

The main course on the menu was the discussion on **boundary conditions**. For finite difference schemes we must both respect **physical boundary conditions** as well as (sometimes) introduce additional **numerical boundary conditions**. The implementation of these boundary conditions affect both the **order of accuracy**, and **stability** of the scheme.

 $|a\lambda| \leq 1.$

For systems of equations for which $\overline{\mathbf{v}}$ is a vector and α , β , and γ are matrices, we must have $|a_i\lambda| \leq 1$ for all eigenvalues a_i of the matrix A.

- (3/28)

Peter Blomgren, (blomgren.peter@gmail.com) Stability for Multistep Schemes

Courant-Friedrichs-Lewy (CFL) condition.

Ê

IEGO STAT

Stability for Multistep Schemes Introduction General Multistep Schemes the Leapfrog Scheme Parasitic Modes Parasitic Modes		Stability for Multistep Schemes Introduction General Multistep Schemes Parasitic Modes	
Stability for Multistep Schemes: Introduction	2 of 2	Stability for the Leapfrog Scheme	1 of 6
Theorem (Von Neumann Stability) A one-step finite difference scheme (with constant coefficients) is stable in a stability region Λ if and only if there is a constant K (independent o θ , k, and h) such that	of	The leapfrog (central-time-central-space) scheme for the homogeneous one-way wave equation is given by $\frac{v_m^{n+1} - v_m^{n-1}}{2k} + a \frac{v_{m+1}^n - v_{m-1}^n}{2h} = 0.$	
$ g(\theta, k, h) \le 1 + Kk$, with $(k, h) \in \Lambda$. If $g(\theta, k, h)$ is independent on h and k, the stability condition can be replaced with the restricted stability condition			
$ g(heta) \leq 1.$			
Now, we extend this analysis to multi-step schemes. Starting with the leap-frog scheme, moving to general multi-step schemes. Additional theoretical tools: — the Schur, and von Neumann polynomials which wil help us determine stability criteria for multi-step methods.	II FINIS SAN DIEGO STATE UNIVERSITY	As usual we set $v_m^n \rightsquigarrow g^n e^{imh\xi}$ (from application of the Fourier inversion formula), and eliminate common factors (here $g^{n-1}e^{imh\xi}$).	San Dirgo State University
Peter Blomgren, (blomgren.peter@gmail.com) Stability for Multistep Schemes -	- (5/28)	Peter Blomgren, {blomgren.peter@gmail.com} Stability for Multistep Schemes	— (6/28)
Stability for Multistep Schemes Introduction General Multistep Schemes Parasitic Modes		Stability for Multistep Schemes General Multistep Schemes Introduction the Leapfrog Scheme Parasitic Modes	
Stability for the Leapfrog Scheme	2 of 6	Stability for the Leapfrog Scheme	3 of 6
We get — $(h\xi \equiv \theta, \text{ throughout this lecture})$ — $\frac{v_m^{n+1} - v_m^{n-1}}{2} + a \frac{v_{m+1}^n - v_{m-1}^n}{2} = 0$		Sometimes it is useful to rewrite (2) in the form $\widehat{v}^{n}(\xi) = A(\xi)g_{+}(h\xi)^{n} + B(\xi) \left[\frac{g_{-}(h\xi)^{n} - g_{+}(h\xi)^{n}}{g_{-}(h\xi)^{n}} \right]$	(3)
$\frac{\frac{2k}{g^2-1}}{\frac{2k}{2k}} + a\frac{g(e^{i\theta}-e^{-i\theta})}{2h} = 0$		where $A(\xi)$ and $B(\xi)$ are determined by initial conditions.	
$\mathbf{g}^2 - 1 + 2\mathbf{i}\mathbf{a}\lambda\sin(heta)\mathbf{g} = 0$		II. When $\mathbf{g}_+ = \mathbf{g} = g$, the solution is given by	
Hence,		$\tilde{\mathbf{v}}''(\xi) = A(\xi)g(h\xi)'' + n \cdot B(\xi)g(h\xi)''^{-1},$	(4)
$g_{\pm}(heta) = -ia\lambda\sin(heta) \pm \sqrt{1 - (a\lambda)^2\sin^2(heta)}.$ (1)	.)	where $A(\xi)$, and $B(\xi)$ are related to $\widehat{v}^0(\xi)$, and $\widehat{v}^1(\xi)$ by	
I. When $\mathbf{g}_+ eq \mathbf{g}$, the solution is given by		$ \begin{array}{lll} A(\xi) &=& \widehat{v}^0(\xi) \\ B(\xi) &=& \widehat{v}^1(\xi) - \widehat{v}^0(\xi)g(h\xi). \end{array} $	(5)
$\widehat{v}^n(\xi) = A_+(\xi)g_+(h\xi)^n + A(\xi)g(h\xi)^n,$ (2 and $A_\pm(\xi)$ are determined by initial conditions.	SAN DIEGO STATE	We will refer back to these expressions when we analyze the stability of the scheme.	of SAN DIEGO STATE

