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Recap Last Time

Last Time

We checked the stability of the Lax-Wendroff and Crank-Nicolson
schemes, and came up with the following:

Lax-Wendroff Crank-Nicolson
Mode Explicit Implicit
Order of Accuracy (2,2) (2,2)
Stability Criterion |aλ| ≤ 1 (CFL) Unconditionally Stable

Difference Notation
{
δ+, δ−, δ0, δ2

}
and the Difference Calculus,

was introduced as a convenient tool to derive higher order schemes.

The main course on the menu was the discussion on boundary
conditions. For finite difference schemes we must both respect
physical boundary conditions as well as (sometimes) introduce
additional numerical boundary conditions. The implementation
of these boundary conditions affect both the order of accuracy,
and stability of the scheme.
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Stability for Multistep Schemes: Introduction 1 of 2

We have seen the necessary and sufficient conditions for the stability of
one-step schemes:

Theorem (The CFL Condition)

For an explicit scheme for the hyperbolic equation

ut + aux = 0,

of the form
vn+1
m = αvn

m+1 + βvn
m + γvn

m−1,

with λ = k/h held constant, a necessary condition for stability is the
Courant-Friedrichs-Lewy (CFL) condition,

|aλ| ≤ 1.

For systems of equations for which v̄ is a vector and α, β, and γ are
matrices, we must have |aiλ| ≤ 1 for all eigenvalues ai of the matrix A.
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Stability for Multistep Schemes: Introduction 2 of 2

Theorem (Von Neumann Stability)

A one-step finite difference scheme (with constant coefficients) is stable
in a stability region Λ if and only if there is a constant K (independent of
θ, k, and h) such that

|g(θ, k , h)| ≤ 1 + Kk ,

with (k , h) ∈ Λ. If g(θ, k , h) is independent on h and k, the stability
condition can be replaced with the restricted stability condition

|g(θ)| ≤ 1.

Now, we extend this analysis to multi-step schemes. Starting with
the leap-frog scheme, moving to general multi-step schemes. Additional
theoretical tools: — the Schur, and von Neumann polynomials which will
help us determine stability criteria for multi-step methods.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Stability for Multistep Schemes — (5/28)

Stability for Multistep Schemes
General Multistep Schemes

Introduction
the Leapfrog Scheme
Parasitic Modes

Stability for the Leapfrog Scheme 1 of 6

The leapfrog (central-time-central-space) scheme for the
homogeneous one-way wave equation is given by

vn+1
m − vn−1

m

2k
+ a

vnm+1 − vnm−1

2h
= 0.

k

h

x

t

As usual we set vnm  gne imhξ (from application of the Fourier
inversion formula), and eliminate common factors (here
gn−1e imhξ).
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Stability for the Leapfrog Scheme 2 of 6

We get — (hξ ≡ θ, throughout this lecture) —

vn+1
m − vn−1

m

2k
+ a

vn
m+1 − vn

m−1

2h
= 0

g2 − 1

2k
+ a

g(e iθ − e−iθ)

2h
= 0

g2 − 1+ 2iaλ sin(θ)g = 0

Hence,

g±(θ) = −iaλ sin(θ)±
√

1− (aλ)2 sin2(θ). (1)

I. When g+ 6= g−, the solution is given by

v̂n(ξ) = A+(ξ)g+(hξ)
n + A−(ξ)g−(hξ)

n, (2)

and A±(ξ) are determined by initial conditions.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Stability for Multistep Schemes — (7/28)

Stability for Multistep Schemes
General Multistep Schemes

Introduction
the Leapfrog Scheme
Parasitic Modes

Stability for the Leapfrog Scheme 3 of 6

Sometimes it is useful to rewrite (2) in the form

v̂n(ξ) = A(ξ)g+(hξ)
n + B(ξ)

[
g−(hξ)n − g+(hξ)

n

g−(hξ)− g+(hξ)

]
, (3)

where A(ξ) and B(ξ) are determined by initial conditions.

