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Recap
Stability, and von Neumann Polynomials
Hyperbolic PDEs: Consistency, Accuracy, Stability...

Previously...

We developed a framework, and in the end an algorithm, for
checking the stability of a general multistep scheme. Such a
scheme is stable exactly when its amplification polynomial ϕ is a
simple von Neumann polynomial: —

Definition (Simple von Neumann Polynomial)

The polynomial ϕ is a simple von Neumann polynomial if ϕ is a
von Neumann polynomial, and its roots on the unit circle are
simple roots.

The derived algorithm involves comparing the magnitude of the
first and last coefficients of the polynomial, and then forming a
polynomial of one degree less, and recursively applying the same
test to this polynomial.
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Recap
Stability, and von Neumann Polynomials
Hyperbolic PDEs: Consistency, Accuracy, Stability...

Looking Back

Our discussion of finite difference schemes for hyperbolic PDEs is
almost “complete.”

Thanks to the Lax-Richtmyer equivalence theorem we only
need to consider schemes that are both consistent and stable.

From the discussion last time, we have a very general framework
for checking stability, and we get consistency as a “side-effect” of
finding the order of accuracy of the scheme.

Usually, finding the order of accuracy comes down to a Taylor
expansion; and in the hardest cases we can fall back and use the
symbols of the scheme and PDE (and congruence to zero for
homogeneous equations) in order to “mechanize” the analysis.

For derivation of high order accurate schemes, we have a symbolic
calculus with the difference operators δ+, δ−, δ0, δ

2, etc...
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Dissipation
Dispersion

Introduction: Leapfrog & Lax-Wendroff
Adding Dissipation

Dissipation and Dispersion

We now look at two additional topics in the context of hyperbolic
equations: — Dissipation and Dispersion.

Dissipative schemes: —
Damping out high-frequency waves which make the solution
too oscillatory. Recall the problem of parasitic modes of the
Leapfrog scheme.

Dispersion: — (Numerical Dispersion)
Refers to the fact that finite difference schemes propagate dif-
ferent frequencies at different speeds. — This causes the solu-
tion to change shape (spread out) as t grows.

We will return to the issue of stability of boundary conditions later
in the semester.
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Dissipation
Dispersion

Introduction: Leapfrog & Lax-Wendroff
Adding Dissipation

Dissipation

The order-(2,2) Leapfrog scheme performs better than the
order-(1,2) Lax-Friedrichs scheme, but the solution tends to
contain small oscillations.

−2 −1 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1
leapfrog
exact
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Introduction: Leapfrog & Lax-Wendroff
Adding Dissipation

The Leapfrog Scheme

Consider the leapfrog schemes with oscillatory initial conditions,

v jm = (−1)m+j · η, j = 0, 1, |η| ≪ 1

It is straight-forward to see that the leapfrog solution turns out to
be

vnm = (−1)m+n · η
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Figure: The leapfrog scheme propa-
gates the oscillatory solution. This
means that if we ever, due to numerical
error (bad boundary conditions, round-
off error, etc) introduce oscillations,
they never go away.
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The Lax-Wendroff Scheme 1 of 4

Next we consider the Lax-Wendroff scheme with the same
oscillatory initial conditions, v0m = (−1)m · η
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Figure: Here we can see that the magnitude of the high-frequency oscillations have
been dampened down to ∼ 10−16 at time T = 2.
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The Lax-Wendroff Scheme 2 of 4

The exact solution of the Lax-Wendroff scheme (with this
particular initial data) is given by

vnm = (1− 2a2λ2)n(−1)m+n

and since |aλ| < 1 (here 0.8) we get rapid (exponential) decay of
the oscillations. The Lax-Wendroff scheme is dissipative.
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The Lax-Wendroff Scheme 3 of 4

Definition (Dissipative Scheme)

A scheme is dissipative of order 2r if there exists a positive constant c ,
independent of h and k , such that each amplification factor gν(θ) satisfies

|gν(θ)| ≤ 1− c sin2r
(
θ

2

)
⇔ |gν(θ)|2 ≤ 1− c∗ sin2r

(
θ

2

)