— (7/28)

Peter Blomgren, {blomgren.peter@gmail.com} Stability for Multistep Schemes

Peter Blomgren, {blomgren.peter@gmail.com} Stability for Multistep Schemes

Schemes

— (8/28)

Stability for	Multistep	Schemes	Int
General	Multistep	Schemes	Pa

Leapfrog Scheme asitic Mode

4 of 6

Ê

SAN DIEGO ST UNIVERSIT

- (11/28)

We discuss the stability in terms of

Definition (Stable Scheme)

Stability for the Leapfrog Scheme

A finite difference scheme $P_{k,h}v_m^n = 0$ for a first-order equation is **stable** in a stability region Λ if there is an integer J such that for any positive time T, there is a constant C_T such that

oduction

$$h\sum_{m=-\infty}^{\infty}\left|v_{m}^{n}\right|^{2}\leq C_{T}h\sum_{j=0}^{J}\sum_{m=-\infty}^{\infty}\left|v_{m}^{j}\right|^{2},$$

for 0 < nk < T, with $(k, h) \in \Lambda$.

with the integer J = 1.

First, we consider the case where $g_+ \neq g_-$, and **choose** the initial conditions so that $B(\xi) \equiv 0$.

Peter Blomgren, (blomgren.peter@gmail.com)

Stability for Multistep Schemes General Multistep Schemes

Stability for the Leapfrog Scheme

From (1), with $|\mathbf{a}\lambda| \leq \mathbf{1}$ we have that

$$|g_{\pm}|^2 = 1 - (a\lambda)^2 \sin^2(\theta) + (a\lambda)^2 \sin^2(\theta) = 1$$

and when $|\mathbf{a}\lambda| > \mathbf{1}$, we get

 $|g_{-}(\pi/2)| = |a\lambda| + \sqrt{(a\lambda)^2 - 1} > |a\lambda| > 1.$

Hence, $|a\lambda| \leq 1$ is a necessary condition for stability.

But... We're not done. — We must also look at the case $g_+ = g_-$. This equality holds only when $|a\lambda| = 1$, and $\theta = \pm \pi/2$. For these two values we get $g = \pm i$, and the solutions

 $\widehat{\mathbf{v}}^n\left(\pm \pi/2h\right) = A\left(\pm \pi/2h\right)\left(\mp i\right)^n + \mathbf{n} \cdot B\left(\pm \pi/2h\right)\left(\mp i\right)^{n-1}.$

Since this term grows linearly in *n*, the leapfrog scheme is unstable for $|a\lambda| = 1$. Hence, the leapfrog scheme is stable $\Leftrightarrow |a\lambda| < 1$.

Stability for the Leapfrog Scheme

Now, with this setup and using (3) we have

$$|\widehat{v}^n(\xi)| = |A(\xi)| \cdot |g_+(h\xi)|^n,$$

and it follows that we must require

 $|g_{+}(h\xi)| < 1 + Kk,$

for stability. Application with different initial conditions (such that $A(\xi) \equiv 0$ gives the same restriction on $g_{-}(h\xi)$. When λ is constant, the restricted conditions

 $|g_+(h\xi)| < 1$,

The Leapfrog scheme (and other two-step schemes) require that in addition to the initial values v_m^0 , the first time level v_m^1 must also be initialized.