II. When g+ = g− = g , the solution is given by

v̂n(ξ) = A(ξ)g(hξ)n + n · B(ξ)g(hξ)n−1, (4)

where A(ξ), and B(ξ) are related to v̂0(ξ), and v̂1(ξ) by

A(ξ) = v̂0(ξ)

B(ξ) = v̂1(ξ)− v̂0(ξ)g(hξ). (5)

We will refer back to these expressions when we analyze the stability of
the scheme.
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Stability for the Leapfrog Scheme 4 of 6

We discuss the stability in terms of

Definition (Stable Scheme)

A finite difference scheme Pk,hv
n
m = 0 for a first-order equation is stable

in a stability region Λ if there is an integer J such that for any positive
time T , there is a constant CT such that

h
∞∑

m=−∞
|vn

m|2 ≤ CTh
J∑

j=0

∞∑

m=−∞

∣∣v j
m

∣∣2 ,

for 0 ≤ nk ≤ T , with (k , h) ∈ Λ.

with the integer J = 1.

First, we consider the case where g+ 6= g−, and choose the initial
conditions so that B(ξ) ≡ 0.
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Stability for the Leapfrog Scheme 5 of 6

Now, with this setup and using (3) we have

|v̂n(ξ)| = |A(ξ)| · |g+(hξ)|n ,

and it follows that we must require

|g+(hξ)| ≤ 1 + Kk ,

for stability. Application with different initial conditions (such that
A(ξ) ≡ 0) gives the same restriction on g−(hξ).

When λ is constant, the restricted conditions

|g±(hξ)| ≤ 1,

apply.
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Stability for the Leapfrog Scheme 6 of 6

From (1), with |aλ| ≤ 1 we have that

|g±|2 = 1− (aλ)2 sin2(θ) + (aλ)2 sin2(θ) = 1,

and when |aλ| > 1, we get

|g−(π/2)| = |aλ|+
√

(aλ)2 − 1 ≥ |aλ| > 1.

Hence, |aλ| ≤ 1 is a necessary condition for stability.

But... We’re not done. — We must also look at the case g+ = g−. This
equality holds only when |aλ| = 1, and θ = ±π/2. For these two values
we get g = ±i , and the solutions

v̂n (±π/2h) = A (±π/2h) (∓i)n + n · B (±π/2h) (∓i)n−1.

Since this term grows linearly in n, the leapfrog scheme is unstable for
|aλ| = 1. Hence, the leapfrog scheme is stable ⇔ |aλ| < 1.
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Initializing the Leapfrog Scheme

The Leapfrog scheme (and other two-step schemes) require that in
addition to the initial values v0m, the first time level v1m must also
be initialized.

Any consistent one-step scheme, even an unstable one, can be
used to initialize v1m. Since the unstable scheme is applied only
once, the error growth is minimal.

Further, if the grid parameter λ is constant, then the initialization
scheme can be accurate of one order less than that of the
two-step scheme, without degrading the overall accuracy of the
scheme.

Thus, we have found a potential use for the unstable forward-time
central-space scheme; — as an initializer for the leap-frog scheme.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Stability for Multistep Schemes — (12/28)



Stability for Multistep Schemes
General Multistep Schemes

Introduction
the Leapfrog Scheme
Parasitic Modes

Parasitic Modes of the Leapfrog Scheme 1 of 3

From the expressions

v̂n(ξ) = A+(ξ)g+(hξ)
n + A−(ξ)g−(hξ)n,

g±(θ) = −iaλ sin(θ)±
√
1− (aλ)2 sin2(θ),

we see that the solution of the leapfrog scheme consists of two
parts, associated with g+(θ), and g−(θ). We note that g+(0) = 1,
and g−(0) = −1.

We examine how the two parts contribute to the solution.

