 2. This
gives us the condition |aλ| ≤ 1. �

At this point we know

Lax-Wendroff

Mode Explicit
Order of Accuracy (2,2)
Stability Criterion |aλ| ≤ 1 (CFL)
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Stability of the Crank-Nicolson Scheme 1 of 2

After the excitement of verifying the stability for the Lax-Wendroff
scheme, we now attack the Crank-Nicolson scheme

vn+1
m − vnm

k
+ a

vn+1
m+1 − vn+1

m−1 + vnm+1 − vnm−1

4h
= 0,

with the same toolbox.

The usual vnm  gn e imθ, gives us

g − 1

k
+ a

g(e iθ − e−iθ) + (e iθ − e−iθ)

4h
= 0,

so that

g − 1 + iaλ
(g + 1) sin(θ)

2
= 0.
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We write

g − 1 + iaλ
(g + 1) sin(θ)

2
= 0,

as

g

[

1 +
iaλ

2
sin(θ)

]

−

[

1−
iaλ

2
sin(θ)

]

= 0.

Finally,

g(θ) =
1− iaλ

2 sin(θ)

1 + iaλ
2 sin(θ)

, |g(θ)|2 =
1+ a2λ2

4 sin2(θ)

1+ a2λ2

4 sin2(θ)
= 1.
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We write

g − 1 + iaλ
(g + 1) sin(θ)

2
= 0,

as

g

[

1 +
iaλ

2
sin(θ)

]

−

[

1−
iaλ

2
sin(θ)

]

= 0.

Finally,

g(θ) =
1− iaλ

2 sin(θ)

1 + iaλ
2 sin(θ)

, |g(θ)|2 =
1+ a2λ2

4 sin2(θ)

1+ a2λ2

4 sin2(θ)
= 1.

Hence,

Property: Unconditional Stability of Crank-Nicolson

The Crank-Nicolson scheme is stable for any value of aλ, we say
that it is unconditionally stable.
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Summary: Lax-Wendroff vs. Crank-Nicolson

Lax-Wendroff Crank-Nicolson

Mode Explicit Implicit
Order of Accuracy (2,2) (2,2)
Stability Criterion |aλ| ≤ 1 (CFL) Unconditionally Stable

The Lax-Wendroff scheme is easier to propagate (since it is
explicit), but if the speed a is large, the stability criterion may
impose a severe time-step restriction, recall k = h/|a|.

The fact that the Crank-Nicolson scheme is unconditionally stable
makes it (and variants) extremely useful; the only down-side is that
for each time-step we must solve a linear system Av̄n+1 = b̄n(v̄

n).
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Difference Notation and the Difference Calculus

We introduce the following notation

δ+vm =
vm+1 − vm

h
︸ ︷︷ ︸

Forward Difference

, δ−vm =
vm − vm−1

h
︸ ︷︷ ︸

Backward Difference

δ0vm =
1

2
(δ+ + δ−)vm =

vm+1 − vm−1

2h
︸ ︷︷ ︸

Central Difference

.

Further, we can define the second difference operator
δ2 = δ+δ− ≡ δ+−δ−

h
:

δ2vm =
vm+1 − 2vm + vm−1

h2
.

We can define the corresponding time-differences δt+, δt−, δt0,
and δ2t ...
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Difference Notation and the Difference Calculus

What’s The Use??? — Deriving Higher-Order Approximations

Consider the Taylor expansion of the central difference operator

δ0u =
du

dx
+

h2

6

d3u

dx3
+O

(
h4
)
=

[

1 +
h2

6
δ2
]
du

dx
+O

(
h4
)

where, in the second equality we have used

δ2u =
d2u

dx2
+O

(
h2
)
.

Now, formally (symbolically)

du

dx
=

[

1 +
h2

6
δ2
]−1

δ0u +O
(
h4
)
.