Any consistent one-step scheme, even an unstable one, can be used to initialize v_m^1 . Since the unstable scheme is applied only once, the error growth is minimal.

Further, if the grid parameter λ is constant, then the initialization scheme can be accurate of one order less than that of the two-step scheme, without degrading the overall accuracy of the scheme.

Thus, we have found a potential use for the unstable forward-time central-space scheme; — as an initializer for the leap-frog scheme.

Stability for Multistep Schemes

SAN DIEGO ST/ UNIVERSITY - (12/28)

5 of 6

Stability for Multistep Schemes General Multistep Schemes	Introduction the Leapfrog Scheme Parasitic Modes
General Multistep Schemes	the Leaptrog Sch Parasitic Modes

Parasitic Modes of the Leapfrog Scheme

Based on taking the first step using the forward-time central-space scheme, and Taylor expanding the square roots in the expressions for $g_{\pm}(\theta)$:

$$\begin{split} \mathsf{g}_+(\theta) &= 1 - ia\lambda\sin(\theta) - \frac{1}{2}a^2\lambda^2\sin^2(\theta) + \mathcal{O}\left(h^4\right), \\ \mathsf{g}_-(\theta) &= -1 - ia\lambda\sin(\theta) + \frac{1}{2}a^2\lambda^2\sin^2(\theta) + \mathcal{O}\left(h^4\right), \end{split}$$

now, using (5), we get

$$B(\xi) = \left[\frac{1}{2}a^2\lambda^2\sin^2(\theta) + \mathcal{O}\left(\theta^4\right)\right]\widehat{v}^0(\xi).$$

For $|\theta|$ small, $|B(\xi)| = O(\theta^2)$, *i.e.* small, the scheme behaves like a one-step scheme with amplification factor $g_+(\theta)$. SAN DIEGO STA UNIVERSITY

We consider the one-way wave-equation, with constant speed a = 1, in the interval [-1, 1], with initial conditions

$$v_m^0 = \left\{ egin{array}{c} \cos^2(\pi x_m) & ext{if } |x_m| \leq rac{1}{2} \\ 0 & ext{otherwise} \end{array}
ight.$$

At the left boundary (x = -1) we set $v_0^n = 0$ (which is consistent with the equation), and at the right boundary (x = 1) we also set $v_M^0 = 0$ (which is inconsistent with the equation).

The inconsistent boundary condition will transfer energy into the parasitic mode.

We set the grid parameter $\lambda = 0.9$, and h = 1/20.

From the expressions

Parasitic Modes of the Leapfrog Scheme

Stability for Multistep Schemes

General Multistep Schemes

$$\begin{aligned} \widehat{v}^n(\xi) &= A_+(\xi)g_+(h\xi)^n + A_-(\xi)g_-(h\xi)^n, \\ g_\pm(\theta) &= -ia\lambda\sin(\theta)\pm\sqrt{1-(a\lambda)^2\sin^2(\theta)}, \end{aligned}$$

Introduction

Parasitic Modes

the Leapfrog Scheme

we see that the solution of the leapfrog scheme consists of two parts, associated with $g_{+}(\theta)$, and $g_{-}(\theta)$. We note that $g_{+}(0) = 1$, and $g_{-}(0) = -1$.

We examine how the two parts contribute to the solution.

If we use the forward-time central-space scheme for initialization, then we have

$$\widehat{\nu}^1(\xi) = (1 - ia\lambda\sin(\theta))\widehat{\nu}^0(\xi).$$

Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} angle$	Stability for Multistep Schemes	— (13/28)	Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} angle$	Stability for Multistep Schemes
Stability for Multistep Schemes General Multistep Schemes	Introduction the Leapfrog Scheme Parasitic Modes		Stability for Multistep Schemes General Multistep Schemes	Introduction the Leapfrog Scheme Parasitic Modes
Parasitic Modes of the Leapfrog Sche	eme	3 of 3	Example: Parasitic Modes	

1 of 3

Å

SAN DIEGO ST/ UNIVERSITY

Ê SAN DIEGO STA

- (15/28)

When $|\theta|$ is not small, $B(\xi)$ is not necessarily small, and the effect of the second amplification factor $g_{-}(\theta)$ is felt.

