Numerical Solutions to PDEs Lecture Notes #9 — Dissipation and Dispersion

Peter Blomgren, {blomgren.peter@gmail.com}

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2018

— (1/29)

イロト イポト イヨト

Outline

1 Recap

- Stability, and von Neumann Polynomials
- Hyperbolic PDEs: Consistency, Accuracy, Stability...

2 Dissipation

- Introduction: Leapfrog & Lax-Wendroff
- Adding Dissipation

3 Dispersion

- Introduction
- Dispersion Relations

— (2/29)

< ∃⇒

We developed a framework, and in the end an algorithm, for checking the stability of a general multistep scheme. Such a scheme is stable exactly when its amplification polynomial φ is a simple von Neumann polynomial: —

Definition (Simple von Neumann Polynomial)

The polynomial φ is a simple von Neumann polynomial if φ is a von Neumann polynomial, and its roots on the unit circle are simple roots.

The derived algorithm involves comparing the magnitude of the first and last coefficients of the polynomial, and then forming a polynomial of one degree less, and recursively applying the same test to this polynomial.

— (3/29)

Our discussion of finite difference schemes for **hyperbolic PDEs** is almost "complete."

Thanks to the **Lax-Richtmyer equivalence theorem** we only need to consider schemes that are both **consistent** and **stable**.

From the discussion last time, we have a very general framework for checking stability, and we get consistency as a "side-effect" of finding the **order of accuracy** of the scheme.

Usually, finding the order of accuracy comes down to a Taylor expansion; and in the hardest cases we can fall back and use the **symbols** of the scheme and PDE (and congruence to zero for homogeneous equations) in order to "mechanize" the analysis.

For **derivation** of high order accurate schemes, we have a symbolic calculus with the difference operators δ_+ , δ_- , δ_0 , δ^2 , etc...

< □ > < □ >

We now look at two additional topics in the context of hyperbolic equations: — Dissipation and Dispersion.

Dissipative schemes: —

Damping out high-frequency waves which make the solution too oscillatory. **Recall** the problem of parasitic modes of the Leapfrog scheme.

Dispersion: — (Numerical Dispersion)

Refers to the fact that finite difference schemes propagate different frequencies at different speeds. — This causes the solution to change shape (spread out) as t grows.

We will return to the issue of *stability of boundary conditions* later in the semester.

	Dissipation Dispersion	Introduction: Leapfrog & Lax-Wendroff Adding Dissipation
Dissipation		

The order-(2,2) Leapfrog scheme performs better than the order-(1,2) Lax-Friedrichs scheme, but the solution tends to contain small oscillations.

Peter Blomgren, (blomgren.peter@gmail.com)

Dissipation and Dispersion

INIVERSITY

The Leapfrog Scheme

Consider the leapfrog schemes with oscillatory initial conditions,

$$\mathbf{v}_m^j=(-1)^{m+j}\cdot\eta,\quad j=0,1,\quad |\eta|\ll 1$$

It is straight-forward to see that the leapfrog solution turns out to be

$$\nu_m^n = (-1)^{m+n} \cdot \eta$$

Figure: The leapfrog scheme propagates the oscillatory solution. This means that if we ever, due to numerical error (bad boundary conditions, roundoff error, etc) introduce oscillations, they never go away.

— (7/29)

Peter Blomgren, {blomgren.peter@gmail.com}

The Lax-Wendroff Scheme

— (8/29)

Next we consider the Lax-Wendroff scheme with the same oscillatory initial conditions, $v_m^0=(-1)^m\cdot\eta$

Figure: Here we can see that the magnitude of the high-frequency oscillations have submarine been dampened down to $\sim 10^{-16}$ at time T = 2.

Peter Blomgren, (blomgren.peter@gmail.com) Dissipation and Dispersion

The exact solution of the Lax-Wendroff scheme (with this particular initial data) is given by

$$v_m^n = (1 - 2a^2\lambda^2)^n (-1)^{m+n}$$

and since $|a\lambda| < 1$ (here 0.8) we get rapid (exponential) decay of the oscillations. The Lax-Wendroff scheme is dissipative.