If we use the forward-time central-space scheme for initialization,
then we have

v̂1(ξ) = (1− iaλ sin(θ))v̂0(ξ).
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Parasitic Modes of the Leapfrog Scheme 2 of 3

Based on taking the first step using the forward-time central-space
scheme, and Taylor expanding the square roots in the expressions
for g±(θ):

g+(θ) = +1− iaλ sin(θ)− 1

2
a2λ2 sin2(θ) +O

(
h4
)
,

g−(θ) = −1− iaλ sin(θ) +
1

2
a2λ2 sin2(θ) +O

(
h4
)
,

now, using (5), we get

B(ξ) =

[
1

2
a2λ2 sin2(θ) +O

(
θ4
)]

v̂0(ξ).

For |θ| small, |B(ξ)| = O
(
θ2
)
, i.e. small, the scheme behaves like

a one-step scheme with amplification factor g+(θ).
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Parasitic Modes of the Leapfrog Scheme 3 of 3

When |θ| is not small, B(ξ) is not necessarily small, and the effect
of the second amplification factor g−(θ) is felt.

The portion of the solution associated with g−(θ) is called the
parasitic mode. Since g−(0) = −1, the parasitic mode induces
rapid oscillations in time.

The parasitic mode travels in the wrong direction. When a is
positive, the parasitic mode travels to the left, and when a is
negative it travels to the right.
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Example: Parasitic Modes 1 of 3

We consider the one-way wave-equation, with constant speed
a = 1, in the interval [−1, 1], with initial conditions

v0m =

{
cos2(πxm) if |xm| ≤ 1

2
0 otherwise

At the left boundary (x = −1) we set vn0 = 0 (which is consistent
with the equation), and at the right boundary (x = 1) we also set
v0M = 0 (which is inconsistent with the equation).

The inconsistent boundary condition will transfer energy into the
parasitic mode.

We set the grid parameter λ = 0.9, and h = 1/20.
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Example: Parasitic Modes 2 of 3
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Figure: The exact (black solid), and the numerical (blue, with ◦-markers) solutions. At
time T=0.86 (3rd panel), the exact solution is leaving the domain, but the inconsistent
boundary condition is starting to pump energy into the parasitic mode, which propagates
to the left (panels 4–6).
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Example: Parasitic Modes 3 of 3
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Figure: The exact (black solid), and the numerical (blue, with ◦-markers) solutions.
At time T=2.66 (1st panel), the parasitic mode hits the right boundary and bounces
back (T=3.11, 2nd panel), and the reflected energy almost perfectly restores the
initial shape of the pulse (T=3.56, 3rd panel). We note that Dirichlet-type (fixed)
boundary conditions are reflecting for the wave-equation.

The effects of parasitic modes can be reduced by the use of
(numerical) dissipation, which we will discuss next week.

See also Movie: leapfrog ftcs.mpg.
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Example: Other Boundary Conditions

We re-run the same problem with different boundary conditions:

Eqn Boundary Condition Movie

3.4.1a vn+1
M = vn+1

M−1 leapfrog ftcs 341a.mpg

3.4.1b vn+1
M = 2vn+1

M−1 − vn+1
M−2 leapfrog ftcs 341b.mpg

3.4.1c vn+1
M = vn

M−1 leapfrog ftcs 341c.mpg

3.4.1d vn+1
M = 2vn

M−1 − vn−1
M−2 leapfrog ftcs 341d.mpg

At first glance (wave leaving the domain) 3.4.1a and 3.4.1b seem
to perform OK; however, the instability causes the numerical
solution to blow up rapidly.

Boundary conditions 3.4.1c 3.4.1d are stable, and after the
solution leaves the domain only some very minor oscillations
remain.
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Stability for General Multistep Schemes 1 of 2

“The Return of the Symbol”

We can express the stability of a multistep scheme in several ways,
including using the symbol of the scheme:

The stability of a multistep scheme Pk,hv = Rk,hf is determined by
the roots of the amplification polynomial

Φ(g , θ) = k pk,h

(
ln(g)

k
,
θ

h

)
,

or, equivalently

Φ
(
esk , hξ

)
= k pk,h(s, ξ).