The portion of the solution associated with $g_{-}(\theta)$ is called the **parasitic mode**. Since $g_{-}(0) = -1$, the parasitic mode induces rapid oscillations in time.

The parasitic mode travels in the wrong direction. When *a* is positive, the parasitic mode travels to the left, and when a is negative it travels to the right.

SAN DIEGO S

— (16/28)

- (14/28)

1 of 3

Introduction the Leapfrog Scheme Parasitic Modes

Example: Parasitic Modes

time T=0.86 (3rd panel), the exact solution is leaving the domain, but the inconsistent boundary condition is starting to pump energy into the parasitic mode, which propagates to the left (panels 4-6).

Peter Blomgren, (blomgren.peter@gmail.com)

Stability for Multistep Schemes **General Multistep Schemes**

Introduction the Leapfrog Scheme Parasitic Modes

Stability for Multistep Schemes

Example: Other Boundary Conditions

We re-run the same problem with different boundary conditions:

Eqn	Boundary Condition	Movie
3.4.1a	$v_M^{n+1} = v_{M-1}^{n+1}$	leapfrog_ftcs_341a.mpg
3.4.1b	$v_M^{n+1} = 2v_{M-1}^{n+1} - v_{M-2}^{n+1}$	leapfrog_ftcs_341b.mpg
3.4.1c	$v_M^{n+1} = v_{M-1}^n$	leapfrog_ftcs_341c.mpg
3.4.1d	$v_M^{n+1} = 2v_{M-1}^n - v_{M-2}^{n-1}$	leapfrog_ftcs_341d.mpg

At first glance (wave leaving the domain) **3.4.1a** and **3.4.1b** seem to perform OK; however, the instability causes the numerical solution to blow up rapidly.

Boundary conditions **3.4.1c 3.4.1d** are stable, and after the solution leaves the domain only some very minor oscillations remain.

Stability for Multistep Schemes General Multistep Schemes

Introduction the Leapfrog Scheme Parasitic Modes

Example: Parasitic Modes

2 of 3

- (17/28)

SAN DIEGO

Figure: The exact (black solid), and the numerical (blue, with o-markers) solutions. At time T=2.66 (1st panel), the parasitic mode hits the right boundary and bounces back (T=3.11, 2nd panel), and the reflected energy almost perfectly restores the initial shape of the pulse (T=3.56, 3rd panel). We note that Dirichlet-type (fixed) boundary conditions are reflecting for the wave-equation.

The effects of parasitic modes can be reduced by the use of (numerical) dissipation, which we will discuss next week.

See also Movie: leapfrog_ftcs.mpg.

Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} angle$	Stability for Multistep Schemes	— (18/28)
Stability for Multistep Schemes General Multistep Schemes	Stability — the Return of the Symbol A Simple Example Stability in General Terms	
Stability for General Multisten Schen	ies	1 of 2

Stability for General Multistep Schemes

"The Return of the Symbol"

We can express the stability of a multistep scheme in several ways, including using the symbol of the scheme:

The stability of a multistep scheme $P_{k,h}v = R_{k,h}f$ is determined by the roots of the amplification polynomial

$$\Phi(g,\theta) = k p_{k,h}\left(\frac{\ln(g)}{k}, \frac{\theta}{h}\right),$$

or, equivalently

$$\Phi\left(e^{sk},h\xi\right)=k\,p_{k,h}(s,\xi).$$

Alternatively, and more familiarly, Φ can be obtained by requiring that $v_m^n = g^n e^{im\theta}$ is a solution to $P_{k,h}v = 0$, and $\Phi(g,\theta)$ is the polynomial of which g must be a root so that $v_m^n = g^n e^{im\theta}$ is a solution of $P_{k,h}v = R_{k,h}f$.