— (9/29)

<ロ> (四) (四) (三) (三)

The Lax-Wendroff Scheme

Definition (Dissipative Scheme)

A scheme is dissipative of order 2r if there exists a positive constant c, independent of h and k, such that each amplification factor $g_{\nu}(\theta)$ satisfies

$$|g_
u(heta)| \leq 1 - c \sin^{2r}\left(rac{ heta}{2}
ight) \quad \Leftrightarrow \quad |g_
u(heta)|^2 \leq 1 - c^* \sin^{2r}\left(rac{ heta}{2}
ight)$$

The amplification polynomial for the Lax-Wendroff scheme satisfies

$$|g_{ ext{LW}}(heta)|^2 = 1 - 4a^2\lambda^2(1-a\lambda)\sin^4\left(rac{ heta}{2}
ight)$$

and is **dissipative of order 4** for $0 < |a\lambda| < 1$.

-(10/29)

<ロ> (四) (四) (三) (三)

Crank-Nicolson, Leapfrog, Lax-Freidrichs

The leapfrog scheme and the Crank-Nicolson scheme are **strictly non-dissipative** since their amplification factors are identically 1 in magnitude.

$$g_{\mathsf{CN}}(\theta) = \frac{1 - \frac{ia\lambda}{2}\sin(\theta)}{1 + \frac{ia\lambda}{2}\sin(\theta)}, \quad |\mathbf{g}_{\mathsf{CN}}(\theta)|^2 = \frac{1 + \frac{a^2\lambda^2}{4}\sin^2(\theta)}{1 + \frac{a^2\lambda^2}{4}\sin^2(\theta)} = 1.$$

With $|a\lambda| < 1$ we have that

$$|\mathbf{g}^{\pm}_{\text{Leap}}|^2 = 1 - (\mathbf{a}\lambda)^2 \sin^2(\theta) + (\mathbf{a}\lambda)^2 \sin^2(\theta) = 1,$$

The Lax-Friedrichs scheme is (non-strictly) nondissipative

$$|g_{\text{LF}}(\theta)|^2 = \cos^2(\theta) + a^2 \lambda^2 \sin^2(\theta)$$

and $|g(\pi)| = 1$. This scheme will reduce the magnitude of most frequencies, but not the highest frequency on the grid.

Peter Blomgren, blomgren.peter@gmail.com

-(11/29)

Adding Dissipation to Schemes

It is possible to add dissipation to non-dissipative schemes, however care must be taken so that we do not affect the order of accuracy of the scheme.

The modified Leapfrog scheme given by

$$\frac{v_m^{n+1} - v_m^{n-1}}{2k} + a \frac{v_{m+1}^n - v_{m-1}^n}{2h} + \frac{\epsilon}{2k} \left[\frac{h\delta}{2} \right]^4 v_m^{n-1} = f_m^n$$

is second-order accurate for small values of $\epsilon,$ the corresponding amplification factor is

$$g_{\pm}(heta) = -ia\lambda\sin(heta) \pm \sqrt{1 - a^2\lambda^2\sin^2(heta) - \epsilon\sin^4\left(rac{ heta}{2}
ight)}.$$

-(12/29)

Adding Dissipation to Schemes

For small enough $\epsilon,$ the magnitude of the roots are given by

$$|g_{\pm}(heta)|^2 = 1 - \epsilon \sin^4\left(rac{ heta}{2}
ight)$$

hence, the modified leapfrog scheme is dissipative of order 4.

Dissipation	Introduction
Dispersion	Dispersion Relations

Figure: Physical Dispersion.