Alternatively, and more familiarly, Φ can be obtained by requiring
that vnm = gne imθ is a solution to Pk,hv = 0, and Φ(g , θ) is the
polynomial of which g must be a root so that vnm = gne imθ is a
solution of Pk,hv = Rk,hf .
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Stability for General Multistep Schemes 2 of 2

We assume that the scheme involves σ + 1 time-levels, and
therefore Φ is a polynomial of degree σ. The integer J in the
stability definition is taken to be σ.

For now, we will largely ignore the relation between Φ and the
symbol p(s, ξ). This relation will, however, be important when we
later discuss convergence of multi-step schemes.

OK, our old trick vnm  gne imθ, and eliminating common factors
will work (phew!).

Still we will run into some trouble.
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A Simple? Example

Consider the multistep scheme for the one-way wave equation

3vn+1
m − 4vnm + vn−1

m

2k
+ a

vn+1
m+1 − vn+1

m−1

2h
= f n+1

m

— this scheme is order-(2,2) and unconditionally stable.

The amplification polynomial is

Φ(g , θ) =

[
3 + 2iaλ sin(θ)

2

]
g2 − 2g +

1

2
.

Fantastic! — A second order polynomial with a complex
coefficient on the quadratic term; which should be investigated ∀θ.
The analysis of this scheme is much harder than that of the
leapfrog scheme; we need additional tools from complex analysis
and the concepts of Schur, and von Neumann polynomials. This
will all be developed in next lecture.
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Moving Along... Distinct Roots

Still, we can talk about the stability in general terms: —

If the roots, gν of Φ(g , θ) are distinct, then the solution to the
homogeneous difference scheme is given by

v̂n =
σ∑

ν=1

gν(hξ)
nAν(ξ), Aν(ξ) determined by initial conditions.

The stability condition is

|gν(hξ)| ≤ 1 + Kk , ν = 1, . . . , σ.

When Φ(g , θ) is independent of k and h, we can set K = 0.
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Roots of Multiplicity > 1 1 of 2

We now look at the case when Φ(g , θ) has roots of higher
multiplicity. For simplicity, lets assume that Φ(g , θ) is
independent of k and h so that the restricted stability criterion can
be used.

Suppose g1(θ0) is a multiple root of Φ(g , θ) at θ0; then

v̂nm =
[
g1(θ0)

nB0 + ng1(θ0)
n−1B1

]
e imθ0 ,

is a solution of the difference equation.

If B0 = 0 (carefully selected initial conditions), then

|v̂nm| = n|g1(θ0)|n−1|B1|.
When |g1(θ0)| < 1, we have

|v̂nm| ≤ C

[
|g1(θ0)| log

(
1

|g1(θ0)|

)]−1

|B1|.
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Roots of Multiplicity > 1 2 of 2

When |g1(θ0)| = 1, we cannot find a bound on |v̂nm|, and there
exists a solution which is linearly unbounded; hence the scheme is
unstable in this case.

We have the following

Theorem (Stability of Multistep Schemes)

If the amplification polynomial Φ(g , θ) is explicitly independent of
h and k, then the necessary and sufficient condition for the finite
difference scheme to be stable is that all roots, gν(θ), satisfy the
following conditions:

(a) |gν(θ)| ≤ 1, and

(b) if |gν(θ)| = 1, then gν(θ) must be a simple root.
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A More General Stability Theorem

Theorem (Stability of Multistep Schemes)

A finite difference scheme for a scalar equation is stable if and only
if all the roots, gν(θ), of the amplification polynomial Φ(g , θ, k , h)
satisfy the following conditions:

(a) There is a constant K such that |gν | ≤ 1 + Kk.

(b) There are positive constants c0 and c1 such that if
c0 ≤ |gν | ≤ 1 + Kk, then gν is a simple root, and for
any other root gµ, the relation

|gν − gµ| ≥ c1

holds for h and k sufficiently small.
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Illustration of the Theorem

Figure: In the band c0 ≤ r ≤ 1 + Kk, we can only have simple roots; and the minimal
distance between a root in this band and another root is c1.
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Example: The Leapfrog Scheme aλ ∈ {0.9, 0.99, 1.0, 1.05}
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