The inverse operator [◦]−1 is (almost) always eliminated by
operating on both sides with the operator [◦] itself...
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Difference Notation and the Difference Calculus

Example: A Fourth Order Approximation to ux = f

Applying what we have developed to the equation

du

dx
= f ,

we get

[

1 +
h2

6
δ2
]−1

δ0vm = fm (1)

δ0vm =

[

1 +
h2

6
δ2
]

fm (2)

vm+1 − vm−1

2h
= fm +

1

6
[fm+1 − 2fm + fm−1] (3)

=
1

6
[fm+1 + 4fm + fm−1] .

If/When the right-hand-side is simply fm, we only have a second order
approximation...
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Difference Notation and the Difference Calculus

Example: Another Possibility — 4th Order Scheme

We can go a slightly different route:

δ0u =
du

dx
+

h2

6

d3u

dx3
+O

(
h4
)
=

du

dx
+

h2

6
δ2δ0u +O

(
h4
)
,

so that

[

1−
h2

6
δ2
]

δ0u =
du

dx
+O

(
h4
)
.

From which we get the fourth order scheme

−vm+2 + 8vm+1 − 8vm−1 + vm−2

12h
= fm.

Clearly, this notation may come in handy...
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Propagating Crank-Nicolson

Examples of Numerical Boundary Conditions

Boundary Conditions — Physical

We have seen that when we solve IVPs
in finite physical domains, we need physi-
cal boundary conditions at the boundaries
where characteristics enter the domain.
— This corresponds to a physical process,
such as keeping a temperature constant (or
varying in time), regulating the flow of water
through the turbines in a dam, the absorp-
tion of sound in the ceiling and walls of your
subterranean media room...

Clearly, a numerical scheme must accurately capture these physical
boundary conditions.
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Boundary Conditions — (Additional) Numerical

Further, many numerical schemes also require additional boundary
conditions, called numerical boundary conditions in order for the
solution to be well defined (unique).

Numerical boundary conditions often arise for reasons similar to
the ones that impose the need for additional numerical initial
conditions (for multi-step schemes) and/or to make a finite
computational domain “act” infinite.

Dealing with boundary conditions, physical and/or numerical is
many times the most difficult part of simulating a PDE.
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Boundary Conditions

For our discussion we use the Lax-Wendroff scheme

vn+1
m = vnm −

aλ

2

(
vnm+1 − vnm−1

)
+

a2λ2

2

(
vnm+1 − 2vnm + vnm−1

)
,

applied to the equation

ut + aux = 0, 0 ≤ x ≤ 1, t ≥ 0.

But, we run into problems at the boundaries, some points are
“missing:”
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Boundary Conditions

Let’s assume that k = h, i.e. λ = 1, and a = 0.5 > 0, then the
characteristics come in from the left, and we must have [due to
well-posedness] a physical boundary condition there:

We still need do so something at the right boundary, xM ...
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Examples of Numerical Boundary Conditions

Here are some possibilities:

vn+1
M = vn+1

M−1 (1)

vn+1
M = 2vn+1

M−1 − vn+1
M−2 (2)

vn+1
M = vn

M−1 (3)

vn+1
M = 2vn

M−1 − vn−1
M−2 (4)

Formulas (1) and (2) are simple extrapolations of interior grid points to
the boundary. Formulas (3) and (4) are referred to as
quasi-characteristic extrapolation, since the extrapolation uses points
“near” the characteristics. Usually, but not always, it is better to use
one-sided difference formulas at the boundaries, i.e.

vn+1
M = vn

M − aλ(vn
M − vn

M−1). (5)
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Problems that Can Occur Accuracy & Stability

The decision on what to do at the boundary may seem like a small
one... We’re only talking about what to do at one point, and quite
possibly we may have thousands or billions of interior points...

However, any error we introduce at the boundary will
eventually affect the entire solution:

If we have a 4th order scheme (in the interior), but use a sloppy
1st order one-sided difference at the boundary, then the overall
scheme is only 1st order.

In addition, the boundary condition will affect the stability of
the scheme!