- (14/29)

・ロン ・部と ・ヨン ・ヨン

Dispersion: Introduction

We write the solution to the homogeneous one-way wave equation using the Fourier inversion formula

$$u(t,x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\omega x} \underbrace{e^{-i\omega at} \widehat{u}_0(\omega)}_{\widehat{u}(t,\omega)} d\omega,$$

from this representation we can identify

$$\widehat{u}(t+k,\omega)=e^{-i\omega ak}\,\widehat{u}(t,\omega).$$

SAN DIEGO STATE UNIVERSITY

1 of 2

Dispersion: Introduction

We write the solution to the homogeneous one-way wave equation using the Fourier inversion formula

$$u(t,x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\omega x} \underbrace{e^{-i\omega at} \widehat{u}_{0}(\omega)}_{\widehat{u}(t,\omega)} d\omega,$$

from this representation we can identify

$$\widehat{u}(t+k,\omega)=e^{-i\omega ak}\,\widehat{u}(t,\omega).$$

If we consider a **one-step** finite difference scheme, the propagation (in Fourier space) is given by

$$\widehat{v}^{n+1} = g(h\xi)\widehat{v}^n$$

-(15/29)

・ロト ・同ト ・ヨト ・ヨト

Dispersion: Introduction

We write the solution to the homogeneous one-way wave equation using the Fourier inversion formula

$$u(t,x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\omega x} \underbrace{e^{-i\omega at} \widehat{u}_{0}(\omega)}_{\widehat{u}(t,\omega)} d\omega,$$

from this representation we can identify

$$\widehat{u}(t+k,\omega)=e^{-i\omega ak}\,\widehat{u}(t,\omega).$$

If we consider a **one-step** finite difference scheme, the propagation (in Fourier space) is given by

$$\widehat{v}^{n+1} = g(h\xi)\widehat{v}^n.$$

Clearly, if the scheme is good then $\mathbf{g}(\mathbf{h}\xi) \sim \mathbf{e}^{-\mathbf{i}\xi\mathbf{ak}}$

- (15/29)

$$g(h\xi) = |g(h\xi)| e^{-i\xi\alpha(\mathbf{h}\xi)k}$$

where $\alpha(h\xi)$ is interpreted as the **phase speed** — the speed at which waves of frequency ξ are propagated.

-(16/29)

$$g(h\xi) = |g(h\xi)| e^{-i\xi\alpha(\mathbf{h}\xi)k}$$

where $\alpha(h\xi)$ is interpreted as the **phase speed** — the speed at which waves of frequency ξ are propagated.

If $\alpha(h\xi) \equiv a$, then all waves would propagate with correct speed. For many finite difference schemes **this does not hold**, and the difference $\mathbf{a} - \alpha(\mathbf{h}\xi)$ is known as the **phase error**.

$$g(h\xi) = |g(h\xi)| e^{-i\xi\alpha(\mathbf{h}\xi)k}$$

where $\alpha(h\xi)$ is interpreted as the **phase speed** — the speed at which waves of frequency ξ are propagated.

If $\alpha(h\xi) \equiv a$, then all waves would propagate with correct speed. For many finite difference schemes **this does not hold**, and the difference $\mathbf{a} - \alpha(\mathbf{h}\xi)$ is known as the **phase error**.

The phenomenon of waves of different speeds traveling with different speeds is known as **dispersion**.

$$g(h\xi) = |g(h\xi)| e^{-i\xi\alpha(\mathbf{h}\xi)k}$$

where $\alpha(h\xi)$ is interpreted as the **phase speed** — the speed at which waves of frequency ξ are propagated.

If $\alpha(h\xi) \equiv a$, then all waves would propagate with correct speed. For many finite difference schemes **this does not hold**, and the difference $\mathbf{a} - \alpha(\mathbf{h}\xi)$ is known as the **phase error**.

The phenomenon of waves of different speeds traveling with different speeds is known as **dispersion**.

The effect of dispersion is shape-distortion of the solution.