The amplification polynomial for the Lax-Wendroff scheme satisfies

|gLW(θ)|2 = 1− 4a2λ2(1− aλ) sin4
(
θ

2

)

and is dissipative of order 4 for 0 < |aλ| < 1.
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Crank-Nicolson, Leapfrog, Lax-Freidrichs 4 of 4

The leapfrog scheme and the Crank-Nicolson scheme are strictly
non-dissipative since their amplification factors are identically 1 in
magnitude.

gCN(θ) =
1− iaλ

2 sin(θ)

1 + iaλ
2 sin(θ)

, |gCN(θ)|2 =
1+ a2λ2

4 sin2(θ)

1+ a2λ2

4 sin2(θ)
= 1.

With |aλ| < 1 we have that

|g±

Leap|2 = 1− (aλ)2 sin2(θ) + (aλ)2 sin2(θ) = 1,

The Lax-Friedrichs scheme is (non-strictly) non-
dissipative

|gLF(θ)|2 = cos2(θ) + a2λ2 sin2(θ)

and |g(π)| = 1. This scheme will reduce the
magnitude of most frequencies, but not the high-
est frequency on the grid.

0

30

60

90

120

150

180

210

240

270

300

330

0

0.2

0.4

0.6

0.8

1

Lax Friedrichs: |g
LF

( )|

a  = 0.25

a  = 0.50

a  = 0.75

a  = 0.99

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Dissipation and Dispersion — (11/29)



Dissipation
Dispersion

Introduction: Leapfrog & Lax-Wendroff
Adding Dissipation

Adding Dissipation to Schemes 1 of 2

It is possible to add dissipation to non-dissipative schemes,
however care must be taken so that we do not affect the order of
accuracy of the scheme.

The modified Leapfrog scheme given by

vn+1
m − vn−1

m

2k
+ a

vnm+1 − vnm−1

2h
+

ǫ

2k

[
hδ

2

]4
vn−1
m = f nm

is second-order accurate for small values of ǫ, the corresponding
amplification factor is

g±(θ) = −iaλ sin(θ)±
√
1− a2λ2 sin2(θ)− ǫ sin4

(
θ

2

)
.
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Adding Dissipation to Schemes 2 of 2

For small enough ǫ, the magnitude of the roots are given by

|g±(θ)|2 = 1− ǫ sin4
(
θ

2

)

hence, the modified leapfrog scheme is dissipative of order 4.
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Figure: Comparison of [left] modified leapfrog (ǫ = 0.5), and [right] standard
leapfrog; (λ = 0.5, h = 0.1).
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Dispersion Relations

Figure: Physical Dispersion.
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Dispersion: Introduction 1 of 2

We write the solution to the homogeneous one-way wave equation
using the Fourier inversion formula

u(t, x) =
1√
2π

∫
∞

−∞

e iωx e−iωat û0(ω)︸ ︷︷ ︸
û(t,ω)

dω,

from this representation we can identify

û(t + k , ω) = e−iωak û(t, ω).
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Dispersion: Introduction 1 of 2

We write the solution to the homogeneous one-way wave equation
using the Fourier inversion formula

u(t, x) =
1√
2π

∫
∞

−∞

e iωx e−iωat û0(ω)︸ ︷︷ ︸
û(t,ω)

dω,

from this representation we can identify

û(t + k , ω) = e−iωak û(t, ω).

If we consider a one-step finite difference scheme, the propagation
(in Fourier space) is given by

v̂n+1 = g(hξ)v̂n.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Dissipation and Dispersion — (15/29)



Dissipation
Dispersion

Introduction
Dispersion Relations

Dispersion: Introduction 1 of 2

We write the solution to the homogeneous one-way wave equation
using the Fourier inversion formula

u(t, x) =
1√
2π

∫
∞

−∞

e iωx e−iωat û0(ω)︸ ︷︷ ︸
û(t,ω)

dω,

from this representation we can identify

û(t + k , ω) = e−iωak û(t, ω).