We will re-visit these issues again (and again), in more detail; for
now, we ponder the table on the next slide.
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Stability Impact of Boundary Conditions

Boundary Condition (slide 20)
Scheme (1) (2) (3) (4)

Leapfrog unstable unstable stable† stable†

Crank-Nicolson stable‡ stable‡ aλ < 2 aλ < 2
† conditionally stable; ‡ unconditionally stable.

The effect of incorrect boundary conditions are usually oscillations in the
solution. These oscillations may be observed away from the boundary,
which makes it hard to correctly diagnose the cause of the problem.

Usually, if you suspect that an unstable numerical boundary condition is
causing instability, the easiest way to pinpoint the problem is to change
the boundary condition and observe the solution.

We will return to the analysis of boundary conditions, but we need more
(mathematical) tools before we do so.
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Propagating Crank-Nicolson: Solving Tridiagonal Systems 1 of 3

We now return to the issue of propagating the Crank-Nicolson
scheme

vn+1
m − vnm

k
+ a

vn+1
m+1 − vn+1

m−1 + vnm+1 − vnm−1

4h
= 0.

We rewrite this so we have all the unknown terms to the left, and
the known terms to the right

−
[ a

4h

]

vn+1
m−1+

[
1

k

]

vn+1
m +

[ a

4h

]

vn+1
m+1 =

a

4h
vnm−1 +

1

k
vnm −

a

4h
vnm+1

︸ ︷︷ ︸

bnm

,

where if the x-grid is given by x0, x1, . . . , xM , the index m runs
from 1 to (M − 1), and we apply appropriate boundary conditions
at x0 and xM .
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Propagating Crank-Nicolson: Solving Tridiagonal Systems 2 of 3

This gives rise to a tri-diagonal system










1 0
−α β α

. . .
. . .

. . .

−α β α
0 −1 1



















v0
v1
...

vM−1

vM










n+1

=










b0
b1
...

bM−1

0










n

where α = a/4h, β = 1/k ; bn0 = ϕ(tn+1) is the specification of the
physical boundary condition at (tn+1, x0); the last row
−vM−1 + vM = 0 corresponds to (BC-1 on slide 20); and bn1
through bnM−1 are computed according to the previous slide.
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Propagating Crank-Nicolson: Solving Tridiagonal Systems 3 of 3

A tri-diagonal system like this can be solved on O (M) operations,
which should be compared with the more general requirement
O
(
M3

)
for a full matrix. The Thomas Algorithm is discussed in

Math 541, and is also presented in Strikwerda.

A matlab implementation (without error checking, for brevity) is
presented on the next slide.

In order for the algorithm to work, the tridiagonal matrix T “must
be in compact form: the sub-diagonal elements in the first
column, the diagonal in the second column, and the
super-diagonal in the third column. [...] Note that T(1,1)
and T(n,3) are never accessed, i.e. the sub-diagonal entries
start on the second row, and the super-diagonal elements
end on the (n-1)st row.”
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Thomas Algorithm for Tridiagonal Systems

Thomas Algorithm for Tridiagonal Systems [matlab]

function [x] = trisolve(T,b)

[n,m] = size(T);

work = zeros(n,1);

work(1) = T(1,2);

x(1,:) = b(1,:);

% Forward sweep.

for i=2:n

beta = T(i,1)/work(i-1);

x(i,:) = b(i,:) - beta*x(i-1,:);

work(i) = T(i,2) - beta*T(i-1,3);

end

x(n,:) = x(n,:)/work(n);

% Backward sweep.

for i=n-1:-1:1

x(i,:) = (x(i,:) - T(i,3)*x(i+1,:)) / work(i);

end
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Homework #2 — Due 2/23/2018, 12:00pm

Strikwerda-2.1.4 — Theoretical

Strikwerda-2.1.5 — Theoretical

Strikwerda-2.2.1 — Theoretical

Strikwerda-2.2.4 — Theoretical

Strikwerda-3.2.1 — Theoretical

Strikwerda-3.2.3 — Theoretical

Strikwerda-3.4.1 — Numerical
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