-(16/29)

Dispersion ~>> Shape Distortion

Peter Blomgren, (blomgren.peter@gmail.com)

Dissipation and Dispersion

SAN DIEGO STATE UNIVERSITY

With $\theta = h\xi$, we write

$$g(\theta) = |g(\theta)| e^{-i\theta\alpha(\theta)\lambda},$$

and dusting off some complex analysis, we identify

$$\tan\left[\alpha(\theta)\lambda\theta\right] = -\frac{\operatorname{Im}\left[g(\theta)\right]}{\operatorname{Re}\left[g(\theta)\right]}.$$

When $|g(\theta)| = 1$, we have

$$\sin\left(\alpha(\theta)\lambda\theta\right) = -\ln\left[g(\theta)\right].$$

SAN DIEGO STATI UNIVERSITY

- (18/29)

<ロ> (四) (四) (三) (三)

Example: The Lax-Wendroff Scheme

The amplification factor for the Lax-Wendroff scheme is

$$g(heta) = 1 - 2(a\lambda)^2 \sin^2\left(rac{ heta}{2}
ight) - ia\lambda\sin(heta)$$

By the preceding arguments we have,

$$\tan\left[\alpha(\theta)\lambda\theta\right] = \frac{a\lambda\sin(\theta)}{1-2(a\lambda)^2\sin^2\left(\frac{\theta}{2}\right)}$$

With a little help from our friend Taylor, this can give us some information about $a(\theta)$:

$$\begin{split} \sin(\theta) &= \theta \left[1 - \frac{1}{6} \theta^2 + \mathcal{O} \left(\theta^4 \right) \right] \\ \tan(\theta) &= \theta \left[1 + \frac{1}{3} \theta^2 + \mathcal{O} \left(\theta^4 \right) \right] \\ \tan^{-1}(\theta) &= \theta \left[1 - \frac{1}{3} \theta^2 + \mathcal{O} \left(\theta^4 \right) \right] \end{split}$$

1 of 4

-(19/29)

Example: The Lax-Wendroff Scheme

We get

$$lpha(heta) = oldsymbol{a} \left[1 - rac{1}{6} heta^2 \left(1 - (oldsymbol{a} \lambda)^2
ight) + \mathcal{O} \left(heta^4
ight)
ight]$$

- When θ is small and $|a\lambda| < 1$, then $\alpha(\theta) < a$; the numerical solution will tend to trail the exact solution.
- When $|a\lambda| \approx 1$, then the dispersion (phase error) is smaller.

-(20/29)

イロト イポト イヨト イヨト

For larger values of heta, the Taylor expansions do not hold and we

must consider the full expressions,

$$g(\theta) = 1 - 2(a\lambda)^2 \sin^2\left(\frac{\theta}{2}\right) - ia\lambda \sin(\theta),$$

and

$$\tan\left[\alpha(\theta)\lambda\theta\right] = \frac{a\lambda\sin(\theta)}{1-2(a\lambda)^2\sin^2\left(\frac{\theta}{2}\right)}.$$

When $\theta = \pi$, $g = 1 - 2a^2\lambda^2$:

- If $|a\lambda|>1/\sqrt{2}$, then g< 0, and $lpha(\pi)=1/\lambda$
- If $|a\lambda| < 1/\sqrt{2}$, then g > 0, and $lpha(\pi) = 0$

By consistency, $\alpha(0) = a$.

-(21/29)

イロト イポト イヨト イヨト

Example: The Lax-Wendroff Scheme

Dissipation Dispersion **Dispersion Relations**

Example: The Lax-Wendroff Scheme

150

180

210

SAN DIEGO STATE

UNIVERSITY

- (23/29)

Lax-Wendroff

Peter Blomgren, (blomgren.peter@gmail.com)

Dissipation and Dispersion

Dissipation Dispersion **Dispersion Relations**

Example: The Lax-Wendroff Scheme

180

180

Lax-Wendroff

Peter Blomgren, (blomgren.peter@gmail.com)

Dissipation and Dispersion

- (24/29)