Peter Blomgren, (blomgren.peter@gmail.com)

SAN DIEGO STA

— (20/28)

Ê SAN DIEGO SI UNIVERSIT

Stability for Multistep Schemes General Multistep Schemes

Stability — the Return of the Symbol A Simple Example Stability... in General Terms

Stability for General Multistep Schemes

Peter Blomgren, (blomgren.peter@gmail.com)

We assume that the scheme involves $\sigma + 1$ time-levels, and therefore Φ is a polynomial of degree σ . The integer J in the stability definition is taken to be σ .

For now, we will largely ignore the relation between Φ and the symbol $p(s,\xi)$. This relation will, however, be important when we later discuss convergence of multi-step schemes.

OK, our old trick $v_m^n \rightsquigarrow g^n e^{im\theta}$, and eliminating common factors **Fantastic!** — A second order polynomial with a complex will work (phew!). coefficient on the quadratic term; which should be investigated $\forall \theta$. Still we will run into some trouble. The analysis of this scheme is much harder than that of the leapfrog scheme; we need additional tools from complex analysis and the concepts of Schur, and von Neumann polynomials. This Ê Ê SAN DIEGO ST SAN DIEGO STAT will all be developed in next lecture. Peter Blomgren, (blomgren.peter@gmail.com) Peter Blomgren, (blomgren.peter@gmail.com) Stability for Multistep Schemes Stability for Multistep Schemes - (21/28) - (22/28) Stability — the Return of the Symbol Stability — the Return of the Symbol Stability for Multistep Schemes Stability for Multistep Schemes A Simple Example A Simple Example **General Multistep Schemes** General Multistep Schemes Stability... in General Terms Stability... in General Terms Moving Along... Distinct Roots Roots of Multiplicity > 11 of 2 We now look at the case when $\Phi(g, \theta)$ has **roots of higher** Still, we can talk about the stability in general terms: --**multiplicity**. For simplicity, lets assume that $\Phi(g, \theta)$ is independent of k and h so that the restricted stability criterion can If the roots, g_{ν} of $\Phi(g, \theta)$ are **distinct**, then the solution to the be used. homogeneous difference scheme is given by Suppose $g_1(\theta_0)$ is a multiple root of $\Phi(g, \theta)$ at θ_0 ; then $\hat{v}_m^n = [g_1(\theta_0)^n B_0 + ng_1(\theta_0)^{n-1} B_1] e^{im\theta_0}$ $\widehat{v}^n = \sum_{\lambda} g_{\nu}(h\xi)^n A_{\nu}(\xi), \quad A_{\nu}(\xi)$ determined by initial conditions. is a solution of the difference equation. If $B_0 = 0$ (carefully selected initial conditions), then The stability condition is $|\widehat{\mathbf{v}}_{m}^{n}| = n|g_{1}(\theta_{0})|^{n-1}|B_{1}|.$ $|g_{\nu}(h\xi)| < 1 + Kk, \quad \nu = 1, \dots, \sigma.$ When $|\mathbf{g}_1(\theta_0)| < 1$, we have $|\widehat{v}_m^n| \le C \left[|g_1(\theta_0)| \log \left(\frac{1}{|g_1(\theta_0)|} \right) \right]^{-1} |B_1|.$ When $\Phi(g, \theta)$ is independent of k and h, we can set K = 0.

Ê SAN DIEGO ST

- (23/28)

Stability for Multistep Schemes

2 of 2

SAN DIEGO S

— (24/28)

Stability for Multistep Schemes

A Simple? Example

Consider the multistep scheme for the one-way wave equation

$$\frac{3v_m^{n+1} - 4v_m^n + v_m^{n-1}}{2k} + a\frac{v_{m+1}^{n+1} - v_{m-1}^{n+1}}{2h} = f_m^{n+1}$$

— this scheme is order-(2,2) and unconditionally stable.

The amplification polynomial is

Peter Blomgren, (blomgren.peter@gmail.com)

$$\Phi(g,\theta) = \left[\frac{3+2ia\lambda\sin(\theta)}{2}\right]g^2 - 2g + \frac{1}{2}.$$