If we consider a one-step finite difference scheme, the propagation
(in Fourier space) is given by

v̂n+1 = g(hξ)v̂n.

Clearly, if the scheme is good then g(hξ) ∼ e−iξak.
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Dispersion: Introduction 2 of 2

In order to clearly show the connection between the scheme,
g(hξ), and the solution of the PDE, e−iωak , we write

g(hξ) = |g(hξ)| e−iξα(hξ)k

where α(hξ) is interpreted as the phase speed — the speed at
which waves of frequency ξ are propagated.
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Dispersion: Introduction 2 of 2

In order to clearly show the connection between the scheme,
g(hξ), and the solution of the PDE, e−iωak , we write

g(hξ) = |g(hξ)| e−iξα(hξ)k

where α(hξ) is interpreted as the phase speed — the speed at
which waves of frequency ξ are propagated.

If α(hξ) ≡ a, then all waves would propagate with correct speed.
For many finite difference schemes this does not hold, and the
difference a− α(hξ) is known as the phase error.
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Dispersion: Introduction 2 of 2

In order to clearly show the connection between the scheme,
g(hξ), and the solution of the PDE, e−iωak , we write

g(hξ) = |g(hξ)| e−iξα(hξ)k

where α(hξ) is interpreted as the phase speed — the speed at
which waves of frequency ξ are propagated.

If α(hξ) ≡ a, then all waves would propagate with correct speed.
For many finite difference schemes this does not hold, and the
difference a− α(hξ) is known as the phase error.

The phenomenon of waves of different speeds traveling with
different speeds is known as dispersion.
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Dispersion: Introduction 2 of 2

In order to clearly show the connection between the scheme,
g(hξ), and the solution of the PDE, e−iωak , we write

g(hξ) = |g(hξ)| e−iξα(hξ)k

where α(hξ) is interpreted as the phase speed — the speed at
which waves of frequency ξ are propagated.

If α(hξ) ≡ a, then all waves would propagate with correct speed.
For many finite difference schemes this does not hold, and the
difference a− α(hξ) is known as the phase error.

The phenomenon of waves of different speeds traveling with
different speeds is known as dispersion.

The effect of dispersion is shape-distortion of the solution.
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Dispersion  Shape Distortion
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Dispersion Relations

With θ = hξ, we write

g(θ) = |g(θ)| e−iθα(θ)λ,

and dusting off some complex analysis, we identify

tan

[
α(θ)λθ

]
= − Im [g(θ)]

Re [g(θ)]
.

When |g(θ)| = 1, we have

sin (α(θ)λθ ) = −Im [g(θ)] .
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Example: The Lax-Wendroff Scheme 1 of 4

The amplification factor for the Lax-Wendroff scheme is

g(θ) = 1− 2(aλ)2 sin2
(
θ

2

)
− iaλ sin(θ)

By the preceding arguments we have,

tan

[
α(θ)λθ

]
=

aλ sin(θ)

1− 2(aλ)2 sin2
(
θ
2

)

With a little help from our friend Taylor, this can give us some
information about a(θ):

sin(θ) = θ

[
1−

1

6
θ2 +O

(
θ4
)]

tan(θ) = θ

[
1 +

1

3
θ2 +O

(
θ4
)]

tan−1(θ) = θ

[
1−

1

3
θ2 +O

(
θ4
)]
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Example: The Lax-Wendroff Scheme 2 of 4

We get

α(θ) = a

[
1− 1

6
θ2

(
1− (aλ)2

)
+O

(
θ4
)]

• When θ is small and |aλ| < 1, then α(θ) < a; the numerical
solution will tend to trail the exact solution.

• When |aλ| ≈ 1, then the dispersion (phase error) is smaller.
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Example: The Lax-Wendroff Scheme 3 of 4

For larger values of θ, the Taylor expansions do not hold and we
must consider the full expressions,

g(θ) = 1− 2(aλ)2 sin2
(
θ

2

)
− iaλ sin(θ),

and

tan

[
α(θ)λθ

]
=

aλ sin(θ)

1− 2(aλ)2 sin2
(
θ
2

) .