SAN DIEGO STATE

UNIVERSITY

Dissipation Dispersion **Dispersion Relations**

Example: The Lax-Wendroff Scheme

180

180

Ê

SAN DIEGO STATE

UNIVERSITY

Lax-Wendroff

Peter Blomgren, (blomgren.peter@gmail.com)

Dissipation and Dispersion

For hyperbolic PDEs is it best to take |aλ| as close to the stability limit as possible; this keeps the dissipation and dispersion small, *e.g.* the phase speed for Lax-Wendroff for a = 1, and λ = 0.99:

If we are interested in a propagating a particular frequency ξ^* , then we must choose h so that $h\xi^* < \pi$. (Think: Nyquist sampling.)

-(26/29)

	Dissipation Dispersion	Introduction Dispersion Relations	
Rules of Thumb			2 of 2

 When the leapfrog and Lax-Wendroff schemes are applied to the homogeneous one-way wave equation with |aλ| = 1, there is no dispersion error. These are exceptional special cases; when a(t, x) is variable, or the system is non-trivial in any other way, there is dispersion.

-(27/29)

(4) (E) (4) (E) (4)

 Dissipation Dispersion
 Introduction Dispersion Relations

 Rules of Thumb
 2 of 2

- When the leapfrog and Lax-Wendroff schemes are applied to the homogeneous one-way wave equation with |aλ| = 1, there is no dispersion error. These are exceptional special cases; when a(t,x) is variable, or the system is non-trivial in any other way, there is dispersion.
- The phase error is always an even function of θ, hence if a scheme has order of accuracy ρ, then the phase error is of order ρ if ρ is even, and order ρ + 1 if ρ is odd.

-(27/29)

イロト イポト イヨト イヨト

 Dissipation Dispersion
 Introduction Dispersion Relations

 Rules of Thumb
 2 of 2

- When the leapfrog and Lax-Wendroff schemes are applied to the homogeneous one-way wave equation with $|a\lambda| = 1$, there is no dispersion error. These are exceptional special cases; when a(t,x) is variable, or the system is non-trivial in any other way, there is dispersion.
- The phase error is always an even function of θ , hence if a scheme has order of accuracy ρ , then the phase error is of order ρ if ρ is even, and order $\rho + 1$ if ρ is odd.
- When choosing a scheme for a particular application, the amount of dissipation and dispersion can (and should) be used to choose between schemes, see *e.g.* D. Durran, *The Third-Order Adams-Bashforth Method: An Attractive Alternative to Leapfrog Time Differencing*, Monthly Weather Review, **119** (1991), pp. 702–720.

イロト イポト イヨト イヨト

-(27/29)

That ends our discussion of finite difference schemes for hyperbolic PDEs.

Next time we start looking at **parabolic PDEs**, of which the one-dimensional heat equation

$$\frac{\partial}{\partial t}u(t,x) = b(t,x)\frac{\partial^2}{\partial x^2}u(t,x)$$
$$u(0,x) = \varphi(x)$$

is the simplest example.

-(28/29)

イロト イポト イヨト イヨト

The following result is fundamentally important in signal processing / information theory: —

Theorem (Sampling Theorem)

In order for a band-limited (i.e., one with a zero power spectrum for frequencies $\nu > B$) baseband ($\nu > 0$) signal to be reconstructed fully, it must be sampled at a rate $\nu \ge 2B$. A signal sampled at $\nu = 2B$ is said to be Nyquist sampled, and $\nu = 2B$ is called the Nyquist frequency. No information is lost if a signal is sampled at the Nyquist frequency, and no additional information is gained by sampling faster than this rate.

An audio CD is sampled at 44,100 samples/second, allowing for reconstruction of signals up to 22,050 Hz. (There is no evidence that human beings are sensitive to audio frequencies above 20 kHz, and most people over the age of 35 are unable to hear sounds above 15–16 kHz at 72 dB.)

-(29/29)

(ロ) (部) (注) ()