When θ = π, g = 1− 2a2λ2:

• If |aλ| > 1/
√
2, then g < 0, and α(π) = 1/λ

• If |aλ| < 1/
√
2, then g > 0, and α(π) = 0

By consistency, α(0) = a.
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Example: The Lax-Wendroff Scheme 4 of 4
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Figure: The phase speed for the Lax-Wendroff scheme; — [left] λ =
1
2
, 1

4
, 0.69 < 1√

2
, and [right] λ = 0.99, 0.80, 0.71 > 1√

2
; (a = 1).
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Example: The Lax-Wendroff Scheme 5 of 4
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Example: The Lax-Wendroff Scheme 6 of 4
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Example: The Lax-Wendroff Scheme 7 of 4
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Rules of Thumb 1 of 2

• For hyperbolic PDEs is it best to take |aλ| as close to the sta-
bility limit as possible; this keeps the dissipation and dispersion
small, e.g. the phase speed for Lax-Wendroff for a = 1, and
λ = 0.99:
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If we are interested in a propagating a particular frequency ξ∗,
then we must choose h so that hξ∗ < π. (Think: Nyquist
sampling.)
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Rules of Thumb 2 of 2

• When the leapfrog and Lax-Wendroff schemes are applied to
the homogeneous one-way wave equation with |aλ| = 1, there
is no dispersion error. These are exceptional special cases; when
a(t, x) is variable, or the system is non-trivial in any other way,
there is dispersion.
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Rules of Thumb 2 of 2

• When the leapfrog and Lax-Wendroff schemes are applied to
the homogeneous one-way wave equation with |aλ| = 1, there
is no dispersion error. These are exceptional special cases; when
a(t, x) is variable, or the system is non-trivial in any other way,
there is dispersion.

• The phase error is always an even function of θ, hence if a
scheme has order of accuracy ρ, then the phase error is of order
ρ if ρ is even, and order ρ+ 1 if ρ is odd.
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Rules of Thumb 2 of 2

• When the leapfrog and Lax-Wendroff schemes are applied to
the homogeneous one-way wave equation with |aλ| = 1, there
is no dispersion error. These are exceptional special cases; when
a(t, x) is variable, or the system is non-trivial in any other way,
there is dispersion.

• The phase error is always an even function of θ, hence if a
scheme has order of accuracy ρ, then the phase error is of order
ρ if ρ is even, and order ρ+ 1 if ρ is odd.

• When choosing a scheme for a particular application, the amount
of dissipation and dispersion can (and should) be used to choose
between schemes, see e.g. D. Durran, The Third-Order Adams-
Bashforth Method: An Attractive Alternative to Leapfrog Time
Differencing, Monthly Weather Review, 119 (1991), pp. 702–
720.
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Wrapping Up, and Looking Forward

That ends our discussion of finite difference schemes for hyperbolic
PDEs.

Next time we start looking at parabolic PDEs, of which the
one-dimensional heat equation

∂

∂t
u(t, x) = b(t, x)

∂2

∂x2
u(t, x)

u(0, x) = ϕ(x)

is the simplest example.
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Tangentially Related Nyquist Sampling

The following result is fundamentally important in signal
processing / information theory: —

Theorem (Sampling Theorem)

In order for a band-limited (i.e., one with a zero power spectrum
for frequencies ν > B) baseband (ν > 0) signal to be
reconstructed fully, it must be sampled at a rate ν ≥ 2B. A signal
sampled at ν = 2B is said to be Nyquist sampled, and ν = 2B is
called the Nyquist frequency. No information is lost if a signal is
sampled at the Nyquist frequency, and no additional information is
gained by sampling faster than this rate.

An audio CD is sampled at 44,100 samples/second, allowing for reconstruction of
signals up to 22,050Hz. (There is no evidence that human beings are sensitive to
audio frequencies above 20 kHz, and most people over the age of 35 are unable to
hear sounds above 15–16 kHz at 72 dB.)
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